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In the process of collective decision-making, many individual components exchange
and process information until reaching a well-defined consensus state. Existing theory
suggests two phases to this process. In the first, individual components are relatively
free to wander between decision states, remaining highly sensitive to perturbations;
in the second, feedback between components brings all or most of the collective to
consensus. Here, we extend an existing model of collective neural decision-making by
allowing connection strengths between neurons to vary, moving toward a more realistic
representation of the large variance in the behavior of groups of neurons. We show that
the collective dynamics of such a system can be tuned with just two parameters to
be qualitatively similar to a simpler, homogeneous case, developing tools for locating
a pitchfork bifurcation that can support both phases of decision-making. We also
demonstrate that collective effects cause large and long-lived sensitivity to decision input
at the transition, which connects to the concept of phase transitions in statistical physics.
We anticipate that this theoretical framework will be useful in building more realistic
neuronal-level models for decision-making.

Keywords: collective decisions, cusp bifurcation, pitchfork bifurcation, Fisher information, symmetry breaking,
phase transitions

INTRODUCTION

When a group of separate entities, such as ants in a colony, people in a society, or neurons in a brain,
collaborate to make a decision which affects the whole group, they engage in collective decision-
making. The system transitions from a state in which multiple options are possible to a state in
which the system is committed to one option. This process can be broken into two separate steps:
deliberation and commitment [1]. Each individual contributes to this process by both gathering
information and sharing it with others. Details of these interactions differ across systems: Supreme
Court members persuade one another using verbal language [2]; rock ants physically pick one
another up to indicate a new preferred nesting site [3]. Determining which aspects of individual-
level dynamics (for instance, the strength and density of interactions) control qualitative aspects
of decision-making (for instance, the speed and consensus of the resulting decision) is key to
understanding adaptive collective behavior.

A particularly well-studied example of collective decision-making comes from neuroscience. In
this experimental paradigm, a monkey watches dots move on a screen and decides if more dots
are moving left or right. During the task, collections of cells in the cortex accumulate information
and are involved in dynamics that lead to a decision [4-6]. Spike-rate time series data taken from
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many neurons simultaneously has revealed that these neurons
display two distinct phases during decision-making [7]. First is
an aggregation phase, during which information is integrated in a
distributed fashion over many neurons. Later, during a consensus
phase immediately before the decision action is taken, many
neurons arrive at consensus and thus redundantly encode the
same information.

This binary decision-making process has been modeled
in other previous work both at a very detailed level, using
spiking neural models that implement attractors representing
two decision states [8-10], and at a very abstract level, using
one-dimensional stochastic dynamics that diffuse until they
reach a preset decision boundary [11-15]. Here, we aim for a
parsimonious understanding of the mechanisms that connect
the dynamics of individual elements to good decision-making
performance at the collective level. We therefore take a middle
road between these two extremes, using a minimally complicated
model amenable to analysis using dynamical systems theory,
but one that still incorporates the dynamics of many individual
component neurons.

Such a minimal model has been shown in previous work
to explain the two phases of decision-making in terms of
a transition that produces two decision state attractors [7].
Connection strengths between neurons are tuned closer to the
transition during the first phase, allowing the system to slowly
aggregate information from noisy sources. Moving further from
the transition in the second phase allows for amplification of the
decision information, leading to a strong, unambiguous decision
state. In the simplest case, with identical neurons coupled all-to-
all with identical connection strengths, the transition is simple
to find analytically by varying a single parameter controlling the
connection strength [7].

In this work, we elaborate on this previous model, identifying
the transition as a symmetry-breaking pitchfork bifurcation. We
use this understanding to generalize to a more realistic case,
drawing on existing theory [16] to numerically locate appropriate
bifurcations in a system with strong heterogeneity in interaction
strengths between neurons.

