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We present a novel condition, which we term the network nullspace property, which

ensures accurate recovery of graph signals representing massive network-structured

datasets from few signal values. The network nullspace property couples the cluster

structure of the underlying network-structure with the geometry of the sampling

set. Our results can be used to design efficient sampling strategies based on the

network topology.
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1. INTRODUCTION

A recent line of work proposed efficient convex optimization methods for recovering graph signals
which represent label information of network structured datasets (cf. [1, 2]). These methods rest on
the hypothesis that the true underlying graph signal is nearly constant over well-connected subsets
of nodes (clusters).

In this paper, we introduce a novel recovery condition, termed the network nullspace property
(NNSP), which guarantees convex optimization to accurately recovery of clustered (“piece-wise
constant”) graph signals from knowledge of its values on a small subset of sampled nodes. The
NNSP couples the clustering structure of the underlying data graph to the locations of the sampled
nodes via interpreting the underlying graph as a flow network.

The presented results apply to an arbitrary partitioning, but are most useful for a partitioning
such that nodes in the same cluster are connected with edges of relatively large weights, whereas
edges between clusters have low weights. Our analysis reveals that if cluster boundaries are well-
connected (in a sense made precise) to the sampled nodes, then accurate recovery of clustered
graph signals is possible by solving a convex optimization problem.

Most of the existing work on graph signal processing applies spectral graph theory to define
a notion of band-limited graph signals, e.g., based on principal subspaces of the graph Laplacian
matrix, as well as sufficient conditions for recoverability, i.e., sampling theorems, for those signals
[3, 4]. In contrast, our approach does not rely on spectral graph theory, but involves structural
(connectivity) properties of the underlying data graph. Moreover, we consider signal models which
amount to clustered (piece-wise constant) graph signals. These models, which have also been used
in Chen et al. [5] for approximating graph signals arising in various applications.

The closest to our work is [6, 7], which provide sufficient conditions such that a variant of the
Lasso method (network Lasso) accurately recovers clustered graph signals from noisy observations.
However, in contrast to this line of work, we assume the graph signal values are only observed on a
small subset of nodes.
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The NNSP is closely related to the network compatibility
(NCC) condition, which has been introduced by a subset of the
authors in Jung et al. [8] for analyzing the accuracy of network
Lasso. The NCC is a stronger condition in the sense that once the
NCC is satisfied, the NNSP is also guaranteed to hold.

2. PROBLEM FORMULATION

Many important applications involve massive heterogeneous
datasets comprised heterogeneous data chunks, e.g., mixtures
of audio, video and text data [9]. Moreover, datasets typically
contain mostly unlabeled data points; only a small fraction is
labeled data. An efficient strategy to handle such heterogenous
datasets is to organize them as a network or data graph whose
nodes represent individual data points.

2.1. Graph Signal Representation of Data
In what follows we consider datasets which are represented by a
weighted data graph G = (V , E ,W) with nodes V = {1, . . . ,N},
each node representing an individual data point. These nodes
are connected by edges {i, j} ∈ E . In particular, given some
application-specific notion of similarity, the edges of the data
graph G connect similar data points i, j ∈ V by an edge {i, j} ∈ E .
In some applications it is possible to quantify the extent to which
data points are similar, e.g., via the distance between sensors in
a wireless sensor network [10]. Given two similar data points
i, j ∈ V , we quantify the strength of their connection {i, j} ∈ E

by a non-negative edge weight Wi, j ≥ 0 which we collect in the

symmetric weight matrixW ∈ R
N×N
+ .

In what follows we will silently assume that the data graph G

is oriented by declaring for each edge {i, j} ∈ E one node as
the head e+ and the other node as the tail e−. For the oriented
data graph we define the directed neighborhoods of a node i ∈
V as N+(i) : = {j ∈ N (i) : e = {i, j} ∈ E , and i = e+}
and N−(i) : = {j ∈ N (i) : e = {i, j} ∈ E , and i = e−}.
We highlight that the orientation of the data graph G is not
related to any intrinsic property of the underlying data set. In
particular, the weight matrix W is symmetric since the weights
Wi, j are associated with undirected edges {i, j} ∈ E . However,
using an (arbitrary but fixed) orientation of the data graph will be
notationally convenient in order to formulate our main results.

