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The “least absolute shrinkage and selection operator” (Lasso) method has been adapted

recently for network-structured datasets. In particular, this network Lasso method allows

to learn graph signals from a small number of noisy signal samples by using the total

variation of a graph signal for regularization. While efficient and scalable implementations

of the network Lasso are available, only little is known about the conditions on the

underlying network structure which ensure network Lasso to be accurate. By leveraging

concepts of compressed sensing, we address this gap and derive precise conditions on

the underlying network topology and sampling set which guarantee the network Lasso

for a particular loss function to deliver an accurate estimate of the entire underlying graph

signal. We also quantify the error incurred by network Lasso in terms of two constants

which reflect the connectivity of the sampled nodes.

Keywords: compressed sensing, big data, semi-supervised learning, complex networks, convex optimization,

clustering

1. INTRODUCTION

In many applications ranging from image processing, social networks to bioinformatics, the
observed datasets carry an intrinsic network structure. Such datasets can be represented
conveniently by signals defined over a “data graph” which models the network structure inherent
to the dataset [1, 2]. The nodes of this data graph represent individual data points which are labeled
by some quantity of interest, e.g., the class membership in a classification problem. We represent
this label information as a graph signal whose value for a particular node is given by its label [1, 3–
8]. This graph signal representation of datasets allows to apply efficient methods from graph signal
processing (GSP) which are obtained, in turn, by extending established methods (e.g., fast filtering
and transforms) from discrete time signal processing (over chain graphs) to arbitrary graphs [9–11].

The resulting graph signals are typically clustered, i.e., these signals are nearly constant over
well connected subset of nodes (clusters) in the data graph. Exploiting this clustering property
enables the accurate recovery of graph signals from few noisy samples. In particular, using the total
variation to measure how well a graph signal conforms with the underlying cluster structure, the
authors of Hallac et al. [12] obtain the network Lasso (nLasso) by adapting the well-known Lasso
estimator which is widely used for learning sparse models [13, 14]. The nLasso can be interpreted
as an instance of the regularized empirical risk minimization principle, using total variation of a
graph signal for the regularization. Some applications where the use of nLasso based methods has
proven beneficial include housing price prediction and personalized medicine [12, 15].

A scalable implementation of the nLasso has been obtained via the alternating direction method
of multipliers (ADMM) [16]. However, the authors of Boyd et al. [16] do not discuss conditions
on the underlying network structure which ensure success of the network Lasso. We close this
gap in the understanding of the performance of network Lasso, by deriving sufficient conditions
on the data graph (cluster) structure and sampling set such that nLasso is accurate. To this end,
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we introduce a simple model for clustered graph signals which
are constant over well connected groups or clusters of nodes. We
then define the notion of resolving sampling sets, which relates
the cluster structure of the data graph to the sampling set. Our
main contribution is an upper bound on the estimation error
obtained from nLasso when applied to resolving sampling sets.
This upper bound depends on two numerical parameters which
quantify the connectivity between sampled nodes and cluster
boundaries.

Much of the existing work on recovery conditions and
methods for graph signal recovery (e.g., [17–22]), relies on
spectral properties of the data graph Laplacian matrix. In
contrast, our approach is based directly on the connectivity
properties of the underlying network structure. The closest to
our work is Sharpnack et al. [23] and Wang et al. [24], which
provide sufficient conditions such that a special case of the nLasso
(referred to as the “edge Lasso”) accurately recovers piece-wise
constant (or clustered) graph signals from noisy observations.
However, these works require access to fully labeled datasets,
while we consider datasets which are only partially labeled (as it is
typical formachine learning applications where label information
is costly).

1.1. Outline
The problem setting considered is formalized in section 2. In
particular, we show how to formulate the problem of learning a
clustered graph signal from a small amount of signal samples as
a convex optimization problem, which is underlying the nLasso
method. Our main result, i.e., an upper bound on the estimation
error of nLasso is stated in section 3. Numerical experiments
which illustrate our theoretical findings are discussed in section 4.

1.2. Notation
We will conform to standard notation of linear algebra as used,
e.g., in Golub and Van Loan [25]. For a binary variable b, we
denote its negation as b̄.

2. PROBLEM FORMULATION

We consider datasets which are represented by a network model,
i.e., a data graph G= (V , E ,W) with node setV = {1, . . . ,N}, edge
set E and weight matrix W ∈ R

N×N
+ . The nodes V of the data

graph represent individual data points. For example, the node
i ∈ V might represent a (super-)pixel in image processing,
a neuron of a neural network [26] or a social network user
profile [27].

Many applications naturally suggest a notion of similarity
between individual data points, e.g., the profiles of befriended
social network users or grayscale values of neighboring
image pixels. These domain-specific notions of similarity are
represented by the edges of the data graph G, i.e., the nodes i, j∈V

representing similar data points are connected by an undirected
edge {i, j}∈E . We denote the neighborhood of the node i ∈ V by
N (i) := {j ∈ V :{i, j} ∈ E}. It will be convenient to associate with
each undirected edge {i, j} a pair of directed edges, i.e., (i, j) and
(j, i). With slight abuse of notation we will treat the elements of
the edge set E either as undirected edges {i, j} or as pairs of two
directed edges (i, j) and (j, i).