We also make an analogy with statistical physics to analyze
informational properties of the transition. Typically in statistical
physics, microscopic dynamics are assumed to be fast enough
that we can treat the system as being in equilibrium. In this case,
continuous phase transitions have been shown to coincide with
peaks in the Fisher Information [17-19], a generalized measure
of sensitivity of a system. We develop an analogous measure
of informational sensitivity that characterizes the collective
properties of these dynamical, out-of-equilibrium transitions.

METHODS
Neural Rate Model

A typical minimal model of neuronal activity [7, 20, 21] assumes
that the state of a synapse can be represented as its membrane
potential x; € R and that the time derivative of x; is the sum
of external input current, leak current proportional to x;, and
input from other neurons in the system. Input from each other
neuron is assumed to be proportional to its relative firing rate
rj € R, a dimensionless number that represents deviation from a

baseline firing rate and is assumed to be a sigmoidal function of
its membrane potential: r; = g(x;). This yields

dx; 1
nl =L -5+ = ) by (D

dt -
j#i

where M is the total number of neurons, 7; € R sets the timescale
(in milliseconds) of the neuron returning to equilibrium in the
absence of other input currents, I;(t)/t; represents an external
input current applied to cell i, the weights J;; represent relative
synaptic connection strengths (with units of voltage), and & is
a Gaussian random variable representing both intrinsic synaptic
noise and noise in the input I, with mean zero and variance rate
I' (with units of squared voltage per unit time). We use here
g(x) = tanh(x). Example dynamics for the case of I;(t) = 0 and
homogeneous J;j = J for all i, j is shown in Figure 1A.

In the simplest case, [;(f) = sB(t), where s € R is a
dimensionless input signal for which positive values correspond
to one of two decision states and negative values correspond to
the other. We assume that the input signal is zero except between
times fsart and feng, during which it takes a constant value,
making B(t) a simple boxcar function (with units of voltage). This
corresponds to the typical primate experimental setup in which
the relevant sensory input is presented for a limited time [4]. We
set individual neuron timescales to a single typical value (t; =
7 = 10 ms for all i) but include heterogeneity in the strengths
of connection between neurons i, with J; = ¢ + ¢;; where &;;
is a matrix of Gaussian random variables with mean zero and
standard deviation y (giving c and y units of voltage). This moves
us toward a more realistic model of individual neurons, which
typically display large variance in behavior.

Our goal is to show that heterogeneity in connection strengths
does not change the qualitative behavior observed in the simple
homogeneous case (with y = 0) that was proposed in Daniels et
al. [7]. We expect that locating a transition in the heterogeneous
case will require that we tune two parameters, since we are
looking for cusp bifurcations, which are of codimension 2. We
choose to vary ¢ and a second constant input a to all neurons,
which we imagine could be controlled by, for instance, neurons
outside of the ones that we model. We will calculate the direction
(linear combination of neurons) g to which we expect the
heterogeneous system to be most sensitive, arriving at an optimal
input

Ii(t) = a + s q;B(¢), (2)

where a has units of voltage and ¢; are the unitless components
of the unit vector g.

The Pitchfork Bifurcation in
Decision-Making

A version of the model defined in Equation (1) with
homogeneous connection strengths was found to have two stable
collective states when connection strengths are large enough
[7]. As a model of binary decision-making, each of the two
stable fixed point attractors represent a possible decision. Below
a critical value of the connection strength, the two decision states
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FIGURE 1 | Example trials in the decision-making model near predicted transitions. The collective decision state of an ensemble of neurons is measured by «
(Equation 17) in the stochastic model defined by Equation (1). For appropriate parameters ¢ and a, the decision state gradually approaches one of two stable fixed
point attractors as a function of time. Each simulation is plotted as one trajectory. Trajectories with positive « at the end of the stimulus (tgng = 810 ms) are interpreted
as a decision for one option and colored red, and negative « as a decision for the second option and colored black. The main plot for each system shows d tuned
near the point of longest-lived sensitivity; the left inset is tuned nearer to the bistable transition (d positive and small) and right inset far above the bistable transition (d
positive and large). (A) The homogeneous system at the transition controlled by ¢ alone. (B) A strongly heterogeneous system at a transition identified using our
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merge and become indistinguishable, and near the transition,
long timescales characterize dynamics between the two attractors.

