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The problem of extending a function f defined on a training data C on an unknown

manifold X to the entire manifold and a tubular neighborhood of this manifold is

considered in this paper. For X embedded in a high dimensional ambient Euclidean

space R
D, a deep learning algorithm is developed for finding a local coordinate system

for the manifold without eigen-decomposition, which reduces the problem to the

classical problem of function approximation on a low dimensional cube. Deep nets (or

multilayered neural networks) are proposed to accomplish this approximation scheme

by using the training data. Our methods do not involve such optimization techniques as

back-propagation, while assuring optimal (a priori) error bounds on the output in terms of

the number of derivatives of the target function. In addition, these methods are universal,

in that they do not require a prior knowledge of the smoothness of the target function,

but adjust the accuracy of approximation locally and automatically, depending only upon

the local smoothness of the target function. Our ideas are easily extended to solve both

the pre-image problem and the out-of-sample extension problem, with a priori bounds

on the growth of the function thus extended.

Keywords: deep learning, function approximation, manifold learning, neural networks, local approximation

1. INTRODUCTION

Machine learning is an active sub-field of Computer Science on algorithmic development for
learning and making predictions based on some given data, with a long list of applications that
range from computational finance and advertisement, to information retrieval, to computer vision,
to speech and handwriting recognition, and to structural healthcare and medical diagnosis. In
terms of function approximation, the data for learning and prediction can be formulated as {(x, fx)},
obtained with an unknown probability distribution. Examples include: the Boston housing problem
(of predicting the median price fx of a home based on some vector x of 13 other attributes [1]) and
the floor market problem [2, 3] (that deals with the indices of the wheat floor pricing in three
major markets in the United States). For such problems, the objective is to predict the index fx in
the next month, say, based on a vector x of their values over the past few months. Other similar
problems include the prediction of blood glucose level fx of a patient based on a vector x of the
previous few observed levels [4, 5], and the prediction of box office receipts (fx) on the date of
release of a movie in preparation, based on a vector x of the survey results about the movie [6]. It
is pointed out in Mhaskar [7], Maggioni and Mhaskar [8] and Ehler et al. [9] that all the pattern
classification problems can also be viewed fruitfully as problems of function approximation. While
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it is an ongoing research to allow non-numeric input x (e.g., [10]),
we restrict our attention in this paper to the consideration of
x ∈ R

D, for some integer D ≥ 1.
In the following discussion, the first component x is

considered as input, while the second component fx is considered
the output of the underlying process. The central problem is
to estimate the conditional expectation of fx given x. Various
statistical techniques and theoretical advances in this direction
are well-known (see, for example [11]). In the context of neural
and radial-basis-function networks, an explicit formulation of the
input/output machines was pointed out in Girosi and Poggio [12]
and Girosi et al. [13]. More recently, the nature of deep learning
as an input/output process is formulated in the same way,
as explained in LeCun et al. [14] and Rosasco et al. [15].
To complement the statistical perspective and understand the
theoretical capabilities of these processes, it is customary to think
of the expected value of fx, given x , as a function f of x. The
question of empirical estimation in this context is to carry out
the approximation of f given samples {(x, f (x))}x∈C , where C is a
finite training data set. In practice, because of the random nature
of the data, it may be possible that there are several pairs of the
form (x, fx) in the data for the same values of x. In this case, a
statistical scheme, such as some kind of averaging of fx being the
simplest one, can be used to obtain a desired value f (x) for the
sample of f at x, x ∈ C. From this perspective, the problem of
extending f from the traning data set C to x not in C in machine
learning is called the generalization problem.

We will illustrate this general line of ideas by using neural
networks as an example. To motivate this idea, let us first
recall a theorem originating with Kolmogorov and Arnold [16,
Chapter 17, Theorem 1.1]. According to this theorem, there
exist universal Lipschitz continuous functions φ1, · · · ,φ2D+1 and
universal scalars λ1, · · · , λD ∈ (0, 1), for which every continuous
function f :[0, 1]D → R can be written as

f (x) =
2D+1
∑

j = 1

g

(
D
∑

k= 1

λkφj(xk)

)

, x = (x1, · · · , xD) ∈ [0, 1]D,

(1.1)
where g is a continuous function that depends on f . In other
words, for a given f , only one function g has to be determind to
give the representation formula (1.1) of f .