In some applications it is possible to quantify the extent to
which data points are similar, e.g., via the physical distance
between neighboring sensors in a wireless sensor network
application [28]. Given two similar data points i, j∈V , which are
connected by an edge {i, j} ∈ E , we will quantify the strength of
their connection by the edge weight Wi,j > 0 which we collect

in the symmetric weight matrix W ∈ R
N×N
+ . The absence of an

edge between nodes i, j ∈ V is encoded by a zero weightWi,j=0.
Thus the edge structure of the data graph G is fully specified
by the support (locations of the non-zero entries) of the weight
matrixW.

2.1. Graph Signals
Beside the network structure, encoded in the data graph G,
datasets typically also contain additional labeling information.
We represent this additional label information by a graph signal
defined over G. A graph signal x[·] is a mapping V → R, which
associates every node i ∈ V with the signal value x[i] ∈R (which
might representing a label characterizing the data point). We
denote the set of all graph signals defined over a graph G =

(V , E ,W) by RV .
Many machine learning methods for network structured data

rely on a “cluster hypothesis” [4]. In particular, we assume the
graph signals x[·] representing the label information of a dataset
conforms with the cluster structure of the underlying data graph.
Thus, any two nodes i, j ∈ V out of a well-connected region
(“cluster”) of the data graph tend to have similar signal values,
i.e., x[i] ≈ x[j]. Two important application domains where
this cluster hypothesis has been applied successfully are digital
signal processing where time samples at adjacent time instants
are strongly correlated for sufficiently high sampling rate (cf.
Figure 1A) as well as processing of natural images whose close-
by pixels tend to be colored likely (cf. Figure 1B). The cluster
hypothesis is verified also often in social networks where the
clusters are cliques of individuals having similar properties (cf.
Figure 1C and Newman [29, Chap. 3]).

In what follows, we quantify the extend to which a graph signal
x[·] ∈ R

V conforms with the clustering structure of the data
graph G = (V , E ,W) using its total variation (TV)

‖x[·]‖TV :=
∑

{i,j}∈E

Wi,j|x[j]−x[i]|. (1)

For a subset of edges S ⊆ E , we use the shorthand

‖x[·]‖S :=
∑

{i,j}∈S

Wi,j|x[j]−x[i]|. (2)

For a supervised machine learning application, the signal values
x[i] might represent class membership in a classification problem
or the target (output) value in a regression problem. For the house
price example considered in Hallac et al. [12], the vector-valued
graph signal x[i] corresponds to a regression weight vector for
a local pricing model (used for the house market in a limited
geographical area represented by the node i).

Consider a partition F = {C1, . . . , C|F |} of the data graph
G into |F | disjoint subsets Cl of nodes (“clusters”) such that
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FIGURE 1 | Graph signals defined over (A) a chain graph (representing, e.g.,

discrete time signals), (B) grid graph (representing, e.g., 2D-images) and (C) a

general graph (representing, e.g., social network data), whose edges {i, j}∈E

are captioned by edge weights Wi,j .

V =
⋃|F |

l=1
Cl. We associate a subset C ⊆ V of nodes with a

particular “indicator” graph signal

IC[i]:=

{
1 if i ∈ C

0 else.
(3)

A simple model of clustered graph signals is then obtained by
piece-wise constant or clustered graph signals of the form

x[i]=

|F |∑

l=1

alICl [i]. (4)

In Figure 2, we depict a clustered graph signal for a chain graph
with 10 nodes which are partitioned into two clusters: C1 and C2.

It will be convenient to define, for a given partition F , its
boundary ∂F ⊆ E as the set of edges {i, j} ∈ E which connect
nodes i ∈ Ca and j ∈ Cb from different clusters, i.e., with Ca 6= Cb.
With a slight abuse of notation, we will use the same symbol ∂F
also to denote the set of nodes which are connected to a node
from another cluster.

The TV of a clustered graph signal of the form (Equation 4)
can be upper bounded as

‖x[·]‖TV ≤ 2 max
l∈{1,...,|F |}

|al|
∑

{i,j}∈∂F

Wi,j. (5)

Thus, for a partition F with small weighted boundary∑
{i,j}∈∂F Wi,j, the associated clustered graph signals (Equation 4)

have small TV ‖x[·]‖TV due to Equation (5).
The signal model (Equation 4), which also has been used in

Sharpnack et al. [23] andWang et al. [24], is closely related to the

FIGURE 2 | A clustered graph signal x[i] = a1IC1
[i]+ a2IC2

[i] (cf. Equation 4)

defined over a chain graph which is partitioned into two equal-size clusters C1

and C2 which consist of consecutive nodes. The edges connecting nodes

within the same cluster have weight 1, while the single edge connecting nodes

from different clusters has weight 1/2.

stochastic block model (SBM) [30]. Indeed, the SBM is obtained
from Equation (4) by choosing the coefficients aC uniquely for
each cluster, i.e., aC ∈ {1, . . . , |F |}. Moreover, the SBM provides
a generative (stochastic) model for the edges within and between
the clusters Cl.