In the study of nonlinear dynamics, this transition is known
as a supercritical pitchfork bifurcation. At such a bifurcation,
varying a control parameter causes one stable fixed point to split
into three, leading to two stable fixed points on two sides of

a single unstable fixed point. Pitchfork bifurcations arise more
generally from “codimension 2” cusp bifurcations, in which two
parameters must typically be tuned to locate the transition [16].
What is the advantage to the collective of being near such a
transition instead of a bifurcation that requires tuning only one
parameter? Given an existing stable fixed point, a saddle-node
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bifurcation can yield a second stable fixed point attractor that
could be used as an alternate decision state. Yet, if only a single
parameter can be varied, the two fixed points will typically be
separated by fast dynamics that quickly bring the system to one
state or the other, overriding slower dynamics that can gradually
integrate information. This also requires that the system be
separately reset to an appropriate starting value for each decision
or trial. With two parameters to vary, the collective can tune
to a pitchfork bifurcation that (1) contains a stable fixed point
in the correct initial state that equally weights the two possible
decision states in the absence of an input signal, and (2) has a
slow timescale of integration near the transition.

Supercritical ~ pitchfork transitions are analogous to
continuous phase transitions in statistical physics, in which
the collective state changes continuously when moving from
one side of the transition to the other. In statistical physics,
continuous phase transitions are understood in terms of
symmetry breaking. Symmetry breaking occurs when a system
transitions from inhabiting some set of collective states with
equal probability (which makes the system’s behavior symmetric
up to a relabeling of the different states, hence the name) to
inhabiting only one of those states. In the context of decision-
making, symmetry breaking can be used to understand the
formation of “self-organized” collective states that can represent
useful information.

Procedure for Locating Pitchfork

Bifurcation Parameter Values

We use the theory of bifurcations [16] to numerically locate pairs
of parameter values ¢ and a that produce pitchfork bifurcations,
which have desirable properties with regard to decision-making.
We start by varying X with fixed ¢ and a to find a fixed point
where the deterministic part of the dynamics are stationary in

time. We then vary x and ¢ to locate a codimension 1 bifurcation
by following a curve of fixed points, and finally vary X, c,
and a simultaneously to locate a codimension 2 bifurcation by
following a curve of codimension 1 bifurcations. This procedure
is depicted graphically in Figure2 and is described in detail
below. For connections to broader dynamical systems theory, see
Kuznetsov [16].

Finding a Fixed Point

First, we wish to find fixed points of the deterministic part of the
dynamic system in Equation (1). For ease of notation, we will call
the deterministic, zero input (s = 0) part of the right hand side of
Equation (1) F:

R _ 1
Fi%,ca)=a—x;+ M1 ;ng(xj), (3)
] 1

where the constant a is defined in Equation (2) and, as detailed
above, Jij = ¢+ ¢;j with ¢;; a matrix of Gaussian random variables
with mean zero and standard deviation y, g(x) = tanh(x), and M
is the total number of neurons. We first find a fixed point at which
the set of neural states x does not change in time (with I' = 0 and
s = 0) by looking for states x at which F; = 0V i. For a given set of
model parameters c and a, we can locate fixed points numerically
using a standard root-finding algorithm.