A neural network, used as an input/output machine, consists
of an input layer, one or more hidden layers, and an output layer.
Each hidden layer consists of a number of neurons arranged
according to the network architecture. Each of these neurons has
a local memory and performs a simple non-linear computation
upon its input. The input layer fans out the input x ∈ R

D to
the neurons at the first hidden layer. The output layer typically
takes a linear combination of the outputs of the neurons at the
last hidden layer. The right hand side of (1.1) is a neural network
with two hidden layers. The first contains D neurons, where the
j-th neuron computes the sum

∑D
k=1 λkφj(xk). The next hidden

layer contains 2D+ 1 neurons each evaluating the function g on
the output of the j-th neuron in the first hidden layer. The output
layers takes the sum of the results as indicated in (1.1).

From a practical point of view, such a network is clearly hard
to construct, since only the existence of the functions φj and g is
known, without a numerical procedure for computing these. In
the early mathematical development of neural networks during
the late 1980s and early 1990s, instead of finding these functions
for the representation of a given continuous function f in (1.1),
the interest was to study the existence and characterization of
universal functions σ : R → R, called activation functions of the
neural networks, such that each neuron evaluates the activation
function upon an affine transform of its input, and the network
is capable of approximating any desired real-valued continuous
target function f :K → R arbitrarily closely onK, whereK ⊂ R

D

is any compact set.
For example, a neural network with one hidden layer can be

expressed as a function

N (x) = Nn({wk}, {ak}, {bk}; x) =
n
∑

k = 1

akσ (wk·x+bk), x ∈ R
D.

(1.2)
Here, the hidden layer consists of n neurons, each of which
has a local memory. The local memory of the k-th neuron
contains the weights wk ∈ R

D, and the threshold bk ∈ R.
Upon receiving the input x ∈ R

D from the input later, the k-
th neuron evaluates σ (wk · x + bk) as its output, where σ is a
non-linear activation function. The output layer is just one circuit
where the coefficients {ak} are stored in a local memory, and that
evaluates the linear combination as indicated in (1.2). Training of
this network in order to learn a function f on a compact subset
K ⊂ R

D to an accuracy of ǫ > 0 involves finding the parameters
{ak}, {wk}, {bk} so that

max
x∈K

|f (x)−N (x)| < ǫ. (1.3)

The most popular technique for doing this is the so called back-
propagation, which seeks to find these quantities by minimizing
an error functional usually with some regularization parameters.
We remark that the number n of neurons in the approximant
(1.2) must increase, if the tolerance ǫ > 0 in the approximation
of the target function f is required to be smaller.

From a theoretical perspective, the main attraction of neural
networks with one hidden layer is their universal approximation
property as formulated in (1.3), which overshadows the properties
of their predecessors, namely: the perceptrons [17]. In particular,
the question of finding sufficient conditions on the actvation
function σ that ensure the universal approximation property was
investigated in great detail by many authors, with emphasis on
the most popular sigmoidal function, defined by the property
σ (t) → 1 for t → ∞ and σ (t) → 0 for t → −∞. For example,
Funahashi [18] applied some discretization of an integral formula
from Irie and Miyake [19] to prove the universal approximation
property for some sigmoidal function σ . A similar theorem was
proved by Hornik et al. [20] by using the Stone-Weierstrass
theorem, and another by Cybenko [21] by applying the Hahn-
Banach and Riesz Representation theorems. A constructive proof
via approximation by ridge functions was given in our paper
[22], with algorithm for implementation presented in our follow-
up work [23]. A complete characterization of which activation
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functions are allowed to achieve the universal approximation
property was given later in Mhaskar and Micchelli [24] and
Leshno et al. [25].

However, for neural networks with one hidden layer, one of
the severe limitations to applying training algorithms based on
optimization, such as back-propagation or those proposed in the
book [11] of Vapnik, is that it is neccessary to know the number
of neurons in N in advance. Therefore, one major problem in
the 1990s, known as the complexity problem, was to estimate
the number of neurons required to approximate a function to
a desired accuracy. In practice, this gives rise to a trade-off: to
achieve a good approximation, one needs to have a large number
of neurons, which makes the implementation of the training
algorithm harder.

In this regard, nearly a century of research in approximation
theory suggests that the higher the order of smoothness of the
target function, the smaller the number of neurons should be,
needed to achieve the desired accuracy. There are many different
definitions of smoothness that give rise to different estimates.
For example, under the condition that the Fourier transform

of the target function f satisfies

∫

RD
|ωf̂ (ω)|dω < ∞, Barron

[26] proved the existence of a neural network with O(ǫ−2)
neurons that gives an L2([0, 1]D) error of O(ǫ). While it is
interesting to note that this number of neurons is essentially
independent of the dimension D, the constants involved in theO
term as well as the number of derivatives needed to ensure the
condition on the target function may increase with D. Several
authors have subsequently improved upon such results under
various conditions on the activation function as well as the target
function so as to ensure that the constants depend polynomially
on D (e.g., [27–29] and references therein).