We highlight that the clustered signal model (Equation 4)
is somewhat dual to the model of band-limited graph signals
[1, 4–7, 17, 19]. The model of band-limited graph signals is
obtained by the subspaces spanned by the eigenvectors of the
graph Laplacian corresponding to the smallest (in magnitude)
eigenvalues, i.e., the low-frequency components. Such band-
limited graph signals are smooth in the sense of small values of
the Laplacian quadratic form [31]

∑

{i,j}∈E

Wi,j(x[j]−x[i])2 = xTLx. (6)

Here, we used the vector representation x = (x[1], . . . , x[N])T of
the graph signal x[·] and the graph Laplacian matrix L ∈ R

N×N

defined element-wise as

Li,j =

{∑
k∈V Wi,k if i = j

−Wi,j otherwise.
(7)

A band-limited graph signal x[·] is characterized by a clustering
(within a small bandwidth) of their graph Fourier transform
(GFT) coefficients [22]

x̃[l] := uTl x, for l = 1, . . . ,N, (8)

with the orthonormal eigenvectors {ul}
N
l=1

of the graph Laplacian
matrix L. In particular, by the spectral decomposition of the psd
graph Laplacian matrix L (cf. Equation 7), we have L = U3UH

with U =
(
u1, . . . , uN

)
and the diagonal matrix 3 having (in

decreasing order) the non-negative eigenvalues λl of L on its
diagonal.

In contrast to band-limited graph signals, a clustered graph
signal of the form (Equation 4) will typically have GFT
coefficients which are spread out over the entire (graph)
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frequency range. Moreover, while band-limited graph signals
are characterized by having a sparse GFT, a clustered graph
signal of the form (Equation 4) has a dense (non-sparse) GFT in
general. On the other hand, while a clustered graph signal of the
form (Equation 4) has sparse signal differences {x[i]−x[j]}{i,j}∈E ,
the signal differences of a band-limited graph signal are dense
(non-sparse).

Let us illustrate the duality between the clustered graph signal
model (Equation 4) and the model of band-limited graph signals
(cf. [7, 17]) by considering a dataset representing a finite length
segment of a time series. The data graph G0 underlying this time
series data is chosen as a chain graph (cf. Figure 2), consisting
of N = 100 nodes which represent the individual time samples.
The time series is partitioned into two clusters C1, C2, each cluster
consisting of 50 consecutive nodes (time samples). We model the
correlations between successive time samples using edge weight
Wi,j = 1 for data points i, j belonging to the same cluster and a
smaller weightWi,j = 1/2 for the single edge {i, j} connecting the
two clusters C1 and C2.

A clustered graph signal (time series) x0[i] = a1IC1 [i] +
a2IC2 [i] (cf. Equation 4) defined over G0 is characterized by very
sparse signal differences {x0[i]− x0[j]}{i,j}∈E . Indeed the signal
difference x0[i]−x0[j] of the clustered graph signal x0[·] is non-
zero only for the single edge {i, j} which connects C1 and C2.
In stark contrast, the GFT of x0[·] is spread out over the entire
(graph) frequency range (cf. Figure 3), i.e., the graph signal x0[·]
does not conform with the band-limited signal model.

On the other hand, we illustrate in Figure 4 a graph signal
xBL[·] with GFT coefficients x̃BL[l] = 1 (cf. Equation 8) for
l = 1, 2 and x̃BL[l] = 0 otherwise. Thus, the graph signal is clearly
band-limited (it has only two non-zero GFT coefficients) but the
signal differences xBL[i] − xBL[j] across the edges {i, j} ∈ E are
clearly non-sparse.

2.2. Recovery via nLasso
Given a dataset with data graph G = (V , E ,W), we aim at
recovering a graph signal x[·] ∈ R

V from its noisy values

y[i] = x[i]+ e[i] (9)

provided on a (small) sampling set

M := {i1, . . . , iM} ⊆ V . (10)

Typically M ≪ N, i.e., the sampling set is a small subset of all
nodes in the data graph G.

The recovered graph signal x̂[·] should incur only a small
empirical (or training) error

Ê(x̂[·]) :=
∑

i∈M

|x̂[i]−y[i]|. (11)

Note that the definition (Equation 11) of the empirical error
involves the ℓ1-norm of the deviation x̂[·]i − y[i] between
recovered and measured signal samples. This is different from
the error criterion used in the ordinary Lasso, i.e., the squared-
error loss

∑
i∈M(x̂[i]−y[i])2 [32]. The definition (Equation 11)

is beneficial for applications with measurement errors ei (cf.

FIGURE 3 | The magnitudes of the GFT coefficients x̃[l] (cf. Equation 8) of a

clustered graph signal x0[·] defined over a chain graph (cf. Figure 2).

FIGURE 4 | A band-limited graph signal defined over a chain graph with

N=100.

Equation 9) having mainly small values except for a few large
outliers [18, 33]. However, by contrast to plain Lasso, the error
function in Equation (11) does not satisfy a restricted strong
convexity property [34], which might be detrimental for the
convergence speed of the resulting recovery methods (cf. Section
4).

In order to recover a clustered graph signal with a small TV
‖x̂[·]‖TV (cf. Equation 5) from the noisy signal samples {y[i]}i∈M
it is sensible to consider the recovery problem

x̂[·] ∈ arg min
x̃[·]∈RV

Ê(x̃[·])+ λ‖x̃[·]‖TV. (12)

This recovery problem amounts to a convex optimization
problem [35], which, as the notation already indicates, might
have multiple solutions x̂[·] (which form a convex set). In what
follows, we will derive conditions on the sampling set M such
that any solution x̂[·] of Equation (12) allows to accurately
recover clustered a graph signal x[·] of the form (Equation 4).

