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The Amnesiac Lookback Option:
Selectively Monitored Lookback
Options and Cryptocurrencies
Ho-Chun Herbert Chang* and Kevin Li

Department of Mathematics, Dartmouth College, Hanover, NH, United States

This study proposes a strategy to make the lookback option cheaper and more practical,

and suggests the use of its properties to reduce risk exposure in cryptocurrency markets

through blockchain enforced smart contracts and correct for informational inefficiencies

surrounding prices and volatility. This paper generalizes partial, discretely-monitored

lookback options that dilute premiums by selecting a subset of specified periods

to determine payoff, which we call amnesiac lookback options. Prior literature on

discretely-monitored lookback options considers the number of periods and assumes

equidistant lookback periods in pricing partial lookback options. This study by contrast

considers random sampling of lookback periods and compares resulting payoff of the

call, put and spread options under floating and fixed strikes. Amnesiac lookbacks are

priced with Monte Carlo simulations of Gaussian random walks under equidistant and

random periods. Results are compared to analytic and binomial pricing models for the

same derivatives. Simulations show diminishing marginal increases to the fair price as

the number of selected periods is increased. The returns correspond to a Hill curve

whose parameters are set by interest rate and volatility. We demonstrate over-pricing

under equidistant monitoring assumptions with error increasing as the lookback periods

decrease. An example of a direct implication for event trading is when shock is forecasted

but its timing uncertain, equidistant sampling produces a lower error on the true

maximum than random choice. We conclude that the instrument provides an ideal space

for investors to balance their risk, and as a prime candidate to hedge extreme volatility.

We discuss the application of the amnesiac lookback option and path-dependent options

to cryptocurrencies and blockchain commodities in the context of smart contracts.

Keywords: options pricing, lookback options, path-dependent options, Monte-Carlo methods, cryptocurrency,

smart contracts

1. INTRODUCTION

Lookback options have been a prototypical example of exotic options within the financial
literature [1]. The option gives the holder the right to buy or sell an underlying asset at any price
attained within a specified “lookback” period. The payoff of a lookback call (put) is therefore the
difference between the underlying price at maturity and the maximum (minimum) price attained.
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The trader is thus able to capitalize on the underlying asset as if
he sold it at the optimal time. By utilizing only the highest value
of the underlying asset in determining payoff, lookback options
capture the best case scenarios that people would like to sell
at, but often miss due to uncertainty. By corresponding payoffs
to the extreme movements of underlying asset prices, lookback
options allow for investors to hedge against or invest in volatility.

Goldman et al. [2] [3] are one of the first who mentioned
the lookback option within the financial literature. Their paper
examines the properties of path-dependent European options
under Black-Scholes assumptions. They laid out three primary
motivations: to minimize regret, to live out the “fantasy” of
buying low and selling high, and lastly, to use knowledge of
the range to expand an investors opportunity set. This last
condition is only applicable within the realistic market setting
rather than a frictionless one. The nature of lookback options
also lets investors guard against the behavioral flaws in people.
The nature of lookback options also lets investors guard against
the behavioral flaws in people. Because the payoffs of lookbacks
are path dependent in a way to capture the effects of the best
prices, lookbacks can hedge not only quantitative variations in
the market, but irrational regret of the human mind.

Lookback options benefit the holder given greater volatility in
the market. Thus, it is an effective instrument for hedging against
large price movements and reducing the risk of destabilizing
events that may cause markets to either rise or fall. These
include political election outcomes or other unforeseen chance
occurrences such as market anomalies [4]. Also among its
potential uses is to hedge exposure in cryptocurrency markets,
where extreme volatility has increasingly become a menace as
investors look for ways to mitigate such risk.

However, the lookback option’s strong reduction to risk
exposure requires a sufficiently high premium, which reduces the
option’s demand. The proposition of this paper recognizes that
one may not have to look back upon the entire associated time
period; merely looking back upon a portion suffices to capture
most of the max potential payoff of a full-time lookback option,
most of the time. This conclusion allows for investors to adjust
their risk using lookbacks of differing lookback period lengths
by purchasing shorter time lookback options at a discount in
order to increase return on investment. This strategy suggests the
possibility of event-based trading whereby lookback periods may
be chosen to correspond to market shaping events in hopes of
extraordinary profits.

As the potential payoffs and insurance capabilities of an
option increase, so does its premium. Thus, there is a desire for
an instrument that limits risk exposure, but at a lower price.
Here is where the proposed “Amnesiac Lookback Option” may
find a tradeable niche, a variant of the conventional lookback
option whose lookback time periods are restricted to a chosen
subset of periods within a specified time interval at the time the
contract is created. If premiums for lookbacks may be reduced, it
could also open the door for their widespread use, particularly
in high volatility cryptocurrency markets. The purpose of this
study is therefore 2-fold: to propose a way to make the lookback
option cheaper and more practical, and suggest the use of its
properties to reduce risk exposure in cryptocurrency markets

and correct for informational inefficiencies surrounding prices
and volatility. Additionally, we are interested in the following
research questions. What periods of the amnesiac lookback
option should be selected to maximize its final payoff? What is
the probability that the amnesiac lookback option may produce
greater profit than the standard lookback option? Lastly, would
this option have practical applications in the cryptocurrency
market?

The rest of the paper is organized in the following way: The
rest of the introduction provides more context on the varieties of
lookback options and applications to cryptocurrencies. Section 1
continues to discuss types of lookbacks and its application to
the cryptocurrency market. Section 2 discusses existing literature
on partial lookback options, lookback options with diluted
premiums, and past efforts to price them. It then discusses our
methods of simulation. Section 3 presents the results of three
types of numerical simulations. First, a demonstration of the
general properties of floating amnesiac lookback options for calls,
puts and spread options are shown. Second, the payoff of fixed
strike amnesiac lookback options is shown and compared to the
fixed strike. Third, a study of equidistant monitoring vs. two
forms of random monitoring are presented. Section 4 prices
different cryptocurrency using the algorithm in conjunction with
smart contracts.