Beside the edges structure E , network-structured datasets
typically also carry label information which induces a graph
signal defined over G. We define a graph signal x[·] over the
graph G = (V , E ,W) as a mapping V → R, which associates
(labels) every node i ∈ V with the signal value x[i] ∈ R. In a
supervised machine learning application, the signal values x[i]
might represent class membership in a classification problem or
the target (output) value in a regression problem. We denote the
space of all graph signals, which is also known as the vertex space
(cf. [11]), by RV .

2.2. Graph Signal Recovery
We aim at recovering (learning) a graph signal x[·] ∈ R

V defined
over the data graph G, from observing its values {x[i]}i∈M on a
(small) sampling set M : = {i1, . . . , iM} ⊆ V , where typically
M ≪ N.

The recovery of the entire graph signal x[·] from the
incomplete information provided by the signal samples {x[i]}i∈M
is possible under a clustering assumption, which is also
underlying many supervised machine learning methods [12].
This assumption requires the signal values or labels of data points
which are close, with respect to the data graph topology, to be
similar. More formally, we expect the underlying graph signal
x[·] ∈ R

V to have a relatively small total variation (TV)

‖x[·]‖TV : =
∑

{i, j}∈E

Wi, j|x[i]− x[j]|.

The total variation of the graph signal x[·] obtained over a subset
S ⊆ E of edges is denoted ‖x[·]‖S : =

∑

{i, j}∈S Wi, j|x[j]− x[i]|.

Some well-known examples of clustered graph signals include
low-pass signals in digital signal processing where time samples at
adjacent time instants are strongly correlated and close-by pixels
in images tend to be colored likely. The class of graph signals
with a small total variation are sparse in the sense of changing
significantly over few edges only. In particular, if we stack the
signal differences x[i] − x[j] (across the edges {i, j} ∈ E) into
a big vector of size |E|, then this vector is sparse in the ordinary
sense of having only few significantly large entries [13].

In order to recover a signal with small TV ‖x[·]‖TV, from its
signal values {x[i]}i∈M, a natural strategy is:

x̂[·] ∈ arg min
x̃[·]∈RV

‖x̃[·]‖TV s.t. x̃[i] = x[i] for all i ∈ M. (1)

There exist highly efficient methods for solving convex
optimization problems of the form (1) (cf. [14–16] and the
references therein).

3. RECOVERY CONDITIONS

The accuracy of any learning method which is based on solving
(1) depends on the deviations between the solutions x̂[·] of
the optimization problem (1) and the true underlying graph
signal x[·] ∈ R

V . In what follows, we introduce the NNSP as
a sufficient condition on the sampling set and graph topology
such that any solution x̂[·] of (1) accurately resembles an
underlying clustered (piece-wise constant) graph signal of the
form (cf. [5])

x[i] =
∑

C∈F

aCIC[i] with IC[i] : =

{

1 for i ∈ C

0 else.
(2)

The signal model (2) is defined using a fixed partition F =

{C1, . . . , C|F |} of the entire data graph G into disjoint clusters
Cl ⊆ V . The signal model (2) has been studied in Chen et al.
[5], where it was demonstrated that it allows, compared to band-
limited graph signal models, for more accurate approximation of
datasets obtained from weather stations.

While our analysis applies to an arbitrary partition F , our
results are most useful for partitions where the nodes within
clusters Cl are connected by many edges with large weight, while
nodes of different clusters are loosely connected by few edges with
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small weights. Such reasonable partitions can be obtained by one
of the recently proposed highly scalable clustering methods, e.g.,
[17, 18].