Any graph signal obtained from Equation (12) balances the
empirical error Ê(x̂[·]) with the TV ‖x̂[·]‖TV in an optimal
manner. The parameter λ in Equation (12) allows to trade off a
small empirical error against the amount to which the resulting
signal is clustered, i.e., having a small TV. In particular, choosing
a small value for λ enforces the solutions of Equation (12) to
yield a small empirical error, whereas choosing a large value
for λ enforces the solutions of Equation (12) to have small TV.
Our analysis in section 3 provides a selection criterion for the
parameter λ which is based on the location of the sampling set
M (cf. Equation 10) and the partitionF underlying the clustered
graph signal model (Equation 4). Alternatively, for sufficiently
large sampling sets one might choose λ using a cross-validation
procedure [13].
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Note that the recovery problem (Equation 12) is a particular
instance of the generic nLasso problem studied in Hallac et al.
[12]. There exist efficient convex optimization methods for
solving the nLasso problem (Equation 12) (cf. [36] and the
references therein). In particular, the alternating method of
multipliers (ADMM) has been applied to the nLasso problem in
Hallac et al. [12] to obtain a scalable learning algorithm which
can cope with massive heterogeneous datasets.

3. WHEN IS NETWORK LASSO
ACCURATE?

The accuracy of graph signal recovery methods based on the
nLasso problem (Equation 12), depends on how close the
solutions x̂[·] of Equation (12) are to the true underlying graph
signal x[·] ∈ R

V . In what follows, we present a condition which
guarantees any solution x̂[·] of Equation (12) to be close to
the underlying graph signal x[·] if it is clustered of the form
(Equation 4).

A main contribution of this paper is the insight that the
accuracy of nLasso methods, aiming at solving Equation (12),
depends on the topology of the underlying data graph via the
existence of certain flows with demands [37]. Given a data graph
G, we define a flow on it as a mapping h[·] :V × V → R which
assigns each directed edge (i, j) the value h[(i, j)], which can be
interpreted as the amount of some quantity flowing through
the edge (i, j) [37]. A flow with demands has to satisfy the
conservation law

∑

j∈N (i)

h(j, i)− h(i, j) = d[i], for any i∈V (13)

with a prescribed demand d[i] for each node i ∈ V . Moreover, we
require flows to satisfy the capacity constraints

|h(i, j)| ≤ Wi,j for any edge (i, j)∈E \ ∂F . (14)

Note that the capacity constraint (Equation 14) applies only to
intra-cluster edges and does not involve the boundary edges ∂F .
The flow values h(i, j) at the boundary edges (i, j) ∈ ∂F take a
special role in the following definition of the notion of resolving
sampling sets.

Definition 1. Consider a dataset with data graph G = (V , E ,W)
which contains the sampling set M ⊆ V . The sampling set M
resolves a partition F = {C1, . . . , C|F |} with constants K and L if,
for any bi,j ∈ {0, 1} with {i, j}∈∂F , there exists a flow h[·] on G (cf.
Equations 13, 14) with

h(i, j) = bi,j · L ·Wi,j, h(j, i) = b̄i,j · L ·Wi,j (15)

for every boundary edge {i, j} ∈ ∂F and demands (cf. Equation 13)
satisfying

|d[i]|≤K for i∈M, and d[i]=0 for i∈V\M. (16)

This definition requires nodes of a resolving sampling set to be
sufficiently well connected with every boundary edge {i, j} ∈ ∂F .
In particular, we could think of injecting (absorbing) certain
amounts of flow into (from) the data graph at the sampled nodes.
At each sampled node i ∈ M, we can inject (absorb) a flow of
level at mostK (cf. Equation 16). The injected (absorbed) flow has
to be routed from the sampled nodes via the intra-cluster edges
to each boundary edge such that it carries a flow value L · Wi,j.
Clearly, this is only possible if there are paths of sufficient capacity
between sampled nodes and boundary edges available.

The definition of resolving sampling sets is quantitive as it
involves the numerical constants K and L. Our main result stated
below is an upper bound on the estimation error of nLasso
methods which depends on the value of these constants. It will
turn out that resolving sampling sets with a small values of K
and large values of L are beneficial for the ability of nLasso to
recover the entire graph signal from noisy samples observed on
the sampling set. However, the constants K and L are coupled via
the flow h[·] used in Definition 1, e.g., the constant K always has
to satisfy

K ≥ max
{i,j}∈∂F

LWi,j. (17)

Thus, the minimum possible value forK depends on the values of
the edge weightsWi,j of the data graph. Moreover, the minimum
possible value for L depends on the precise connectivity of
sampled nodes with the boundary edges ∂F . Indeed, Definition
1 requires to route (by satisfying the capacity constraints,
Equation 14), an amount of flow given by LWi,j from a boundary
edge {i, j} ∈ ∂F to the sampled nodes inM.

In order to make (the somewhat abstract) Definition 1 more
transparent, let us state an easy-to-check sufficient condition for
a sampling setM such that it resolves a given partition F .

Lemma 2. Consider a partition F = {C1, . . . , C|F |} of the data
graph G which contains the sampling setM ⊆ V . If each boundary
edge {i, j} ∈ ∂F with i ∈ Ca, j ∈ Cb is connected to sampled nodes,
i.e., {m, i} ∈ E and {n, j} ∈ E with m ∈ M∩Ca, n ∈ M∩Cb, and
weights Wm,i,Wn,j ≥ LWi,j, then the sampling set M resolves the
partition F with constants L and

K = L ·max
i∈V

|N (i) ∩ ∂F |. (18)

In Figure 1C we depict a data graph consisting of two clusters
F = {C1, C2}. The data graph contains the sampling set M =

{m, n} which resolves the partition F with constants K = L = 4
according to Lemma 2.