Finding a Bifurcation of Codimension 1

As we vary parameters ¢ and g, fixed points move, and since the
function F depends on these parameters in a smooth way, we can
track this change along a continuous curve. Starting from one
fixed point, we vary one parameter, in this case the mean neuron
connection strength ¢, and solve for the curve along which ¢ and

QO
- ” %

FIGURE 2 | A cusp bifurcation and an algorithm for finding it. (A) At a supercritical pitchfork bifurcation, one stable fixed point (tracing out the yellow line to the left)
splits into three fixed points (three yellow lines to the right), with two stable emerging from one unstable. The stable fixed points correspond to decision states. When a
second control parameter is varied (in this case a), the fixed points vary to trace the surface that defines a cusp bifurcation (gray lines). (B) To find a codimension 1
bifurcation (blue dot), we start by varying x to find the fixed point surface, then use Equations (4-7) to follow the surface while varying x and ¢ and keeping a fixed (blue
curve). The bifurcation happens where the blue curve is vertical. To locate the codimension 2 cusp bifurcation (red dot), we start at the blue dot and use

Equations (8-15) to follow the curve of codimension 1 bifurcations (red curve), allowing x, ¢, and a to vary. The parameter axes depicted here correspond to a system
with homogeneous connectivity. Close enough to any cusp bifurcation, including those we locate in strongly heterogeneous systems, the geometry is locally
equivalent to what is shown here, but is generally not aligned in the same way with respect to ¢ and a.
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x change while F remains zero. This curve is defined by

)
PO 50 @
VyEi(3(0)) - (€) = 0V i (5)
(O] =1 (6)
y( =0) = yo, (7)

where y = {x1,x2,..xpm, ¢}, v is the corresponding normalized
velocity vector tangent to the curve, £ measures arclength along
the curve, and the initial condition Yy is set at a fixed point
(Fi(yo) = 0V i). Starting at a fixed point, we wish to perturb ¢ and
compensate by changing X in a way that keeps F;(y(¢)) = 0V i.
This is precisely what Equation (5) accomplishes, in differential
form: we choose the direction to move, vy, by forcing its dot
product with the gradient to be zero, which keeps us on a level
curve of F;.

We find a bifurcation by following the fixed point curve
defined by Equations (4-7) until the stability of the fixed point
changes. A change in stability is indicated by a change in
the sign of the determinant of the Jacobian, the matrix of
first derivatives %xF,- = dF;/dx;. We therefore numerically
calculate the determinant as a function of £ along the fixed point
curve and use a root-finding algorithm to locate zeros. At each
corresponding codimension 1 bifurcation, we record X, ¢, and
the eigenvector of the Jacobian gy corresponding to the zero
eigenvalue.

Finding a Bifurcation of Codimension 2

Starting from a bifurcation of codimension 1 that we found in
the previous step, we now allow an additional parameter to vary
(in this case an overall external input a) and find the curve
along which X, ¢, and a vary as the determinant of the Jacobian
remains zero. To do this, we follow the same procedure as in the
codimension 1 case (to keep the system at a fixed point), and in
addition allow the bifurcation direction g to vary. This constrains
the system to keep the derivative along g equal to zero:

dz(e)

o =0 ®)
dg(e .
% = T4(0) (9
V.Fi(Z(0)) - 9,(¢) = 0Vi (10)
VZLE(Z(0)) - 72(0) - §(0) + ViFi(2(0)) - T4(€) = 0V i (11)
[0+ 70l =1 (12)
gl =1 (13
zZl=0) =2 (14)
4t =0) = g0, (15)

where z = {x1, X2, ...xa, ¢, a} and the initial condition Z is set at a
codimension 1 bifurcation. V2, represents the second-derivative
32
operator Txoz
The codimension 2 bifurcation happens when the second

derivative of F with respect to X is zero along the vector . We
numerically calculate this second derivative as a function of ¢

and use a root-finding algorithm to locate zeros. We analyze
the resulting codimension 2 bifurcation points to identify cusp
bifurcations that produce supercritical pitchfork bifurcations as
described above.

The parameter values at the resulting cusp bifurcation points
£* characterize each transition: y(£*) contains the equilibrium
neural states x* and the critical parameters ¢* and a* at the
transition; the zero mode unit vector g* gives the direction with
which the two decision states emerge from the original single
fixed point; and the two-dimensional unit vector

(dc/dt, da/dt)

4= (dc/dt, da/de)| | o_ (16)
defines the direction in parameter space along which the
pitchfork bifurcation occurs. To recover the simple homogeneous
case explored in Daniels et al. [7], set X* = 0, ¢* = 1, a* = 0,
=1/ |1| (where 1 is the vector of all ones, equally weighting
every neuron), and d= (1,0).