The most commonly understood definition of smoothness is
just the number of derivatives of the target function. It is well-
known from the theory of n-widths that if r ≥ 1 is an integer,
and the only a priori information assumed on the unknown target
function is that it is r-times continuously differentiable function,
then a stable and uniform approximation to within ǫ by neural
networks must have at least a constant multiple of ǫ−D/r neurons.
In Mhaskar [30], we gave an explicit construction for a neural
network that achieves the accuracy of ǫ using O(ǫ−D/r) neurons
arranged in a single hidden layer. It follows that this suffers
from a curse of dimensionality, in that the number of neurons
increases exponentially with the input dimension D. Clearly, if
the smoothness r of the function increases linearly with D, as it
has to in order to satisfy the condition in Barron [26], then this
bound is also “dimension independent.”

While this is definitely unavoidable for neural networks with
one hidden layer, the most natural way out is to achieve local
approximation; i.e., given an input x, construct a network with
a uniformly bounded number of neurons that approximates the
target function with the optimal rate of approximation near the
point x, preferably using the values of the function also in a
neighborhood of x. Unfortunately, this can never be achieved as
we proved in Chui et al. [31]. Furthermore, we have proved in
Chui et al. [32] that even if we allow each neuron to evaluate its
own activation function, this local approximation fails. Therefore

the only way out is to use a neural network with more than one
hidden layer, called deep net (for deep neural network). Indeed,
local approximation can be achieved by a deep net as proved in
our papers [7, 33]. In this regard, it is of interest to point out that
an adaptive version of Mhaskar [7, 33] was derived in Mhaskar
and Khachikyan [34] for prediction of time series, yielding as
much as 150% improvement upon the state-of-the-art at that
time, in the study of the floor market problem.

Of course, the curse of dimensionality is inherent to the
problem itself, whether with one or more hidden layers. Thus,
while it is possible to construct a deep net to approximate a
function at each point arbitrarily closely by using a uniformly
bounded number of neurons, the uniform approximation on
an entire compact set, such as a cube, would still require an
approximation at a number of points in the cube, and this
number increasing exponentially with the input dimension.
Equivalently, the effective number of neurons for approximation
on the entire cube is still exponentially increasing with the input
dimension.

In addition to the high dimensionality, another difficulty in
solving the function approximation problem is that the data
may be not just high dimensional but unstructured and sparse.
A relatively recent idea which has been found very useful in
applications, in fact, too many to list exhaustively, is to consider
the points x as being sampled from an unknown, low dimensional
sub-manifold X of the ambient high dimensional space R

D.
The understanding of the geometry of X is the subject of the
bulk of modern research in the area of diffusion geometry. An
introduction to this subject can be found in the special issue
[35] of Applied and Computational Harmonic Analysis. The
basic idea is to construct the so-called diffusion matrix from the
data, and use its eigen-decomposition for finding local coordinate
charts and other useful aspects of the manifold. The convergence
of the eigen-decomposition of the matrices to that of the Laplace-
Beltrami and other differential operators on the manifold is
discussed, for example, in Belkin and Niyogi [36], Lafon [37], and
Singer [38]. It is shown in Jones et al. [39, 40] that some of the
eigenfunctions on the manifolds yield a local coordinate chart on
themanifold. In the context of deep learning, this idea is explored
as a function approximation problem inMishne et al. [41], where
a deep net is developed in order to learn the coordinate system
given by the eigenfunctions.

On the other hand, whilemuch of the research in this direction
is focused on understanding the data geometry, the theoretical
foundations for the problems of function approximation and
harmonic analysis on such data-defined manifold are developed
extensively inMaggioni andMhaskar [8], Filbir andMhaskar [42,
43], Mhaskar [44, 45] and Chui and Mhaskar [46]. The theory
is developed more recently for kernel construction on directed
graphs and analysis of functions on changing data in our paper
[47]. However, a drawback of the approach based on data-defined
manifolds, known as the out-of-sample extension problem, is
that since the diffusion matrix is constructed entirely using the
available data, the whole process must be done again if new data
become available. A popular idea is then to extend the eigen-
functions to the ambient space by using the so called Nyström
extension [48].
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The objective of this present paper is to describe a deep
learning approach to the problem of function approximation,
using three groups of networks in the deep net. The lowest
layer accomplishes dimensionality reduction by learning the local
coordinate charts on the unknown manifold without using any

eigen-decomposition. Having found the local coordinate system,
the problem is reduced to the classical problem of approximating
a function on a cube in a relatively low dimensional Euclidean
space. For the next two layers, we may now apply the powerful
techniques from approximation theory to approximate the target
function f , given the samples on the training data set C. We
describe two approaches to construct the basis functions using
multi-layered neural networks, and to construct other networks
to use these basis functions in the next layer to accomplish the
desired function approximation.