The sufficient condition provided by Lemma 2 can be used
to guide the choice for the sampling set M. In particular
Lemma 2 suggests to sample more densely near the boundary
edges ∂F which connect different clusters. This rationale allows
to cope with applications where the underlying partition F

is unknown. In particular, we could use highly scalable local
clustering methods (cf. [38]) to find the cluster boundaries ∂F

and then select the sampled nodes in their vicinity. Another
approach to cope with lack of information about F is based on
using random walks to identify the subset of nodes with a large
boundary which are sampled more densely [39].
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We now state our main result which is that solutions of the
nLasso problem (Equation 12) allow to accurately recover the
true underlying clustered graph signal x[·] (conforming with
the partition F (cf. Equation 4) from the noisy measurements
(Equation 9) whenever the sampling set M resolves the
partition F .

Theorem 3. Consider a clustered graph signal x[·] of the form
(Equation 4), with underlying partition F = {C1, . . . , C|F |} of the
data graph into disjoint clusters Cl. We observe the noisy signal
values y[i] at the samples nodes M ⊆ V (cf. Equation 9). If the
sampling set M resolves the partition F with parameters K >

0, L > 1, any solution x̂[·] of the nLasso problem (Equation 12)
with λ:=1/K satisfies

‖x̂[·]−x[·]‖TV≤ (K+4/(L−1))
∑

i∈M

|e[i]|. (19)

Thus, if the sampling set M is chosen such that it resolves
the partition F = {C1, . . . , C|F |} (cf. Definition 1), nLasso
methods (cf. Equation 12) recover a clustered graph signal x[·]
(cf. Equation 4) with an accuracy which is determined by the level
of the measurement noise e[i] (cf. Equation 9).

Let us highlight that the knowledge of the partition F

underlying the clustered graph signal model (Equation 4) is only
needed for the analysis of nLasso methods leading to Theorem
3. In contrast, the actual implementation methods of nLasso
methods based on Equation (12) does not require any knowledge
of the underlying partition. What is more, if the true underlying
graph signal x[·] is clustered according to Equation (4) with
different signal values al for different clusters Cl, the solutions
of the nLasso Equation (12) could be used for determining the
clusters Cl which constitute the partition F .

We also note that the bound (Equation 19) characterizes the
recovery error in terms of the semi-norm ‖x̂[·]−x[·]‖TV which
is agnostic toward a constant offset in the recovered graph signal
x̂[·]. In particular, having a small value of ‖x̂[·]− x[·]‖TV does
in general not imply a small squared error

∑
i∈V (x̂[i]−x[i])2 as

theremight be an arbitrarily large constant offset contained in the
nLasso solution x̂[·].

However, if the error ‖x̂[·]−x[·]‖TV is sufficiently small, we
might be able to identify the boundary edges {i, j} ∈ ∂F of
the partition F underlying a clustered graph signal of the form
(Equation 4).

Indeed, for a clustered graph signal of the form (Equation 4),
the signal difference x[i] − x[j] across edges is non-zero only for
boundary edges {i, j} ∈ ∂F . Lets assume the signal differences of
x[·] across boundary edges {i, j} ∈ F are lower bounded by some
positive constant η > 0 and the nLasso error satisfies ‖x̂[·]−
x[·]‖TV < η/2. As can be verified easily, we can then perfectly
recover the boundary ∂F of the partition F = {C1, . . . , C|F |} as
precisely those edges {i, j} ∈ E for which |x̂[i] − x̂[j]| ≥ η/2.
Given the boundary ∂F , we can recover the partition F and,
in turn, average the noisy observations y[i] over all sampled
nodes i ∈ M belonging to the same cluster. This simple
post-processing of the nLasso estimate x̂[i] is summarized in
Algorithm 1.

Algorithm 1 Post-Processing for nLasso

Input: data graph G = (V , E ,W), noisy signal samples y[i]
(cf. Equation 9), nLasso estimate x̂[·] (cf. Equation 12) and
threshold η > 0

1: construct candidate boundary S = {{i, j} ∈ E : |x̂[i]− x̂[j]| ≥
η/2}

2: find partition F̂ = {C1, . . . , C|F̂ |} with ∂F̂ = S

3: if no such partition exists return “ERR”

4: for each cluster Cl ∈ F̂

5: construct setA = Cl ∩M

6: if setA is empty return “ERR”

7: for every i∈Cl set x̃[i]= (1/|A|)
∑
j∈A

y[j]

Output: new estimate x̃[·] or “ERR”

Lemma 4. Consider the setting of Theorem 3 involving a clustered
graph signal x[·] of the form (Equation 4) with coefficients al
satisfying |al − al′ | > η for l 6= l′ with a known positive threshold
η > 0. We observe noisy signal samples y[i] (cf. Equation 9) over
the sampling setM with a bounded error e[i] ≤ ǫ. If the sampling
setM resolves the partition F with parameters K > 0, L > 1 such
that

(K+4/(L−1))
∑

i∈M

|e[i]| < η/2, (20)

then the signal x̃[·] delivered by Algorithm 1 satisfies

∑

i∈V

(x̃[i]−x[i])2≤Nε2. (21)

4. NUMERICAL EXPERIMENTS

In order to illustrate the theoretical findings of section 3 we report
the results of some illustrative numerical experiments involving
the recovery of clustered graph signals of the form (Equation 4)
from a small number of noisy measurements (Equation 9). To
this end, we implemented the iterative method ADMM [16]
to solve the nLasso (Equation 12) problem. We applied the
resulting semi-supervised learning algorithm to two synthetically
generated data sets. The first data set represents a time series,
which can be represented as a graph signal over a chain graph.
The nodes of the chain graph, which represent the discrete time
instants are partitioned evenly into clusters of consecutive nodes.
A second experiment is based on data sets generated using a
recently proposed generative model for complex networks.