1.1. Fixed vs. Floating Lookback Options
Lookbacks exist in many different varieties but can be classified
into two broad categories: fixed and floating strikes. The strike
price of fixed strikes is indicated in the initial contract, while for
floating strike lookbacks the strike price is the minimum (call)
or maximum (put) of the underlying asset. Additionally, there
are spread lookback options with payoffs equal to the difference
between the maximum and minimum prices attained by the
underlying. The payoffs are summarized in Table 1 whereMT

0 =
max{Si}Ti=0 andm

T
0 = min{Si}Ti=0.T denotes the time ofmaturity.

Suppose an investor decides to take the long position for
the next 2 months. However, the price of the stock drops
unexpectedly within the last 4 days of closing by 10%. Not selling
the stock early becomes a reason of regret. Similarly, the stock
may drop in the span of 2 days before rising quickly, making the
investor regret not buying the stock a little later. Thus the floating
strike call lookback is useful for market exit and the fixed strike
call for market entry.

1.2. The Partial and the Amnesiac
Due to the high premiums of lookback options and perhaps
other factors, lookback options are not sold at particularly high
volumes within OTC trades [5]. It has been suggested that partial
lookback options may allow lookbacks to be more tradeable. One

TABLE 1 | Payoffs for floating and fixed strike lookback options.

Option name Floating Fixed (strike = K)

Call ST −mT
0 MT

0 − K

Put MT
0 − ST K −mT

0

Spread MT
0 −mT

0 MT
0 −mT

0 − K
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such way is to introduce a factor λ that decreases the effect or
payoff of the lookback, proposed by Conze and Viswanathan [6].
For instance, the payoff of such an instrument is:

λ(max{Si}N1 − ST) (1)

If λ equals 1 then payoff is identical to a standard lookback
option. Another form of the partial lookback, referred to as
the fractional lookback, restricts the lookback periods to a
continuous subset of days. Finally there is also the window
lookback option, where separated continuous periods are
monitored [7].

The amnesiac lookback option generalizes partial and discrete
lookback options that are not linearly reliant on the payoff of
the standard lookback option and is named such in response
to Heynen and Kat’s paper Selective Memory. The amnesiac
lookback option is a lookback option whose lookback periods
belong to a pre-specified subset of periods from a given time
interval, determined at the moment of contract creation.

The amnesiac lookback option is thus defined as follows.
Given a full, discrete lookback option with N total lookback
periods, an amnesiac option is defined by a subset of periods
of the full, discrete lookback option, denoted as A. The payoff
scheme is the same as the standard lookback, while the extreme
values of the option are restricted to A. This means, every full,
discrete lookback option is in fact an amnesiac option of a full
lookback with greater periods. This extends previous definitions
of partial lookbacks to beyond equidistant intervals.

1.3. Application to Cryptocurrencies
Lookback options are extremely suited to hedge against volatility
in general, whether the underlying asset surges in value, or
whether the underlying asset declines in value. Unpredictability
is therefore the prime feature of an asset that would drive
demand and usage for a lookback option based upon that
asset. In 1982, the Mocatta Metals Corporation issued one of
the first “lookbacks,” that allowed a trader to buy gold at the
lowest price attained within a period. In the context of modern
day financial markets, it would seem lookbacks could have
high potential in hedging investments involving the popular
digital gold cryptocurrencies. A pioneering innovation within
currency markets, instruments such as Bitcoin and Ethereum
may represent the future of monetary exchange. Given its
relative technology security, explosion in value, and increasing
acceptance of legitimacy, Carrick [8] has even suggested that
cryptocurrencies like Bitcoin could be used as a complement
to fiat currencies in emerging markets. At the same time, high
volatility has become the premier feature of cryptocurrency
markets, which has made investment risky. A Bitcoin was worth
$2 in 2011—and exploded to $4,000 in 2017 [9]. During that
time, volatility for daily returns would regularly exceed 10%, even
skyrocketing to 16% [10]. Bitcoin once lost 75% of its value over
2 years, and then rising 2,000% within the next two.

Past literature has found evidence of time series characteristics
and long memory behavior in Bitcoin markets, both in regards
to pricing and in return volatility. Bariviera et al. [11] explores
some of these inefficiencies by calculating Hurst exponents via

the Detrended Fluctuation Analysis method for certain time
windows of Bitcoin return and return volatility data. Bariviera
finds evidence that from 2011 to 2014, daily Bitcoin returns had
long-term positive autocorrelation with previous returns and that
return volatility had long memory throughout the entire time
period of 2011–2017 [11]. Bariviera et al. [11] utilize this same
methodology to further show that intraday returns before 2014
exhibit long range memory as well. Additionally, Urquhart [12]
finds that Bitcoin prices exhibit odd behaviors through the entire
time period May 2012 to April 2017, with over 10 percent of
prices ending with decimal digits of 00. One, two, three, five,
and ten days before a round number from rising prices, returns
are positive and statistically significant. Meanwhile, prices after
a round number show no such predictable behaviors. Given
that the lookback option utilizes the time series behavior of an
asset’s prices and volatility to determine its payoff, it is a suitable
candidate for rectifying such market inefficiencies. The amnesiac
lookback option is particularly appropriate because lookback
period selection allows for targeted correction of unusual events,
such as those found in Urquhart [12], and can more easily
eliminate arbitrage opportunities and bring markets into more
efficient states.

Ultimately, Bitcoin aims to be a type of fiat money; it has no
value backed with consumable goods and its value comes from
the minds of its investors and from the financial environment in
which it occupies. Increases have been driven by hopes of future
value, or in other terms, heavy speculation. Unexpected events
therefore have rippling effects on the cryptocurrency market and
create a volatility with few equal comparisons. China’s decision to
cease its bitcoin exchange in September of 2017 sent Bitcoin into
a downward spiral, and as governments and regulators venture
forth into the frontier that is the cryptocurrency market, events
that will shock the market are sure to take place [13]. Even
so, investors are increasingly accepting of cryptocurrencies as
attractive investment propositions outside of speculation. Bouri
et al. [14] find that Bitcoin can act as a hedge against market
uncertainty in situations, specifically in short time horizons
under extreme bear or bull market regimes, or when uncertainty
is either very low or very high. Bouri et al. [15] overall minimizes
the usefulness of Bitcoin as a general hedge, but still finds
evidence that investors putmoney into Bitcoin whenAsian stocks
experience extreme down movements.