We highlight that the knowledge of the partitionF underlying
the signal model (2) is only required for the analysis of signal
recovery methods (such as sparse label propagation [15]), which
are based on solving the recovery problem (1), However, the
partition is not required for the actual implementation of those
methods, as the recovery problem (1) itself does not involve the
partition.

We will characterize a partition F by its boundary

∂F : = {{i, j} ∈ E : i ∈ Cl, j ∈ Cl′ , with l 6= l′} ⊆ E , (3)

which is the set of edges connecting nodes from different
clusters. We highlight that the recovery problem (1) not require
knowledge of the partition F .

3.1. Network Nullspace Property
Consider a clustered graph signal x[·] ∈ R

V of the form (2).
We observe its values x[i] at the sampled nodes i ∈ M only. In
order to have any chance for recovering the complete signal only
from the samples {x[i]}i∈M we have to restrict the nullspace of
the sampling set, which we define as

K(M) : = {x̃[·] ∈ R
V
: x̃[i] = 0 for all i ∈ M}. (4)

Thus, the nullspace K(M) contains exactly those graph signals
which vanish at all nodes of the sampling set M. Clearly, we
have no chance in recovering any signal x̂[·] which belongs to
the nullspace K(M) as it cannot be distinguished from the all-
zero signal x̃[i] = 0, for all nodes i ∈ V , which result in exactly
the same (vanishing) measurements x̃[i] = x̂[i] = 0 for all
i ∈ M ⊆ V .

In order to define the NNSP, we need the notion of a flow with
demands [19].

Definition 1. Given a graph G = (V , E ,W), a flow with demands
g[i] ∈ R, for i ∈ V , is a mapping f [·] : E → R+ satisfying the
conservation law

∑

j∈N+(i)

f [{i, j}]−
∑

j∈N−(i)

f [{i, j}] = g[i] (5)

at every node i ∈ V .

For a more detailed discussion of the concept of network flows,
we refer to [19]. In this paper, we use the concept of network flows
in order to characterize the connectivity properties or topology of
a data graph G = (V , E ,W) by interpreting the edge weightsWi, j

as capacity constraints that limit the amount of flow along the
edge {i, j} ∈ E .

In particular, the notion of network flows with demands
allows to adapt the nullspace property, introduced within
the theory of compressed sensing [20, 21] for sparse
signals, to the problem of recovering clustered graph
signals (cf. (2)).

Definition 2. Consider a partition F = {C1, . . . , C|F |} of pairwise
disjoint subsets of nodes (clusters) Cl ⊆ V and a set of sampled
nodes M ⊆ V . The sampling set M is said to satisfy the NNSP
relative to the partition F , denoted NNSP-F , if for any signature
σe ∈ {−1, 1}∂F , which assigns the sign σe to a boundary edge
e ∈ ∂F , there is a flow f [e]

• with demands g[i] = 0, for i /∈ M,
• its values satisfy

f [e] = κ σe We for e ∈ ∂Fwith some κ > 1, and

f [e] ≤ We for e ∈ E \ ∂F . (6)

It turns out that a sampling set M satisfies NNSP-F for a given
partition F of the data graph, then the nullspace K(M) (cf. (4))
of the sampling set cannot contain a non-zero clustered graph
signal of the form (2).

A naive verification of the NNSP involves a search over
all signatures, whose number is around 2|∂F |, which might be
intractable for large data graphs. However, similar tomany results
in compressed sensing, we expect using probabilistic models
for the data graph to render the verification of NNSP tractable
[20]. In particular, we expect that probabilistic statements about
how likely the NNSP is satisfied for random data graphs (e.g.,
conforming to a stochastic block model) can be obtained easily.

3.2. Exact Recovery of Clustered Signals
Now we are ready to state our main result, i.e., the NNSP ensures
the solution (1) to be unique and to coincide with the true
underlying clustered graph signal of the form (2).