4.1. Chain Graph
Our first experiment, is based on a graph signal defined over
a chain graph Gchain (cf. Figure 2) with N = 105 nodes V =

{1, 2, . . . ,N}, connected by N − 1 undirected edges. The nodes
of the data graph Gchain are partitioned into N/10 equal-sized
clusters Cl, l = 1, . . . ,N/10, each constituted by 10 consecutive
nodes. The intrinsic clustering structure of the chain graph Gchain
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matches the partition Fchain = {Cl}
N/10
l=1

via the edge weightsWi,j.
In particular, the weights of the edges connecting nodes within
the same cluster are chosen i.i.d. according toWi,j ∼ |N (2, 1/4)|
(i.e., the absolute value of a Gaussian random variable with mean
2 and variance 1/4). The weights of the edges connecting nodes
from different clusters are chosen i.i.d. according to Wi,j ∼

|N (1, 1/4)|.
We then generate a clustered graph signal x[·] of the form

(Equation 4) with coefficients al ∈ {1, 5}, where the coefficients
al and al′ of consecutive clusters Cl and Cl′ are different. The
graph signal x[·] is observed via noisy samples y[i] (cf. Equation
9 with e[i] ∼ N (0, 1/4)) obtained for the nodes i ∈ V belonging
to a sampling set M. We consider two different choices for the
sampling set, i.e., M = M1 and M = M2. Both choices
contain the same number of nodes, i.e., |M1| = |M2| = 2 · 104.
The sampling set M1 contains neighbors of cluster boundaries
∂Fchain and conforms to Lemma 2 with constants K = 5.39 and
L = 2 (which have been determined numerically). In contrast,
the sampling set M2 is obtained by selecting nodes uniformly
at random from V and thereby completely ignoring the cluster
structure Fchain of Gchain.

The noisy measurements y[i] are then input to an ADMM
implementation for solving the nLasso problem (Equation 12)
with λ = 1/K. We run ADMM for a fixed number of 300
iterations and using ADMM-parameter ρ = 0.01 [16]. In
Figure 5 we illustrate the recovered graph signals (over the first
100 nodes of the chain graph) x̂[·], obtained from noisy signal
samples over either sampling setM1 orM2.

As evident from Figure 5, the recovered signal obtained when
using the sampling set M1, which takes the partition Fchain into
account, better resembles the original graph signal x[·] than when
using the randomly selected sampling set M2. The favorable
performance of M1 is also reflected in the empirical normalized
mean squared errors (NMSE) between the real and recovered
graph signals, which are NMSEM1 =3.3 · 10−2 and NMSEM2 =

2.192 · 10−1, respectively.
We have repeated the above experiment with the same

parameters but considering noiseless initial samples y[i] for both
sampling sets M1 and M2. The recovered graph signals x̂[·]
for the first 100 nodes of the chain are presented in Figure 6.
It can be observed that the recovery starting from the sampling
set M1 (conforming to the partition Fchain) perfectly resembles
the original graph signal x[·], as expected according to our upper
bound in Equation (19). The NMSE obtained after running
ADMM for 300 iterations for solving the nLasso problem
(Equation 12) are NMSEM1 = 7.5 · 10−6 and NMSEM2 =

1.475 · 10−1, respectively.

4.2. Complex Network
In this second experiment, we generate a data graph Glfr using
the generative model introduced by Lancichinetti et al. [40], in
what follows referred to as LFR model. The LFR model aims at
imitating some key characteristics of real-world networks such as
power law distributions of node degrees and community sizes.
The data graph Glfr contains a total of N = 105 nodes which are
partitioned into 1,399 clusters, Flfr = {C1, . . . , C1399}. The nodes
V of Glfr are connected by a total of 9.45 · 10

5 undirected edges E .

FIGURE 5 | Clustered graph signal x[·] along with the recovered graph signals

obtained from noisy signal samples set M1 (Lemma 2) and M2 (random).

FIGURE 6 | Clustered graph signal x[·] along with the recovered graph signals

obtained from noiseless signal samples over sampling set M1 (Lemma 2) and

M2 (random). The noiseless signal samples y[i] = x[i] are marked with dots.

The edge weights Wi,j, which are also provided by the LFR
model, conform to the cluster structure of Glfr, i.e., inter-cluster
edges {i, j} ∈ E with i, j ∈ Cl have larger weights compared to
intra-cluster edges {i, j} ∈ E with i ∈ Cl and j ∈ Cl′ . Given
the data graph Glfr and partition Flfr we generate a clustered
graph signal according to Equation (4) as x[i] =

∑1399
j=1 ajICj [i]

with coefficients aj randomly chosen i.i.d. according to a uniform
distribution U(1, 50).

We then try to recover the entire graph signal x[·] by solving
the nLasso problem (Equation 12) using noisy measurements
y[i], according to Equation (9) with i.i.d. measurement noise
e[i] ∼ N (0, 1/4), obtained at the nodes in a sampling set M. As
in section 4.1, we consider two different choicesM1 andM2 for
the sampling set which both contain the same number of nodes,
i.e., |M1| = |M2| = 104. The nodes in sampling set M1 are
selected according to Lemma 2, i.e., by choosing nodes which are
well connected (close) to boundary edges ∂Flfr which connect
different clusters of the partition Flfr. In contrast, the sampling
set M2 is constructed by selecting nodes uniformly at random,
i.e., the partition Flfr is not taken into account.