In July 2017, the U.S. Commodity Futures Trading
Commission granted federal approval to LedgerX LLC
for the ability to trade and exchange options based on
cryptocurrency [16]. This happening marked the birth of
the first federally regulated platforms of cryptocurrency options
trading, and moved items such as Bitcoin, Ethereum, and even
Dogecoin closer into the realm of financial legitimacy. Shortly
after on December 1, 2017, the U.S. Commodity Futures Trading
Commission announced the offering of self-certified derivatives
from three financial firms: bitcoin futures from the Chicago
Mercantile Exchange Inc. and the CBOE Futures Exchange and
binary options from the Cantor Exchange [17]. In contrast with
the effect of regulatory restrictions, this decision has driven
up bitcoin prices from $5,000 prior to the announcement to
above $11,000 by December 05, 2017 [18]. The issuance of new

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 May 2018 | Volume 4 | Article 10

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Chang and Li The Amnesiac Lookback Option

financial instruments can thus feedback into the price of its
underlying.

More importantly, the integration of smart contracts into
blockchain technology has vastly expanded the possibilities of
options trading, allowing traders great flexibility in designing
their own options [19–21]. Smart contracts are computer
protocol that allow for trade and exchange without the need
for an intermediary, and because writers code their own
contracts, blockchain technology can facilitate the trade of
highly customized contracts often seen on the OTC market.
Both Bitcoin and Ethereum, for instance, support programming
languages that allow for the creation of custom smart
contracts [22, 23]. Amnesiac lookback options could conceivably
exist within this structure, and be traded as a smart contract.

Recent events lent credence to the prospect of a prolific smart
contract exchange. In March 2018. The state of Tennessee signed
into law a bill that recognizes smart contracts as having legal
power [24], providing a pathway for other states to follow and
further securing the legitimacy of these digital arrangements.
Blockchain based smart contract firm Hedgy has also created
irrefutable and unalterable “Smart Futures” that can enforce
digital obligations and streamline settlements [25]. As more and
more investors begin creating and trading new smart contracts,
blockchain may 1 day even “democratize” the OTC market and
open a plethora of new smart instruments to be exchanged.

Lookback options therefore emerge as an attractive and
easily implementable product for currency speculators. As price
fluctuation is the determining factor of payoff, such lookback
instruments would be highly priced in the cryptocurrencymarket
and be a key counterweight to the speculative risk of investors.
Simple to understand and able to exist as smart contracts,
lookback options and other path-dependent options could serve
as a unique tool for traders with restricted access to dynamic
trading strategies, and in the process introduce greater flows of
capital from these sources to promising investments.

2. MATERIALS AND METHODS

2.1. Past Pricing Model for Lookbacks
Research with lookback options fall within pricing methods for
path dependent exotic options, such as the barrier option which
also rely on extreme value processes, and the Asian option
which relies on the average price of the underlying. Goldman
introduced the instrument into the financial literature in 1979 [2,
3]. Following Black, Scholes and Merton’s pricing of vanilla
options, Black-Scholes assumptions have been extended to price
exotic options. This is defined by at least one asset with price
S that moves under Geometric Brownian Motion with constant
drift and volatility. The underlying price follows:

dS = Sµdt + σSdX (2)

where the underlying has drift µ and volatility σ . In the risk-
neutral measure, the stock price at a given time t and final time T
is given below:

St+1 = Ste
(r−D− σ2

2 )1t+σǫ
√

1t (3)

ST = S0e
(r−D− σ2

2 )T+σǫ
√
T (4)

r denotes the risk free rate, σ the volatility, D denotes dividends
in the case of stocks, and ǫ ∼ N (0, 1), the normal distribution.

Like the Vanilla European Option, an analytic pricing formula
has been shown using martingale methods [26], with the price of
a call given as:

Ct = S8(a1(S,m))−me−rτ8(a2(S,m))−
Sσ 2

2r
(8(−a1(S,m))

−e−rτ (
m

S
)
2r
σ2 8(−a3(S,m))) (5)

Pt = −S8(−a1(S,M))+Me−rτ8(a2(S,M))+
Sσ 2

2r
(8(a1(S,M))

−e−rτ (
M

S
)
2r
σ2 8(a3(S,m))) (6)

whereM denotes the running maximum at time t,m denotes the
running minimum,τ = T− t with T the time of maturity, and 8

the standard normal cumulative distribution function given as

8(α) =
1

√
2π

∫ α

−∞
e−

x2

2 dx

With L being a dummy variable, the variables denote:

a1(S, L) =
ln S

L + (r + 1
2σ

2)τ

σ
√

τ

a2(S, L) = a1(S, L)− σ
√

τ

a3(S, L) = a1(S, L)−
2r
√

τ

σ
for L > 0, S > 0

For fixed strikes, Conze and Vishwanathan [6] used known
properties of maxima and minima distributions to price the
lookback call, under the continuous case of lookback periods.

Ct =



































S08(b(T)) −erTK(b(T)− σ
√
T + e−rT σ 2

2r S0
(

erT8(b(T))

−
( S0
K

)
−2r
σ2 8(b(T)− 2r

σ

√
T)

)

K ≥ M

erT(M0
T− K)+ S08(b′(T))− e−rTM0

T8(b′(T)− σ
√
T)

+e−rT σ 2

2r S0(e
rT8(d′T)−

( S0
M0

T

)
−2r
σ2 8

(

b′(T))

−( 2r
σ

√
T
)

K < M

where

b(T) =
ln S0

K + (r − D+ σ 2

2 )T

σ
√
T

b′(T) =
ln S0

MT
0

+ (r − D+ σ 2

2 )T

σ
√
T

(7)

The similar case for the put is derived in their paper, and
resembles the form of the float-strike option in Equation (5).
These analytic solutions assume continuous monitoring and
updates to the price of the underlying, while in reality most
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options are monitored at discrete intervals. Thus, the analytic
solutions are typically overpriced as compared to the prices of
discretely monitored lookbacks, and has spurred two areas of
study: how to either price discrete options more accurately, and
how to correct errors of continuous monitoring.