Theorem 3. Consider a clustered graph signal xc[·] ∈ X (cf. (2))
which is observed only at the sampling setM ⊆ V . If the sampling
set M satisfies NNSP-F , then the solution of (1) is unique and
coincides with xc[·].
Proof: see Appendix.

Thus, if we sample a clustered graph signal x[·] (cf. (2)) on
a sampling set which satisfies NNSP-F , we can expect convex
recovery algorithms, which are based on solving (1) to accurately
recover the true underlying graph signal x[·].

A partial converse. The recovery condition provided by
Theorem 3 is essentially tight, i.e., if the sampling set does not
satisfy NNSP-F , then they are solutions to (1) which are different
from the true underlying clustered graph signal.

Consider a clustered graph signal

xc[i] = 1 · IC1 [i]+ 2 · IC2 [i] (7)

defined over a chain graph Gchain containing an even number
N of nodes (Figure 1). We partition the graph into two equal-
sized clusters Fc = {C1, C2} with C1 = {1, . . . ,N/2} and
C2 = {N/2 + 1, . . . ,N}. The edges within clusters are connected
by edges with unit weight, while the single edge {N/2,N/2 +

1} connecting the two clusters has weight 1/δ. Let us assume
that we sample the graph signal xc[i] on the sampling set
Mc = {1,N}.

For any δ > 1, the sampling set Mc satisfies the NNSP-
Fc with κ = δ > 1 (cf. (6)). Thus, as long as the boundary
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FIGURE 1 | A clustered graph signal x[i] = a1IC1
[i]+ a2IC2

[i] (cf. (2)) defined
over a chain graph Gchain which is partitioned into two equal-size clusters C1

and C2 which consist of consecutive nodes. The edges connecting nodes

within the same cluster have weight 1, while the single edge connecting nodes

from different clusters has weight 1/δ.

edge has weight 1/δ with δ > 1, Theorem 3 guarantees that the
true clustered graph signal xc[i] can be perfectly recovered via
solving (1).

If, on the other hand, the weight of the boundary edge is 1/δ
with some δ ≤ 1, then the sampling set Mc does not satisfy
the NNSP-Fc. In this case, as can be verified easily, the true
graph signal xc[i] is not the unique solution to (1) anymore.
Indeed, for δ ≤ 1 it can be shown that the graph signal (7)
has a TV norm at least as large as the graph signal x′[i] =
(

1− i − 1
N − 1

)

xc[1]+
i − 1
N−1 xc[N], which linearly interpolates between

the sampled signal values xc[1] and xc[N].

3.3. Recovery of Approximately Clustered
Signals
The scope of Theorem 3 is somewhat limited as it applies only to
graph signals which are precisely of the form (2). We now state a
more general result applying to any graph signal x[·] ∈ R

V .

Theorem 4. Consider a graph signal x[·] ∈ R
V which is observed

only at the sampling set M. If NNSP-F holds with κ = 2 in (6),
any solution x̂ of (1) satisfies (cf. (2))

‖x̂[·]− x[·]‖TV ≤ 6 min
a∈R|F |

‖x[·]−
∑

C∈F

aCIC[·]‖TV. (8)

Proof: see Appendix.

Thus, as long as the underlying graph signal x[·] can be well
approximated by a clustered signal of the form (2), any solution
x̂[·] of (1) is a graph signal which varies significantly only over
the boundary edges ∂F . We highlight that the error bound (8)
only controls the TV (semi-)norm of the error signal x̂[·] − x[·].
In particular, this bound does not directly allow to quantify the
size of the global mean squared error (1/N)

∑

i∈V (x̂[i] − x[i])2.
However, the bound (8) allows to characterize identifiability of
the underlying partition F . Indeed, if the signal values aC in (2)
satisfy minC∈F |aC − aC′ |mine∈∂F We ≥ ‖x̂[·] − x̂[·]‖TV, we
can read off the cluster boundaries from the signal differences
x̂[i]− x̂[j] (over edges {i, j} ∈ E).