We summarize some of the highlights of our paper.

• We give a very simple learning method for learning the
local coordinate chart near each point. The subsequent
approximation process is then entirely local to each coordinate
patch.

• Our method allows us to solve the pre-image problem easily;
i.e., to generate a point on the manifold corresponding to a
given local coordinate description.

• The learning method itself does not involve any optimization
based technique, except probably for reducing the noise in the
values of the function itself.

• We provide optimal error bounds on approximation based on
the smoothness of the function, while the method itself does
not require an a priori knowledge of such smoothness.

• Our methods can solve easily the out-of-sample extension
problem. Unlike the Nyström extension process, our method
does not require any elaborate construction of kernels defined
on the ambient space and commuting with certain differential
operators on the unknown manifold.

• Our method is designed to control the growth of the out-of-
sample extension in a tubular neighborhood of X, and is local
to each coordinate patch.

This paper is organized as follows. In section 2, we describe
the main ideas in our approach. The local coordinate system
is described in detail in section 2.2. Having thus found a local
coordinate chart around the input, the problem of function
approximation reduces to the classical one. In section 2.3, we
demonstrate how the popular basis functions used in this theory
can be implemented using neural networks with one or more
hidden layers. The function approximation methods which work
with unstructured data without using optimization are described
in section 2.6. In section 3, we explain how our method can be
used to solve both the pre-image problem and the out-of-sample
extension problem.

2. MAIN IDEAS AND RESULTS

The purpose of this paper is to develop a deep learning algorithm
to learn a function f : X → R, where X is a d dimensional
compact Riemannian sub-manifold (without boundary) of a

Euclidean space R
D, with d ≪ D, given training data of the

form {(xj, f (xj))}Mj=1, xj ∈ X. It is important to note that X

itself is not known in advance; the points xj are known only
as D-dimensional vectors, presumed to lie on X. In section 2.1,
we explain our main idea briefly. In section 2.2, we derive
a simple construction of the local coordinate chart for X. In
section 2.3, we describe the construction of a neural network
with one or more hidden layers to implement two of the basis
functions used commonly in function approximation. While
the well known classical approximation algorithms require a
specific placement of the training data, one has no control on
the location of the data in the current problem. In section 2.6,
we give algorithms suitable for the purpose of solving this
problem.

2.1. Outline of the Main Idea
Our approach is the following.

1. X is a finite union of local coordinate neighborhoods, and x

belongs to one of them, say U. We find a local coordinate
system for this neighborhood in terms of Euclidean distances
on R

D, say 8 : U → [−1, 1]d, where d is the dimension of the
manifold. Let y = 8(x), and with a relabeling for notational
convenience, {xj}Kj=1 be the points in U, yj = 8(xj). This

way, we have reduced the problem to approximating g =
f ◦ 8 :[−1, 1]d → R at y, given the values {(yj, g(yj))}Kj=1,

where g(yj) = f (xj). We note that {yj} is a subset of the unit
cube of low dimensional Euclidean space, representing a local
coordinate patch on X. Thus, the problem of approximation
of f on this patch is reduced that of approximation of g, a well
studied classical approximation problem.

2. We will summarize the solution to this problem using
neural networks with one or more hidden layers, e.g.,
an implementation of multivariate tensor product spline
approximation using multi-layerd neural network.

Thus, our deep learning networks will have three main layers.

1. The bottom layer receives the input x, figures out which of
the points xj are in the coordinate neighborhood of x, and
computes the local coordinates y, yj.

2. The next several layers compute the local basis functions
necessary for the approximation, for example, the B-splines
and their translates using the multi-layered neural network as
in Mhaskar [7].

3. The last layer receives the data {(yj, g(yj))}Kj=1, and computes

the approximation described in Step 2.1 above.