Historically, notable papers that have priced discrete lookback
options include those by Heynen and Kat using the Black-
Scholes model [27], Babbs using a binomial valuation [28], and
Cheuk and Vorst [29] using a binomial model. More recent
pricing paradigms utilize stochastic volatility [30] and the Lévy
Model [31] (more citations here). Cheuk and Vorst in particular
consider the effects of observation frequency on price using equal
lookback intervals.

The binomial options pricing model first described in Cox
et al. [32] offers a conceptual method with which the price
of an amnesiac lookback options may be determined. Under
the assumptions of the binomial tree model, the price of an
underlying stock St at discrete time t may strictly exhibit one
of two behaviors. It may either increase in value to Stu with
probability p, or decrease in value to Std with probability q where

u = eσ
√
t , d = 1/u, p+ q =1, and sigma is a measure of the stock’s

volatility. The risk-neutral probability p is determined to equal
e(r1t)−d
u−d

where r an exogenously determined risk free return. The
lookback option can then be priced recursively using a lattice.

This pricing model was then extended to be more efficient
by Conze and Vishwanathan [6], Babbs [28], and Cheuk and
Vorst [29]. The binomial pricing method lends itself more easily
to pricing at discrete intervals. With too few time intervals,
the approximation for the standard lookback option becomes
inaccurate. Yet as the number of periods in the binomial tree
increases, so does the amount of computations. Past work
involves increasing the efficiency of these computations using
combinatorial properties of the binomial tree. Babbs [28] uses a
change of numeraire approach, similar to Hull andWhite [33], to
price both new and existing lookback options. Cheuk and Vorst
formulate a modified tree, where the computation only relies on
time and the difference between u and d. Let this variable be
called j such that:

St =
(

min
t≤T

St
)

u
j
n St =

(

max
t≤T

St
)

u
−j
n (8)

for the call and the put respectively. Then the price for a floating

strike lookback can be given as C
fl
n = S0Vn(0, 0), where:

Vn(0, 0) =
n

∑

j=0

(1− u
−j
n )P(V∗

0,n = 0,V∗
n , n = j) (9)

The notation star such as in V∗
m,n denotes for n fixed and 0 <

m < n. The probabilities are given by:

P(V∗
0,n = 0,V∗

n , n = j) =
l

∑

k=j

3j, k,m(1− qn)
kqm−k

n

for 3j, k,m =
(

m

k− j

)

−
(

m

k− j− 1

)

(10)

if k > j and 3j, k,m = 1 is k = j.
While both the modified tree model and the analytic formula

give continuous valuation results, and it is well known the
binomial tree model converges to the continuous price. the
pricing formulae is still related to discrete lookback pricing.
Cheuk and Vorst extended the total number of lookback periods,
then selected an equal-distant subset to model the discrete
monitoring periods. Similarly, the amnesiac lookback option is
defined on a subset of monitoring periods.

Upon noting the discrepancy between continuous and
discrete monitoring pricing assumptions, researchers continued
to improve methods of pricing discrete options. Aitsahlia and
Le Lai [34] uses the random walk duality to simplify recursive
integration. Petrella and Kou [35] uses the Laplace transform
to make pricing more efficient, and Broadie et al. [36] uses
approximation adjustments to the continuous case to fairly price
the option’s discrete counterpart.

Contemporary researchers derive pricing under the
framework of Lévy Processes, and as a natural extension,
the Wiener-Hopf factorization is implemented as it gives the
distribution of functionals within a random walk. Fusai et
al. [37] combined this with Spitzer’s identity for a general
method of pricing discretely monitored exotic options, with
an explicit formula for the fixed strike option. However, the
method assumes equidistant monitoring windows. Boyarchenko
and Levendorskii [38] similarly implement the Wiener-Hopf
factorization but correct for the discrete monitoring dates using
a Laplace transformation. Hieber [39] presents the general
pricing of exotic options using the Fourier Transform and under
Black-Scholes assumptions and regime switching model. This is
not just useful for lookback options but for digital options and
barrier options. However, the pricing scheme is for continuously
monitored options. Feng and Linetsky [40] on the other hand,
implements Hilbert transformations sequentially and presents an
interesting method of computing maxima and minima, thereby
applying it to the valuation of path-dependent options.

2.2. Method of Simulation
The definition of a amnesiac option in section 1 can be formalized
as follows. Let N denote the total number of periods of a
full lookback option. Let A denote a selected subset. Given a
sequence of asset prices {Si}, defineMT

0 themaximum andmT
0 the

minimum defined on the subsequence where i ∈ A. The payoff of
the amnesiac option is then the same as Table 1.