FIGURE 2 | Clustered graph signal x[i] along with the recovered signals

obtained from sampling sets M1 and M2.

One particular use of Theorems 3, 4 is to guide the choice for
the sampling set M. In particular, one should aim at sampling
nodes such that the NNSP is likely to be satisfied. According
to the definition of the NNSP, we should sample nodes which
are well connected (in the sense of allowing for a large flow)
to the boundary edges which connect different clusters. This
approach has been studied empirically in [22, 23], verifying
accurate recovery by efficient convex optimizationmethods using
sampling sets which satisfy the NNSP (cf. Definition 2) with high
probability.

4. NUMERICAL EXPERIMENTS

We now verify the practical relevance of our theoretical findings
by means of two numerical experiments. The first experiment
is based on a synthetic data set whose underlying data graph
is a chain graph Gchain. A second experiment revolves around a
real-world data set describing the roadmap of Minnesota [5, 24].

4.1. Chain Graph
We generated a synthetic data set whose data graph is a chain
graph Gchain. This chain graph contains |V| = 100 nodes which
are connected by |E| = 99 undirected edges {i, i + 1}, for i ∈

{1, . . . , 99} and partitioned into |F | = 10 equal-size clusters
F = {Cl}l = 1, 2,...,10, each cluster containing 10 consecutive
nodes. The edges connecting nodes in the same cluster have
weight Wi, j = 4, while those connecting different clusters have
weight Wi, j = 2. For this data graph we generated a clustered
graph signal x[i] of the form with alternating coefficients
al ∈ {1, 5}.

The graph signal x[i] is observed only at the nodes belonging
to a sampling set, which is either M1 or M2. The sampling set
M1 contains exactly one node from each cluster Cl and thus,
as can be verified easily, satisfies the NNSP (cf. Definition 2).
While having the same size as M1, the sampling set M2 does
not contain any node of clusters C2 and C4.
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FIGURE 3 | True graph signal (A) and recovered signals for the Minnesota

roadmap data set obtained (B) when using sampling set M1, (C) or sampling

set M2.

In Figure 2, we illustrate the recovered signals obtained by
solving (1) using the sparse label propagation (SLP) algorithm
[15], which is fed with signal values on the sampling set
(being either M1 or M2). The signal recovered from the
sampling set M1, which satisfies the NNSP, closely resembles
the true underlying clustered graph signal. In contrast, the
sampling set M2, which does not satisfy the NNSP, results in
a recovered signal which significantly deviates from the true
signal.

4.2. Minnesota Roadmap
The second data set, with associated data graph Gmin, represents
the roadmap of Minnesota [5]. The data graph Gmin consists of
|V| = 2642 nodes, and |E| = 3303 edges. We generate a clustered
graph signal defined over Gmin by randomly selecting three
different nodes {i1, i2, i3} which are declared as “cluster centres”
of the clusters C1, C2, C3. The remaining nodes V \ {i1, i2, i3} are
then associated to the cluster whose center is nearest in the sense
of smallest geodesic distance. The edges connecting nodes within
the same cluster have weight Wi, j = 4, and those connecting
different clusters have weightWi, j = 2.

We use SLP to recover the entire graph signal from its values
obtained for the nodes in a sampling set. Two different choices
M1 and M2 for the sampling set are considered: The sampling
setM1 is based on the NNSP and consists of all nodes which are
adjacent to the boundary edges between two different clusters. In

contrast, the sampling setM2 is obtained by selecting uniformly
at random a total of |M1| nodes from Gmin, i.e., we ensure
|M1| = |M2|.

The resulting MSE is 0.0023 for the sampling set M1

(conforming with NNSP), while the recovery using the random
sampling set M2 incurred an average (over 100 i.i.d. simulation
runs) MSE of 0.0502. In Figure 3, we depict the recovered
graph signals using signal samples from either M1 or M2 (one
typical realization). Evidently, the recovery using the sampling
set M1 (which is guided by the NNSP) results in a more
accurate recovery compared to using the random sampling
setM2.