The pitchfork bifurcation can be used as a decision-making
circuit by initializing the system at Xy = Xx*. If we
vary ¢ and a simultaneously in the direction d, such that
d = (di,dy) = dd with d having units of voltage, ¢ =
c* + di, and a = a* + d,, then xj,; is a stable fixed
point when d < 0. Adjusting d then tunes the degree of
bistability: small positive d corresponds to slow integration of
information and larger positive d to corresponds to strong
consensus.

Quantifying Decision-Making Performance
The decision-making properties of a collective of neurons tuned
to a particular transition (specified by Jij, a,4,T’, and xinit) can
be quantified by measuring both its sensitivity to the input s, the
duration of that sensitivity, and the degree to which the decision
state persists in time.

Collective Memory
A supercritical pitchfork bifurcation produces two stable fixed
points that we consider decision states, and these fixed points
emerge at X* along the direction §. We assume that the input
signal is applied along this direction in order to most effectively
bias the system toward the appropriate attractor. We then
identify the decision by determining whether the final neural
state X(fgna1) is on the +4 or —§ side of X*. We measure distance
along this dimension using the scalar decision variable
a=Xx-—X%)-g (17)
so that @ > 0 corresponding to one decision, and @ < 0 to the
other. In the case of homogeneous connection strengths, with
¥ =0and § 1, a is simply a rescaled version of the mean
neuron state. In the heterogeneous case we must instead consider
a specific linear combination g.

(We include two parenthetical remarks that could be useful
in applying this analysis to real-world data. First, note that if
we have increased d substantially we could potentially do better
by incorporating the actual locations of the fixed points at a
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FIGURE 3 | Pitchfork bifurcations in the decision-making model. We numerically trace the locations of bifurcations (left plots, Equations 8-15) and fixed points for four
selected neurons (right plots, Equations 4-7) as a function of tuning parameters ¢ and a. In the homogeneous case (top row), a straightforward pitchfork bifurcation
happens at ¢ = 1, with bistability that creates two stable collective states when ¢ > 1, corresponding to positive and negative x; values that are equal for all neurons.
With weak heterogeneity, a similar transition occurs, now with each neuron having slightly different fixed point values. With strong heterogeneity, two tuning
parameters need to be simultaneously varied, along the dotted line in the direction d, to find the transition. Note that each neuron'’s fixed point value x/.* can be very
different. There are many possible transitions for a given g in the strongly heterogeneous case; the one plotted here is the same example as used in other figures.

given d, which are only locally approximated by their values at
d = 0. Second, in Daniels et al. [7], an analogous vector is
found via Linear Discriminant Analysis on the neural firing data,
empirically determining the most informative direction in neural
firing space. Note that the experimentally measurable analog of «
would be (g(X) — g(x*)) - ¥, where g(X) represents neural firing
rates. The vector ¥ is generally distinct from g, but could be
computed in our framework. For simplicity we use g for this
paper.)

To quantify the collective memory of a system, we
calculate the probability that the system is in the same

decision state at time fg,, as it was at the time the signal
ended t.,q. This measures the stability of the decision,
the degree to which the system “remembers” what it has
decided!.