To price the amnesiac lookback option, we utilize a Monte
Carlo pricing simulation under the assumptions of the Black-
Scholes world, including but not limited to, its modeling
parameters, risk-free rate, dividends, and volatility. We assume
geometric Brownian Motion under a risk-neutral measure as
described in Equation (4):

ST = S0e
(r−D− σ2

2 )T+σǫ
√
T

We assume dividends D = 0. We simulate this process using
a Gaussian random walk. The algorithm is shown explicitly in
Algorithm 1:
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Algorithm 1: Algorithm for Pricing Amnesiac Option

p = number of selected days
V = vector with size equal to number of simulations
for n in V do

A = generated list of indices of size p, using uniform
distribution
while timestep ≤ total timesteps do

update asset price using Equation 2
if timestep is in A then

update maximum and minimum
end

update timestep
end

amnesiac call price = final value - minimum value
amnesiac put price = maximum value - final value
amnesiac spread price = maximum value - minimum
value

end

Discount by e−rT

Fair Price = Arithmetic mean of V for each of the three
instruments
Standard Error (SE) = Standard Deviation /√
Number of Sims

Confidence Interval = Fair Price± (t)(SE)

where t is the corresponding t value for the confidence level. The
updating of the asset price follows a Gaussian Random walk in
Algorithm 2 where dT is the total time T divided by the number
of selected days p:

Algorithm 2: The price evolution based on the Gaussian
RandomWalk.
Si = current price

deterministic term: α = (r − d − σ 2

2 )dT

stochastic term :β = (σ )(
√
dT)(N (0, 1))

Si+1 = Sie
α+β

A denotes how the days are chosen. Our experiment features
three forms of period selection: uniform random with fixed
endpoints, completely random, and equal distant selection. For
the amnesiac option with fixed endpoints, the first and last
indices are first chosen, then indices 0 < i < N are chosen using
the uniform distribution. For true random, indices are randomly
selected under the uniform distribution with no guarantee of the
first one being selected. For equal distant period selection, indices
are chosen, and rounded down when not divisible. We make an
assumption that on average, the population’s selection of periods
will be uniform random.

The parameters are shown in Table 2.
For each time step, the maximum and minimum value is

updated. We analyze the pricing of floating and fixed amnesiac
lookback options, along with the variants discussed in Table 1

TABLE 2 | Simulation parameters.

Starting stock price S0 100

Volatility σ 0.2

Risk-free rate r 0.05

Total Periods N 100

(call, put, and spread). Then, the payoffs under equal interval
sampling and random sampling are considered.

A useful function that appears in analysis is the general Hill
Function. the Hill Function in the form:

V(X) =
VMaxX

h

Kh + Xh
(11)

The Hill Function has its roots in chemistry, where it is
commonly used to model the kinetics of substrate reaction rate,
where the x-axis is the substrate concentration and the y-axis the
rate of reaction. VMax is the maximal saturation rate, K denotes
the value of x required to attain half of VMax, x is the density
of a substance, and h is the hill coefficient, as an exponential of
K and h.

Analogously, increasing lookback periods yield diminishing
returns to payoff and the components of the Hill Function give
intuition to the process itself. Firstly, Vmax is theoretically the
maximum payoff, or the price of the standard discrete lookback
option. Secondly, as we increase the starting stock price, both
Vmax and C scale linearly. On the other hand, both K and h
remain constant and depend on interest rate r and volatility σ .
The Hill Curve can thus price amnesiac lookbacks independent
of the initial asset price, keeping interest and volatility constant.
If the price of the standard lookback option Vmax is known, and
interest rate and volatility incorporated intoK and h, then pricing
can be done very efficiently using the Hill Equation. Additionally,
the curve can be adopted to any starting stock price, since the
initial stock price only influences Vmax. The ratio between the

price evolution and initial price is simply
S0e

(r−d− σ2

2 )T+σ
√
T

S0
=

e(r−d− σ2

2 )T+σ
√
T , hence when pricing under the same interest and

volatility the payoff can simply be scaled.
The total number of simulations per parameter set is

2,000,000, the fair price being the arithmetic mean of the payoffs,
with a target maximal standard error of 0.001.

3. RESULTS

We denote Cn and Pn as the amnesiac option with n chosen
monitoring periods. When unspecified, the monitoring regime is
assumed to be random period monitoring with fixed endpoints.

3.1. Floating Strike Amnesiac Option
To reiterate the definition of an amnesiac lookback option, its
payoff scheme is as described in Table 1, where only the maxima
andminima of a subset of periods are recorded.We use T and t to
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FIGURE 1 | Monte-Carlo simulation for the Spread Option results converge to

the Hill-Function with K = 1.18, h = 0.62, and Vmax = 30.96.

FIGURE 2 | 3D Surface of the payoff varying days selected and volatility.

denote the continuous case and N and n be the discrete case. Let
N be the total number of periods andA the ordered set of indices:

A = {na, nb, , nN} ∀A ⊂ N

The amnesiac is defined on any k selected monitoring periods.
Figures 1, 2 show the payoff vs. the number of days selected.

As the number of periods look backed on increases, the payoff
approaches that of the standard lookback option. Yet it does
not require many selected periods to capture most of the
payoff of the full 100 selected days. This can be attributed to
the diminishing marginal effect of additional selected periods;
each period selected after the first contributes less additional
payoff than the previous. For each data point, we took the
mean of 2, 000, 000 simulations, and given a calculated Standard
Deviation of around 14.54, this gives an error of around 0.01 in
absolute terms.

The sample errors are summarized in Table 3.
Figure 1 fits the Hill function as previously described, and

Figure 2 extends this to include volatility. For this particular case,

TABLE 3 | Average of sample errors from 2,000,000 simulations.

Call Put Spread

Equal interval selection 0.01019 0.006877 0.007958

Uniform random with fixed endpoints 0.010181 0.006838 0.008000

Uniform random 0.009999 0.006756 0.007871

the formula is observed to be:

V(X) =
30.96X0.62

1.180.62 + X0.62

Kernel density estimators further tell the differences of portfolios
constructed from different amnesiac. Figure 3 shows the
distribution of the call payoffs. The peak clustered at zero denotes
the likely-hood of the option not being exercised, which yields a
payoff of zero. Comparisons between instruments vary case-by-
case, so it is useful in comparing expected returns in a pairwise
fashion.

Figure 4 shows the expected returns for the number of
monitoring periods n equal to 99, 7, and 2. We define returns by
the payoff minus the price of the option, which is the mean. Let
xi denote a single payoff from the simulation, then let the price of
the call be defined as the average X̄ then the returns are defined
by:

R = xi − X̄

The payoff distribution of n = 7 for R > 0 is approximately the
same as the distribution of n = 99. In fact, they converge in the
negative region, hence their probability ofR > 0 is approximately
equal. Next, note that the downside of n = 99 is greater than that
of n = 7. This means that the downside for C7 is more limited
than C99, even if their conditional expectation for the downside
is equal or even worse. This indicates that the amnesiac lookback,
and partial lookbacks with less monitoring periods in general, can
be used to limit the downside effects.