2.2. Local Coordinate Learning
We assume that 1 ≤ d ≤ D are integers, X is a d
dimensional smooth, compact, connected, Riemannian sub-
manifold (without boundary) of a Euclidean space R

D, with
geodesic distance ρ.

Before we discuss our own construction of a local coordinate
chart on X, we wish to motivate the work by describing a result
from Jones et al. [40]. Let {λ2

k
}∞
k=0

be the sequence of eigenvalues
of the (negative of the) Laplace-Beltrami operator on X, and
for each k ≥ 0, φk be the eigenfunction corresponding to the
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eigenvalue λ2
k
. We define a formal “heat kernel” by

Kt(x, y) =
∞
∑

k=0

exp(−λ2kt)φk(x)φk(y). (2.1)

The following result is a paraphrasing of the heat triangulation
theorem proved in [40, Theorem 2.2.7] under weaker
assumptions on X.

Theorem 2.1. (cf. [40, Theorem 2.2.7]) Let x∗0 ∈ X. There
exist constants R > 0, c1, · · · , c6 > 0 depending on x∗0 with
the following property. Let p1, · · · , pd be d linearly independent
vectors in R

d, and x∗j ∈ X be chosen so that x∗j − x∗0 is in the

direction of pj, j = 1, · · · , d, and

c1R ≤ ρ(x∗j , x
∗
0) ≤ c2R, j = 1, · · · , d,

and t = c3R
2. Let B ⊂ X be the geodesic ball of radius c4R, centered

at x∗0 , and

8jms(x) = Rd(Kt(x, x
∗
1), · · · ,Kt(x, x

∗
d)), x ∈ B. (2.2)

Then

c5

R
ρ(x1, x2) ≤ ‖8jms(x1)−8jms(x2)‖d ≤ c6

R
ρ(x1, x2), x1, x2 ∈ B.

(2.3)

Since the paper [40] deals with a very general manifold, the
mapping 8jms is not claimed to be a diffeomorphism, although

it is obviously one-one on B.
We note that even in the simple case of a Euclidean sphere, an

explicit expression for the heat kernel is not known. In practice,
the heat kernel has to be approximated using appropriate
Gaussian networks [37]. In this section, we aim to obtain a local
coordinate chart that is computed directly in terms of Euclidean
distances on R

D, and depends upon d + 2 trainable parameters.
The construction of this chart constitutes the first hidden layer of
our deep learning process. As explained in the introduction, once
this chart is in place, the question of function extension on the
manifold reduces locally to the well studied problem of function
extension on a d dimensional unit cube.

To describe our constructions,we first develop some notation.
In this section, it is convenient to use the notation x =

(x1, · · · , xD) ∈ R
D rather than x = (x1, · · · , xD), which we will

use in the rest of the sections. If 1 ≤ d ≤ D is an integer, and
x ∈ R

d, ‖x‖d denotes the Euclidean norm of x. If x ∈ R
D, we will

write πc(x) = (x1, · · · , xd), ‖x‖d = ‖πc(x)‖d. If x ∈ R
d, r > 0,

Bd(x, r) = {y ∈ R
d
: ‖x− y‖d ≤ r}.

There exists δ∗ > 0 with the following properties. The manifold
is covered by finitely many geodesic balls such that for the center
x∗0 ∈ X of any of these balls, there exists a diffeomorphism,
namely, the exponential coordinate map u = (u1, · · · , uD) from
Bd(0, δ

∗) to the geodesic ball around x∗0 = u(0) [49, p. 65]. If J is

the Jacobianmatrix for u, given by Ji,j(y) = Diu
j(y), y ∈ Bd(0, δ

∗),
then

J(0) = [Id|0d,D−d]. (2.4)

Further, there exists κ > 0 (independent of x∗) such that

‖J(q)− J(0)‖ ≤ κ‖q‖d, q ∈ Bd(0, δ
∗), (2.5)

where the matrix norm is the induced norm. Let η∗ :=
min(δ∗, 1/(2κ)). Then (2.5) implies that

1/2 ≤ 1− κ‖q‖d ≤ ‖J(q)‖ ≤ 1+ κ‖q‖d ≤ 2, q ∈ Bd(0, η
∗).

(2.6)
In turn, this leads to

(1/2)ρ(u(p), u(q)) ≤ ‖p−q‖d ≤ 2ρ(u(p), u(q)), p, q ∈ Bd(0, η
∗).