"This measure of collective memory was called “collective predictive power” in
Daniels et al. [7], where the focus was on the ability of experimentally measured
firing rates to predict the upcoming decision. The concept of collective memory, in
which a population carries information about its past at an aggregate level, has been
explored extensively in neuroscience (e.g., population codes in Hopfield networks
[22]) as well as in social systems (e.g., [23]).
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FIGURE 4 | Collective behavior at the transition: homogeneous case. Four values characterize the collective decision-making properties of a model of neural
dynamics, which we plot as a function of the distance d above a pitchfork bifurcation and the amount of noise T". (A) The degree of collective memory, calculated as
the proportion of trials for which the final collective state correctly reflects the decision state at the end of the sensory stimulus. The system acts as a stable memory
when it is far enough above the transition to bistability to overcome noise. (B) The degree to which decision information is distributed over multiple neurons peaks near
the transition. Distributedness is measured by the smallest subset of neurons needed to correctly predict the same decision state to an accuracy 99% of that of the
entire collective. (C) The timescale over which the decision is made, which also peaks near the transition, is measured as the time at which the entire ensemble first
reaches 99% of the final predictive power. (D) The sensitivity to a perturbation applied midway through the trial (at 202.5 ms), quantified using a Fisher information
measure, also peaks sharply near the transition. (A-C are a recapitulation of Figure 7 in [7]).
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FIGURE 5 | Collective behavior at the transition: heterogeneous case. Even with strong heterogeneity in connection strengths, we are able to locate transitions with
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RESULTS

Given a particular matrix of random connection strengths j;,
we first verify that we can locate pitchfork bifurcations by
varying only the two parameters ¢ and a. By numerically solving
Equations (4-7) and (8-15), we locate potentially many cusp
bifurcations. Using these same equations, we trace out the
locations of fixed points as a function of d (the particular
linear combination of ¢ and a defined in Equation 16) near the
transition (Figure 3). These indeed display the pitchfork shape
that we expect, both with weak heterogeneity (y = 0.75), where
the transition looks very similar to the homogeneous case, and
with strong heterogeneity (y = 49), where the transition appears
more complicated but shares the same fundamental structure.

After locating these transitions, we ask whether they have
the same decision-making properties that characterize the simple
homogeneous-case transition. The collective properties of the
system in the presence of strong noise are not analytically
tractable, even in the homogeneous case, so we instead rely on
numerical simulation.

First, we look at the stochastic dynamics of Equation (1) in
the homogeneous case with M = 50 neurons. Example dynamics
of the aggregate decision state o are shown in Figure 1A.
Recapitulating the results of Daniels et al. [7], we find that the
network can successfully retain collective memory of a binary

decision above the transition (Figure 4A), and near the transition
this information encoding is more distributed and decision
dynamics happen over a longer timescale (Figures 4B,C). We
extend the results of Daniels et al. [7] in the homogeneous case
by showing that the collective sensitivity, measured as the Fisher
information with respect to a delayed input signal, also peaks near
the transition (Figure 4D).

Most importantly, even with strong heterogeneity,
we find transitions with the same decision-making
properties as the simple homogeneous case (Figures 1B,
5). We again see a transition from low to high collective
memory (Figure 5A), though this now requires varying
two parameters (¢ and a) simultaneously along the
vector d. Near the transition, we again find that decision
information is distributed over more neurons, the decision
timescale is longer, and collective sensitivity is larger
(Figures 5B-D).

Finally, we examine dynamical properties of our sensitivity
measure. Because we initialize the system at x*, which changes
in stability at the pitchfork bifurcation, we expect the sensitivity
to initial perturbations to increase even as we move past the
transition into the regime of strong bistability. This is intuitive:
ever smaller perturbations will push the system into one of the
two stable attractors when starting at an increasingly unstable
fixed point. Measuring the sensitivity to delayed perturbations,
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FIGURE 6 | Collective sensitivity is longest-lived near the transition to stable memory. We quantify sensitivity using a Fisher information metric that measures how the
final distribution of decision states depends on perturbations earlier in the trial. Close to the transition (green points), noise overwhelms the system and the sensitivity
remains small. Far above the transition in a regime of strong bistability (blue points), small fluctuations are quickly magnified to push the system into an attractor,
leaving it insensitive to perturbations applied later in the trial. At intermediate d (black points), the system remains highly sensitive over a long timescale. The behavior is
qualitatively the same for transitions located in (A) homogeneous and (B) heterogeneous networks. In both figures, values are averages over 10 runs, each estimating
the Fisher information using 1000 trials.

we find that being near the collective transition produces the
longest-lived sensitivities (Figure 6).