3.1.1. Three Types of Payoffs

Figure 5 shows the three payoff types as described in Table 1 for
floating strikes, denoted in the first column. The sum of the fair-
price of the call and put is equal to the spread option, which is
why it is often described as a “double lookback option.”

Figure 5 also shows that the average maximal and minimal
value is independent of the average final value. This observation
can be illustrated as follows, given the payoffs in Table 1 and E

the expectation operator.

E(call)+ E(put) = E(Smax − ST)+ E(ST − Smin)

= E(Smax − ST + ST − Smin)

= E(Smax − Smin) = E(spread)

(12)

These results show remarkable resemblance to the rate of
convergence for exotic prices described in Dai et al. [41]. Indeed
the prices produced by varying the number of total periods
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FIGURE 3 | Distribution of payoffs for the call with bandwidth = 1.

FIGURE 4 | Distribution of the Expected Returns. Right tails converge, while for greater n left tails shifts out.

N follows a similar curve, and produces an upper bound for
the pricing. Furthermore, since the distribution of stocks is
lognormal, if the interest rate r = 0, then the put will be of greater
value than the call because the maximumwill fluctuate absolutely
more than the minimum. To see this suppose the simple case in

the binomial model. Then for fixed n, Sen
√

σ − S is greater than

S − Se−n
√

σ . However, due to the positive risk-free rate the price
of the call is greater as shown in Figure 5.

For illustration, consider the kernel densities of each of the
three instruments shown in Figure 6. First, note the distribution
of the spread option is lognormal, shown in the blue curve.
In other words, the distribution of the range of a geometric
Brownian motion is lognormal, due to the range of brownian
motion being distributed normally.

Characteristic of the lognormal distribution is its fatter left tail.
This corresponds to the shape of the put option, minus the peak
created by the cluster of 0s. Additionally, the tail of the put is
platykurtic in comparison to the tail of the call. In sum, once the
0 payoffs are eliminated, the distribution of the put corresponds
to the left tail of the spread, and the distribution of the call
corresponds to the inverted right tail.

3.2. Fixed Strike Options
The analysis of fixed strike amnesiac options first requires
an analysis of how in-the-moneyness affects option payoff. In
Figure 7 the call price decreases as the strike price increases, as
themore out-of-the-money the option gets, themore unlikely the
maximum of the underlying will be greater than the strike. The
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FIGURE 5 | The payoffs of the put (blue), call (orange), and spread (gray). The payoff of the put and call sum to the spread. The put payoff is lower than the call as the

absolute difference of the maximal processes is greater than the minimal processes under Geometric Brownian Motion.

FIGURE 6 | Kernel Density Estimation of each Amnesiac type. The tail behavior of the spread option is captured by the distribution of the call and puts.

put option in Figure 8 demonstrates the opposite relationship,
as it relates to the minimum distribution. The payoff diagrams
for the call show a linear relationship while in-the-money, then
decaying exponentially afterwards. The put shows the inverse.
Since the maximum (minimum) distribution for given number
of periods is fixed, as the strike price decreases (increases) the
difference is linear. This linear relationship is preserved as the
number of selected periods in the amnesiac option are reduced,
as seen in the diagrams.

When the number of monitoring periods is equal to 0, then
the maximum is simply the last stock price at time N. Thus,
the payoff is the final stock price minus the strike.The shape of
this curve for selecting n periods is therefore a simple, vertical
translation. Through these observations, we have demonstrated
the bounds for the amnesiac option as shown in Figure 9. It is
bounded by the standard lookback from above, and the vanilla
European options from below.

3.3. Random vs. Equal Monitoring
One of the most important questions this paper addresses is if the
choice of period matters in the payoff. What we find is randomly
choosing lookback periods yields a worse payoff than equally
spacing the days to look back on, as shown in Figure 10. The
differences are shown in Figures 11, 12.

There are two ways to monitoring randomly. We defined N
equidistant points between time 0 and T, making it discrete.
Suppose we are monitoring k points from the Gaussian Random
walk. Under true random monitoring we would select k random
points from the set of periods {0, 1, 2, ...,N − 1}. In contrast, the
fixed-end random monitoring selects the first period n = 0 then
randomly chooses k − 1 periods from indices 1 through N − 1.
Since the price of an option increases with the duration of the
contract, fixing the first and last period ensures an equal time
length for comparison. For the true randommonitoring, the time
to maturity would be the minimum of index.
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FIGURE 7 | Amnesiac Call Payoff with fixed strike.

FIGURE 8 | Amnesiac Put Payoff with fixed strike.

For illustration, suppose k = 2. For fixed-end random
sampling the first period is chosen while the second can be
any point between 1 and N − 1. More simply, both endpoints
are fixed, and we are choosing a point between the beginning
and end. Numerical results in Figure 13 on average selection of
the midpoint as more optimal. True random sampling produces
weak payoffs due to shortened maturities. However, even when
endpoints are always chosen to lookback on, the payoff for
equidistant sampling is superior. Although this suggests the
optimal strategy is to equally space the selected periods, this does
not take into account sudden volatility swings from extreme,
singular events.

The intuition for this toy experiment can be explained as
follows. Since both endpoints are fixed, we are only interested in
choosing the point in-between. If the point chosen is less than
or equal to S0 or SN , then the payoff is the same as the case of
choosing one point, which is S0. For the third point Si to be of
value it must satisfy Si > S0 and Si > SN . Suppose n is very
close to the first index 0, then Sn = S0e

ǫ for ǫ that falls in the
upper half of the Gaussian distribution defined in Equation (2).
The difference between S0 and Sn is thus small, and the payoff will
be close to that of the case of just choosing the first point. On the

other hand, suppose n is close to N. Then SN = Sne
ǫ . Since the

payoff is just the difference between the max and final value, the
payoff is diminished.