In order to construct the sampling set M1, we first sorted
the edges {i, j} ∈ E of the data graph Glfr in ascending order
according to their edge weight Wi,j. We then iterate over the the
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edges according to the list, starting with the edge having smallest
weight, and for each edge {i, j} ∈ E we select the neighboring
nodes of i and j with highest degree and add them toM1, if they
are not already included there. This process continues until the
sampling set M1 has reached the prescribed size of 104. Using
Lemma 2, we then verified numerically that the sampling set
M1 resolves Flfr with constants K = 142.6 and L = 2 (cf.
Definition 1).

The measurements y[i] collected for each sampling sets M1

and M2 are fed into the ADMM algorithm (using parameters
ρ = 1/100) for solving the nLasso problem (Equation 12)
with λ = 1/K. The evolution of the NMSE achieved by the
ADMM output for an increasing number the iterations is shown
in Figure 7. According to Figure 7 the signal recovered from the
sampling set M1 approximates the true graph signal x[·] more
closely compared to when using the sampling setM2. The NMSE
achieved after 300 iterations of ADMM is NMSEM1 =1.56 ·10−2

and NMSEM2 =4.25 · 10−2, respectively.
Finally, we compare the recovery accuracy of nLasso to that

of plain label propagation (LP) [41], which relies on a band-
limited signal model (cf. section 2.1). In particular, LP quantifies
signal smoothness by the Laplacian quadratic form (Equation 6)
instead of the total variation (Equation 1), which underlies
nLasso (Equation 12). The signals recovered after running the LP
algorithm for 300 iterations for the two sampling sets M1 and
M2 incur an NMSE of NMSEM1 = 3.1 · 10−2 and NMSEM2 =

7.43 ·10−2, respectively. Thus, the signals recovered using nLasso
are more accurate compared to LP, as illustrated in Figure 8.
However, our results indicate that LP also benefits by using the
sampling setM1 whose construction is guided by our theoretical
findings (cf. Lemma 2).

5. PROOFS

The high-level idea behind the proof of Theorem 3 is to adapt
the concept of compatibility conditions for Lasso type estimators
[32]. This concept has been championed for analyzing Lasso type
methods [32]. Our main technical contribution is to verify the
compatibility condition for a sampling set M which resolves the
partitionF underlying the signal model (Equation 4) (cf. Lemma
6 below).

5.1. The Network Compatibility Condition
As an intermediate step toward proving Theorem 3, we adopt
the compatibility condition [42], which has been introduced to
analyze Lassomethods for learning sparse signals, to the clustered
graph signal model (Equation 4). In particular, we define the
network compatibility condition for sampling graph signals with
small total variation (cf. Equation 1).

Definition 5. Consider a data graph G = (V , E ,W) whose nodes
V are partitioned into disjoint clusters F = {C1, . . . , C|F |}. A
sampling set M ⊆ V is said to satisfy the network compatibility
condition, with constants K, L > 0, if

K
∑

i∈M

|z[i]| + ‖z[·]‖E\∂F ≥ L‖z[·]‖∂F (22)

for any graph signal z[·] ∈ R
V .

It turns out that any sampling setM which resolves the partition
F = {C1, . . . , C|F |} with constants K and L (cf. Definition 1) also
satisfies the network compatibility condition (Equation 22) with
the same constants.

Lemma 6. Any sampling set M which resolves the partition F

with parameters K, L > 0 satisfies the network compatibility
condition with parameters K, L.

Proof: Let us consider an arbitrary but fixed graph signal z[·] ∈
R
V . Since the sampling setM resolves the partitionF there exists

a flow h[e] on G with (cf. Definition 1)

∑

j∈N (i)

h(j, i)−
∑

j∈N (i)

h(i, j)=0 for all i /∈ M

∣∣∣∣
∑

j∈N (i)

h(j, i)−
∑

j∈N (i)

h(i, j)

∣∣∣∣≤K for all i ∈ M

|h(i, j)| ≤ Wi,j for (i, j) /∈∂F

h(i, j) · h(j, i) = 0 for {i, j}∈∂F (23)

Moreover, due to Equation (15), we have the important identity

(h(i, j)−h(j, i))(z[i]−z[j])=LWi,j|z[i]−z[j]| (24)

which holds for all boundary edges {i, j}∈∂F . This yields, in turn,

L‖z[·]‖∂F
(2)
=

∑

{i,j}∈∂F

|z[i]− z[j]|LWi,j

(24)
=

∑

(i,j)∈∂F

(z[i]−z[j])h(i, j). (25)

Since E=∂F∪
(
E\∂F

)
, we can develop (Equation 25) as

L‖z[·]‖∂F

=
∑

(i,j)∈E

(z[i]−z[j])h(i, j)−
∑

(i,j)∈E\∂F

(z[i]−z[j])h(i, j)

=
∑

i∈V

z[i]
∑

j∈N (i)

(h(j, i)− h(i, j))

−
∑

(i,j)∈E\∂F

(z[i]−z[j])h(i, j)

(23)
≤ K

∑

i∈M

|z[i]| +
∑

{i,j}∈E\∂F

|z[i]−z[j]|Wi,j

= K
∑

i∈M

|z[i]| + ‖z[·]‖E\∂F (26)

which verifies (Equation 22).