DISCUSSION

We have developed a dynamical framework for binary
decision-making that functions even in networks with highly
heterogeneous connectivity. With this framework, we are able
to start with a randomly-wired neural network and locate a
useful transition by tuning two parameters. These parameters
control the timescale over which the decision happens and the
probability of falling into each decision state. The resulting
circuit can be tuned by moving along a line that induces
a pitchfork bifurcation. Below the bifurcation, the system
maintains an uncommitted state; above but near the bifurcation,
the system acts as an information integrator with timescale that
depends on distance from the bifurcation; and farther from the
bifurcation, the system retains a stable memory of the chosen
decision.

In order to make use of such a critical transition in decision
making, neural mechanisms must be capable of tuning system
dynamics in specific ways that we have identified. First, two
parameters must be varied to locate an appropriate bifurcation.
In our example, we chose to vary the baseline constant for
degree of coupling between neurons (¢) and an externally-driven
input into each neuron (a), which could originate from, for
example, a separate set of neurons triggering a decision. We
expect this framework to generalize to other pairs of tunable
parameters. Second, each cusp bifurcation is associated with a
specific pitchfork transition, which creates two decision states
that are separated along a specific direction g* in state space.
This means that the direction of the input signal g needs to at
least roughly match §* in order to perturb neurons toward the
appropriate decision states.

The homogeneous version of the model in Equation (1)
already recapitulates some qualitative dynamical features of
observed neural decision-making dynamics [7]. Here, we have
extended the analysis to a more general and more biologically
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realistic case by incorporating heterogeneity in connection
strength between neurons. In experiments, neurons vary by
orders of magnitude in both their typical firing rates and
the amount of information they carry about the eventual
decision [7]. The framework we present here explicitly includes
these heterogeneities while remaining interpretable due to the
analytical tractability of the underlying nonlinear dynamical
model.

These results are linked to multiple existing frameworks in
the literature of neural networks and network theory more
generally. We can relate our model to Hopfield networks
[22] in the limit of scaling the connection strengths i to be
large, or equivalently being far from the bifurcations we locate.
In the Hopfield formalism, different attractors correspond to
different memories; in this sense, a decision-making system
might be said to be “remembering the future.” The number and
stability of attractors has been extensively studied in Hopfield
networks [24, 25], and is likely related to the number of
potential decision bifurcation “circuits” identified by our method.
In the same spirit, in the long-time equilibrium limit, our
model of random interactions also shares aspects with the
study of spin glasses and spin glass transitions. A variety of
well-studied phase transitions in heterogeneous networks are
likely related, including spin glass transitions [26] (in the long-
time equilibrium limit) and percolation transitions [27, 28] (in
the sense of increasing connections until consensus percolates
across the entire network). Finally, our approach that starts
with random connections and produces specific desired adaptive
behavior shares the spirit of reservoir computing [29, 30].
The idea of constraining the behavior of a random network
using a few control parameters has also been recently explored
in the context of low-rank perturbations of random matrices
[31].

Future empirical work will be useful to establish whether
the collective sensitivity of primate cortical neurons matches
with the predictions of our model. Specifically, does our Fisher
information-based sensitivity measure decay as expected both
as a function of time (Figure 6) and as a function of changing
distance from the transition (Figure5D)? This distance d,
which we assume changes over the course of each decision
process, could be estimated from the degree to which decision
information is distributed over multiple neurons (using a
measure similar to that shown in Figure 5B).

Our approach may also offer insight into other aspects of
sensory integration, such as odor coding in the olfactory system
of insects and vertebrates. In these systems, input from sensory
receptor neurons must be integrated to identify specific odor
sources against a noisy and variable olfactory background [32].
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