Simply put, given that the chosen point Sn is greater than
S0 and SN , then choosing too close to the beginning means not
giving enough distance for the maximum to rise, and choosing
too close to the end means diminished payoff due to proximity
with SN . Intuitively, time value is then the explanatory factor that
determines how much marginal payoff a selected period gives,
where the value of a point is proportional to the time value
associated with the distance between it and the closest adjacent
lookback period.

We now demonstrate the above claim mathematically. For
simplicity we fix the first period and denote j = k − 1 as the
number of lookback periods. Then let N denote the total number
of equally spaced periods of the standard lookback with total time
T, and let A be the set of selected periods. Define function γ that
gives the minimum distance

γ (i) = min{d(i, k) ∀k ∈ A, k 6= i} (13)

Then the totals of time value is given as

Ŵ(A) =
∑

i∈A
γ (i) (14)

where the value of Ŵ for equidistant sampling is
j

j+1 . We show

this value is maximal.
Consider the base case of n = 1. If i0 = N

2 the only element in

A0, then Ŵ(A0) = N
2 . Compare to this to A1 whose only element

i1 = N
2 + ǫ for ǫ ∈ Z

+, ǫ < N
2 . Since d(0, i1) > N

2 , then

d(i1,N) = N
2 − ǫ < N

2 . Thus Ŵ(A1) = N
2 − ǫ < Ŵ(A0).

By symmetry, any i1 greater or less than N
2 is worth less. Cases

for larger j can be shown in a similar fashion by assuming the
first point greater than N

j . Thus our claim that lookback period

value is proportional to the time value of the next closest period
remains true.

What this conclusion implies in real situation trading is
that it would be inefficient to cluster lookback points around a
presumed volatile event in order to capture a price extrema, even
if volatility spikes seem certain, because the marginal value of
each period chosen beyond the first in the locality diminishes
rapidly due to the decreasing proximity of neighboring points.
Prices are less likely to change a significant amount between two
points in time the closer the two points in time are.

From the framework of analysis, suppose we sub-divide
Geometric Brownian Motion into N subintervals defined by
select indices. Then we are interested in the endpoints [i, i + 1]
as our monitoring dates. If these subintervals are of equal length,
then the probability of the truemaximumbeing captured is equal,
since within the subinterval, the maximum is equally likely to
fall on any point. Thus, the probability of the maximum being
captured by the neighborhood around the endpoints diminish
as subintervals get larger. The maximal neighborhoods are when
endpoints are equally spaced.

This has been explored in the risk theory and queuing theory
literature, which assumes expected maxima calculations on
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FIGURE 9 | The payoffs of the upper and lower bounds for the call and put respectively. The area between demonstrate the customizable area of the instrument

payoff.

FIGURE 10 | Equidistant Monitoring (red) yields higher payoffs than random monitoring with fixed endpoints (green) and true random monitoring (blue). Confidence

intervals at 95% with 10000 simulations are shown.

equidistant sampling. For further references consider papers by
Janssen and Van Leeuwaarden [42, 43] on equidistant sampling
of Brownian Motion and Gaussian Random Walks, and Alfi’s
work on exacting roughness in finite random walks [44]. Under
equidistant sampling, the expected maximum shown using the
Spitzer Identity which gives the joint distribution of partial sums
and their maximal sums for a collection of random variables:

E max
n=0,...,N

B
( n

N

)

=
N

∑

n=1

1

n
Emax{

n

N
} (15)

Now let the process Xn be defined as

Xn =
n

∑

i=1

δxi (16)

After computation [44], the expected maximum value can be
expressed as the following

E(Mk) = lim
s→1

E(sMk )− 1

ln(s)
=

k
∑

i=1

E(|Xi|)
2i

(17)

Adapting these results to Gaussian random walks with unequal
steps may produce approximations for the payoff of lookbacks
and other exotic options.

If the events of the world are analogous to random
occurrences, then nonrandom selection of lookback periods is
akin to event-based trading strategies. Specifically in regards
to the amnesiac lookback option, such a strategy leads to
lower payoffs. This conclusion implies that given general market
efficiency, event-based period selection strategies of lookback
periods should be unprofitable.
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FIGURE 11 | Put option difference between equidistant monitoring and

random monitoring payoffs.

FIGURE 12 | Spread option difference between equidistant monitoring and

random monitoring payoffs.

4. DISCUSSION

These results can be immediately applied to pricing
cryptocurrency. Under the Black-Scholes model, the implied
volatility is usually calculated using the current market price
of the option. However, because this is a new option being
proposed, and since both futures and vanilla options are still new
derivatives on the market, it is not possible at this time to even
price them with rudimentary Monte-Carlo simulations.

Instead, we use the historical volatility as a proxy and use the
3-month treasury bond as the risk-free rate. Tables 4, 5 show
the prices of amnesiac calls and puts based on historical data in
a 3 and 2 month window, respectively. These are then shown

FIGURE 13 | Payoff for k = 2 with floating strike. The payoffs of always

choosing the midpoint is greater than random sampling.

as a ratio of the initial price in Figure 14. Data is taken from
Coinmarketcap.

The last row in Table 5 shows a Bitcoin amnesiac option
priced at the implied volatility of Bitcoin calls in December.
Interestingly, it is less than the minimum volatility of Bitcoin
itself. When the implied volatility is less than historic volatility,
this indicates that market sentiment benefits option buyers. In
other words, the market expects lower volatility in the future,
and as a result, using historical volatility as a proxy is prone to
overpricing.

To verify this is what we expect, we observe a linear correlation
between the price of the amnesiac lookback and its volatility,
yielding a correlation coefficient is r2 = 0.99. An interesting
point is the difference in shape between the call and the put
curves. As seen in Figure 14, the put curves slower than the
call, due to the right vs. left tail of the lognormal distribution,
especially when volatility is high in the case of ripple. This means
that the amnesiac put may be useful if a trader anticipates a down
market without needing to worry when to sell, while enjoying
a greater range of values to choose from due to the slower
convergence to the standard lookback option.