5. CONCLUSIONS

We considered the problem of recovering clustered graph signals,
defined over complex networks, from observing its signal values
on a small set of sampled nodes.

By applying tools from compressed sensing, we introduced
the NNSP as a sufficient condition on the graph topology and
sampling set such that a convex recovery method is accurate.
This recovery condition is based on the connectivity properties
of the underlying network. In particular, it requires the existence
of certain network flows with the edge weights of the data graph
being interpreted as capacities.

The NNSP involves both, the sampling set and the cluster
structure of the data graph. Roughly speaking it requires to
sample more densely near the boundaries between different
clusters. This intuition has be verified by means of numerical
experiments on synthetic and real-world datasets.

Our work opens up several avenues for future research. In
particular, it would be interesting to analyze how likely the
NNSP holds for certain random network models and sampling
strategies. The tightness of the resulting recovery guarantees
could then be contrasted with fundamental lower bounds
obtained from an information-theoretic approach to minimax-
estimation. Moreover, we would like to study variations of the
SLP recovery method which are more suitable for classification
problems.
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APPENDIX

The proofs for Theorem 3 and Theorem 4 rely on recognizing
the recovery problem (1) as an analysis ℓ1-minimization problem
[27]. A sufficient condition for analysis ℓ1-minimization to
deliver the correct solution x[·] is given by the analysis nullspace
property [27, 28]. In particular, the sampling set M is said to
satisfy the stable analysis nullspace property w.r.t. an edge set
S ⊆ E if

‖u[·]‖E\S ≥ κ‖u[·]‖S for any u[·] ∈ K(M), (9)

for some constant κ > 1.

Lemma 5. Consider a data graph G and fixed partitioning F =

{C1, . . . , C|F |} of its nodes into |F | clusters Cl. We observe a

clustered graph signal x[·] with x[i] =
∑|F |

l=1
alICl [i] at the

sampled nodes M ⊆ V . If (9) holds for S = ∂F , then (1) has
a unique solution given by x[·].

Proof: Consider a graph signal x̂[·], which is different from the
true underlying graph signal x[·], being feasible for (1), i.e, x̂[i] =
x[i] for all sampled nodes i ∈ M. Then, the difference u[i] : =
x̂[i] − x[i] belongs to the kernel K(M) (cf. (4)). Note that, since
x[i] is constant for all nodes i ∈ Cl in the same cluster,

x̂[i]− x̂[j] = u[i]− u[j], for any edge {i, j} ∈ E \ ∂F . (10)

By the triangle inequality,

‖x̂[·]‖∂F ≥ ‖x[·]‖∂F − ‖u[·]‖∂F = ‖x[·]‖TV − ‖u[·]‖∂F ,

and, since ‖x̂[·]‖TV = ‖x̂[·]‖∂F + ‖x̂[·]‖E\∂F , in turn

‖x̂[·]‖TV = ‖x̂[·]‖∂F + ‖x̂[·]‖E\∂F
(10)
= ‖x̂[·]‖∂F + u[·]‖E\∂F

≥ ‖x[·]‖TV − ‖u[·]‖∂F + ‖u[·]‖E\∂F
(9)
> ‖x[·]‖TV.

Thus, we have shown that any graph signal x̂[·] which is different
from the true underlying graph signal x[·] but coincides with it at
all sampled nodes i ∈ M, must have a larger TV norm than the
true signal x[·] and therefore cannot be optimal for the problem
(1).

The next result extends Lemma 5 to graph signals x[·] ∈

R
V which are not exactly clustered, but which can be well

approximated by a clustered signal of the form (2).