The next result shows that if the sampling set satisfies the
network compatibility condition, any solution of the nLasso
(Equation 12) allows to accurately recover a clustered graph
signal (cf. Equation 4).
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FIGURE 7 | Evolution of the NMSE achieved by increasing number of nLasso-ADMM iterations when using sampling set M1 or M2, respectively.

FIGURE 8 | Evolution of the NMSE achieved by increasing number of

nLasso-ADMM iterations and LP iterations. Both algorithms are fed with the

same signal samples obtained either over sampling set M1 or M2,

respectively.

Lemma 7. Consider a clustered graph signal x[·] of the form
(Equation 4) defined on the data graph G = (V , E ,W) whose
nodes V are partitioned into the clusters F = {C1, . . . , C|F |}. We
observe the noisy signal values y[i] at the sampled nodes M ⊆

V (cf. Equation 9). If the sampling set M satisfies the network
compatibility condition with constants L > 1,K > 0, then any
solution of the nLasso problem (Equation 12), for the choice λ :=

1/K, satisfies

‖x̂[·]− x[·]‖TV≤ (K+4/(L−1))
∑

i∈M

|e[i]|. (27)

Proof: Consider a solution x̂[·] of the nLasso problem
(Equation 12) which is different from the true underlying
clustered signal x[·] (cf. Equation 4). We must have (cf.
Equation 9)

∑

i∈M

|x̂[i]−y[i]|+λ‖x̂[·]‖TV≤
∑

i∈M

|e[i]|+λ‖x[·]‖TV (28)

since otherwise the true underlying signal x[·] would achieve a
smaller objective value in Equation (12) which, in turn, would
contradict the premise that x̂[·] is optimal for the problem
(Equation 12).

Let us denote the difference between the solution x̂[·] of
Equation (12) and the true underlying clustered signal x[·] by
x̃[·] := x̂[·]− x[·]. Since x[·] satisfies Equation (4),

‖x[·]‖E\∂F = 0, and ‖x̃[·]‖E\∂F = ‖x̂[·]‖E\∂F . (29)

Applying the decomposition property of the semi-norm ‖ · ‖TV
to Equation (28) yields

∑

i∈M

|x̂[i]− y[i]| + λ‖x̂[·]‖E\∂F

≤
∑

i∈M

|e[i]| + λ‖x[·]‖∂F − λ‖x̂[·]‖∂F . (30)

Therefore, using Equation (29) and the triangle inequality,

∑

i∈M

|x̂[i]− y[i]| + λ‖x̃[·]‖E\∂F

≤ λ‖x̃[·]‖∂F +
∑

i∈M

|e[i]|. (31)

Since
∑

i∈M |x̂[i]− y[i]| ≥ 0, Equation (31) yields

λ‖x̃[·]‖E\∂F ≤ λ‖x̃[·]‖∂F +
∑

i∈M

|e[i]|, (32)
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i.e., for sufficiently small measurement noise e[i], the signal
differences of the recovery error x̃[·] = x̂[·]− x[·] cannot be
concentrated across the edges within the clusters Cl. Moreover,
using

∑

i∈M

|x̂[i]− y[i]|
(9)
=

∑

i∈M

|x̂[i]− x[i]− e[i]|

≥
∑

i∈M

|x̃[i]| −
∑

i∈M

|e[i]|, (33)

the inequality Equation (31) becomes

∑

i∈M

|x̃[i]| + λ‖x̃[·]‖E\∂F ≤ λ‖x̃[·]‖∂F + 2
∑

i∈M

|e[i]|. (34)

Thus, since the sampling set M satisfies the network
compatibility condition, we can apply Equation (22) to x̃[·]
yielding

∑

i∈M

|x̃[i]| + (1/K)‖x̃[·]‖E\∂F ≥ (1/K)L‖x̃[·]‖∂F . (35)

Inserting Equation (35) into Equation (34), with λ = 1/K, yields

λ(L− 1)‖x̃[·]‖∂F ≤ 2
∑

i∈M

|e[i]|. (36)

Combining Equations (32) and (36) yields

‖x̃[·]‖TV=‖x̃[·]‖E\∂F+‖x̃[·]‖∂F

(32)
≤ 2‖x̃[·]‖∂F + (1/λ)

∑

i∈M

|e[i]|

(36)
≤

1+4λ/(L−1)

λ

∑

i∈M

|e[i]|. (37)

5.2. Proof of Theorem 3
Combine Lemma 6 with Lemma 7.

6. CONCLUSIONS

Given a known cluster structure of the data graph, we introduced
the notion of resolving sampling sets. A sampling set resolves
a cluster structure if there exists a sufficiently large network
flow between the sampled nodes, with prescribed flow values
over boundary edges which connect different clusters. Loosely

speaking, this requires to choose the sampling set mainly in the
boundary regions between different clusters in the data graph.
Thus, we can leverage efficient clustering methods for identifying
the cluster boundary regions in order to find sampling sets which
resolve the intrinsic cluster structure of the network structure
underlying a dataset.

The verification if a particular sampling set resolves a given
partition requires to consider all possible sign patterns for
the boundary edges, which is intractable for large graphs.
An important avenue for follow-up work is the investigation
if resolving sampling sets can be characterized easily using
probabilistic models for the underlying network structure and
sampling sets. Moreover, we plan to extend our analysis to nLasso
methods using other loss functions, e.g., the squared error loss
and also the logistic loss function in the context of classification
problems.
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