One can conceive of using Algorithm 1 to price an option,
particularly for Ethereum which was developed for Smart
Contracts via the Ethereum Virtual Machine (EVM). The
scripting language it uses is very expressive and Turing complete,
and the EVM acts as a distributed computer that executes
commands based on the resource gas. Smart contracts thus
become a good way to buy contracts that previously only
existed in the OTC market. In this case, a transaction function
transfers Ether to the writers account at the time of purchase.
At the time of maturity, if the option is exercised, the smart
contract executes the necessary transactions as determined by
the option automatically. The buyer sends in a selection of
monitoring periods A, then the input parameter could be the
number of periods which is used to generate a subset of
pseudorandom monitoring periods, or direct simulation of the
selected periods. The latter produces a more accurate price but
is also computationally more expensive and as a result, raises
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TABLE 4 | Amnesiac call and put prices using historical volatility August 31, 2017 to November 30, 2017.

Cryptocurrency S0 vol C1 C7 C92 P1 P7 P92

Bitcoin 10234 0.476 1980.4 2668.5 3193.8 1851.1 2995.1 4010.5

Ethereum 447 0.543 98.25 131.27 155.42 92.18 150.53 203.79

Iota 1.33 0.971 0.499 0.6309 0.7329 0.4851 0.8569 1.215

Litecoin 88.3 0.719 24.931 32.593 37.992 23.778 39.979 54.991

Monero 180.14 0.66 47.359 62.356 73.601 45.327 75.637 103.417

Neo 33 0.976 12.542 15.82 18.097 12.062 21.382 30.372

Ripple 0.251 0.529 0.0534 0.0716 0.0857 0.0505 0.0822 0.1108

TABLE 5 | Amnesiac call and put prices using historical volatility December 01, 2017 to February 01, 2018.

Cryptocurrency S0 vol C1 C7 C62 P1 P7 P62

Bitcoin 9170.54 0.65 2310.4 2971.4 3427.5 2262.9 3534.6 4606.8

Ethereum 1036.79 0.65 258.31 333.17 387.42 255.4 399.21 520.3

Iota 1.91 1.17 0.7452 0.9186 1.0435 0.7607 1.2645 1.7152

Litecoin 142.3 0.89 48.918 61.125 69.393 49.18 79.927 106.707

Monero 240.97 0.733 73.741 93.272 106.413 72.831 116.508 154.464

Neo 126 0.96 42.336 53.004 60.053 42.099 68.197 90.952

Ripple 0.963 1.24 0.4667 0.5577 0.6197 0.4826 0.8426 1.1787

Bitcoin (IV) 9170.54 0.65 1730.6 2272.2 2667.3 1657 2528.9 3244

the transaction fees of the smart contract. The choice becomes
a question of cost vs. profit, and once statistical distributions
on people’s preferences of monitoring periods are collected, the
pricing can be made even more accurate at lower computational
costs.

5. CONCLUSION

Lookback options are immensely useful instruments for the
use of hedging against risks associated with high volatility and
notably effective at canceling investor regret as well. Although
the literature has explored lookback options and many concepts
of the partial lookback, previous work has mainly involved
lookbacks with continuousmonitoring, and equidistant lookback
period selection. We suggest the use and exploration of a new
form of partial lookback, the amnesiac lookback option, that can
look back upon any discretely selected period prior to expiration.

We discuss the practical applications that amnesiac lookback
options may have in the trading of cryptocurrencies such as
Bitcoin and especially Ethereum. The cryptocurrency market
has been defined by its high volatility trading and plethora of
exogenous shocks that regularly disrupt the market. In such a
high risk and speculative market, it is imperative that investors
have some way of mitigating their risks and exposures. In
this realm, lookback options are a simple and effective way to
do so, while amnesiac lookback options allow an investor to
fully customize the amount of risk he is willing to take on
or forego by adjusting the number of lookback periods, and
potentially where to place them, as shown in Figure 1. This is
particularly true for put options under high volatility. Past studies
have also found long memory in Bitcoin returns and return

volatility, which path-dependent options such as the amnesiac
lookback are able to correct by closing arbitrage opportunities,
if traded on rationally. This opportunity is greatly enhanced
by Smart Contracts, which decentralizes and automates highly
customizable derivatives like path-dependent options.

Using Monte Carlo simulations under Black-Scholes
assumptions, we find the Hill Function to be a suitable model
for pricing the payoffs of the amnesiac lookback option. We also
determine the bounds of the amnesiac lookback consistent with
prior results on partial lookbacks, that is the standard lookback
from above, and the corresponding vanilla European option (call
or put) from below.

Our work additionally discusses the merits of equal spacing
vs. random sampling of lookback periods. In this regard, we find
that equally spaced lookback periods yield the greatest payoffs
under Black-Scholes assumptions. Since the formula for modified
trees and lattice methods produce analytic results for equidistant
sampling, and equidistant sampling is a strict upper bound for
random sampling, we can conclude that if days are not chosen
equally then the instrument will be prone to being overpriced.
More importantly, our results are more realistic and related to
the designated function of these options in actual markets than
some previous works.

The fact that how periods are selected affect the pricing suggest
multiple paths of further inquiry. Since this is phenomenon
under Black-Scholes assumptions, different models such as
introducing stochastic volatility and Lévy processes may produce
different results. Tying this to real commodities, statistical
analysis of Cryptocurrency data can benchmark the efficiency
of such an option. Simulating extreme, volatile events within
the context of the Gaussian random walk would bridge the
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FIGURE 14 | The prices of the calls and puts for a given Cryptocurrency priced with risk-free rate 0.0125. The pricing with Implied Volatility is lower than any coin

using historical volatility.

empirical and axiomatic formulations, and is ultimately the
purpose of having a choice inmonitoring periods. Understanding
period selection strategies will yield new perspectives of using
path-dependent options for hedging risk, and expand trading
strategies with the growth of novel and volatile blockchain
commodities.
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