Lemma 6. Consider a data graph G and a fixed partition F =

{C1, . . . , C|F |} of its nodes into disjoint clusters Cl ⊆ V . We observe
a graph signal x[·] ∈ R

V at the sampling set M ⊆ V . If (9) holds
for S = ∂F and κ = 2, any solution x̂[·] of (1) satisfies

‖x[·]− x̂[·]‖TV ≤ 6min
al∈R

∥

∥x[·]−

|F |
∑

l = 1

alICl [·]
∥

∥

TV
. (11)

Proof: The argument closely follows the proof of [29, Theorem
8]. First note that any solution x̂[·] of (1) obeys

‖x̂[·]‖TV ≤ ‖x[·]‖TV, (12)

since x[·] is trivially feasible for (1). From (12), we have

‖x̂[·]‖S + ‖x̂[·]‖E\S ≤ ‖x[·]‖S + ‖x[·]‖E\S . (13)

Since x̂[·] is feasible for (1), i.e., x̂[i] = x[i] for every sampled
node i ∈ M, the difference v[·] : = x̂[·] − x[·] belongs to K(M)
(cf. (4)). Applying the triangle inequality to (13),

‖v[·]‖E\S ≤ ‖v[·]‖S + 2‖x[·]‖E\S . (14)

Combining (14) with (9) (for the signal u[·] = v[·]),

‖v[·]‖E\S ≤ 4‖x[·]‖E\S . (15)

Using (9) again,

‖x[·]− x̂[·]‖TV = ‖v[·]‖TV = ‖v[·]‖S + ‖v[·]‖E\S

(9)
≤ (3/2)‖v[·]‖E\S

(15)
≤ 6‖x[·]‖E\S .

For any clustered graph signal xc[·] of the form xc[i] =
∑|F |

l = 1
alICl [i], we have xc[i] − xc[j] = 0 for any {i, j} ∈ E \ S

(note that S = ∂F) and, in turn,

‖x[·]+ xc[·]‖TV = ‖x[·]+ xc[·]‖E\S + ‖x[·]+ x[·]c‖S

≥ ‖x[·]+ x[·]c‖E\S = ‖x[·]‖E\S .

Let us now render Lemma 5 and Lemma 6 for clustered graph
signals x[·] of the form (2) by stating a condition on the graph
topology and sampling setM which ensures (9).

Lemma 7. If a sampling set M satisfies NNSP-F , then it also
satisfies the stable analysis nullspace property (9).

Proof: Consider a signal u[·] ∈ K(M) which vanishes at all
sampled nodes, i.e., u[i] = 0 for all i ∈ M. We will now show
that ‖u[·]‖E\∂F ≥ 2‖u[·]‖∂F .

Let us assume that for each boundary edge e ∈ ∂F , the flow
f [·] in Definition 2 has the same sign as u[e+] − u[e−]. We are
allowed to assume this since according to Definition 2, if there
exists a flow with f [e′] > 0 for a boundary edge e′ ∈ ∂F , there is

another flow f̃ [·] with f̃ [e′] = −f [e′] for the same edge e′ ∈ ∂F ,

but otherwise identical to f [·], i.e., f̃ [e] = f [e] for all e ∈ E \ {e′}.
Next, we construct an augmented graph G′ by adding an extra

node s to the data graph G which is connected to all sampled
nodes i ∈ M via an edge ei = {s, i} which is oriented such
that e+i = s. We assign to each edge ei = {s, i} the flow
f [ei] = g[i] (cf. (5)). It can be verified easily that the flow over the
augmented graph has zero demands for all nodes. Thus, we can
apply Tellegen’s theorem [30] to obtain ‖u[·]‖E\∂F ≥ 2‖u[·]‖∂F .

We obtain Theorem 3 by combining Lemma 7 with Lemma 5.
In order to verify Theorem 4we note that, by Lemma 7, the NNSP
according to Definition 2 implies the stable nullspace property (9)
for S = ∂F . Therefore, we can invoke Lemma 6 to reach (8).
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