(2.7)
Let x∗ℓ = u(qℓ), ℓ = 1, · · · , d, be chosen with the following
properties:

‖qℓ‖d ≤ η∗, ℓ = 1, · · · , d, (2.8)

and, with the matrix function U defined by

Ui,j(q) = ui(q)− (x∗j )
i, (2.9)

we have

‖J(0)U(0)y‖d ≥ γ > 0, ‖y‖d = 1. (2.10)

Any set {x∗ℓ} with these properties will be called coordinate stars
around x∗0 . We note that the matrix J(0)U(0) has columns given
by πc(x

∗
0−x∗j ), j = 1, · · · , d, and hence, can be computed without

reference to the map u. Let

β∗
: = (1/2)min

(
1

2κ
, δ∗,

γ

8
√
d

)

. (2.11)

Theorem 2.2. Let 9(q) := (‖u(q)− u(qℓ)‖2D)dℓ=1 ∈ R
d. Then

(a) 9 is a diffeomorphism on Bd(0, 2β
∗). If p, q ∈ Bd(0, 2β

∗),
x = u(p), y = u(q), then

γ

2
ρ(x, y) ≤ ‖9(p)− 9(q)‖d ≤ 32

√
dη∗ρ(x, y). (2.12)

(b) The function 9 is a diffeomorphism from Bd(0,β
∗) onto

Bd(9(0),β∗).

Remark 2.1. Let B = u(Bd(0,β
∗)) ⊂ X be a geodesic ball

around x∗0 . For x ∈ B, we define

φ(x) = 9(u−1(x)) = (‖x− x∗ℓ‖2D).

Then Theorem 2.2(b) shows that φ is a diffeomorphism from B

onto Bd(9(0),β∗). Since 9(0) = (‖x∗0 − x∗ℓ‖2D),

8(x) =
√
d

β∗ (φ(x)− 9(0)), x ∈ B
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maps B diffeomorphically onto Bd(0,
√
d) ⊃ [−1, 1]d. Let U =

8−1([−1, 1]d). Then U is a neighborhood of x∗0 and 8 maps U

diffeomorphically onto [−1, 1]d. We oberve that X is a union of
finitely many neighborhoods of the form U, so that any x ∈ X

belongs to at least one such neighborhood. Moreover, 8(x) can
be computed entirely in terms of the description of x in terms of
its D-dimensional coordinates. 2

Remark 2.2. The trainable parameters are thus β∗, and the
points x∗0 , · · · , x∗d. Since ‖J(0)‖ = 1, the condition (2.10) is
satisfied if x∗ℓ − x∗0 are along linearly independent directions as
in Theorem 2.1. 2

Remark 2.3. Since the mapping 8 in Remark 2.1 is a quadratic
polynomial in x, it can be implemented as a neural network with
a single hidden layer using the activation function given in (2.22)
as described in section 2.4.

Example 2.1. Let 0 < a < 1, and M = Ma be the circular helix
defined by

u(s) = (cos as, sin as,
√

1− a2s)T .

Clearly, M is a one dimensional manifold, and s is the arclength
parameter, measured from (1, 0, 0)T . The curvature at any point
is a2. For any point z0 ∈ M, Uz0 = M, with the diffeomorphism
given by u(tan−1(π t/2)), t ∈ (−1, 1). An interesting fact is that
‖u(s + 2π) − u(s)‖3 = 2π

√
1− a2 can be made arbitrarily

small by choosing a close to 1, even though the geodesic distance
between u(s + 2π) and u(s) is 2π . Let s0 ∈ R, s0 + π/4 ≤
s1 ≤ s0 + 3π/8, and U : = {u(s) : |s − s0| ≤ π/8}. Let
9(s) : = ‖u(s)− u(s1)‖23. It is easy to calculate that

9(s) = 2− 2 cos(a(s− s1))+ (1− a2)(s− s1)
2,

so that

9 ′(s) = 2a sin(a(s− s1))+ 2(1− a2)(s− s1).

If u(s) ∈ U, then π/8 ≤ s1 − s ≤ π/2. Therefore, using the well
known estimates

2θ

π
≤ sin(θ) ≤ θ , θ ∈ [0,π/2],

we obtain that

|9 ′(s)| ≤ 2a2(s1 − s)+ 2(1− a2)(s1 − s) ≤ π , (2.13)

and

|9 ′(s)| ≥ 4a2

π
(s1−s)+2(1−a2)(s1−s) ≥ π

8
(2−2a2(1−2/π)) ≥ 1/2.

(2.14)
Hence, for any points u(t1), u(t2) ∈ U, we have

(1/2)|t1−t2| ≤
∣
∣‖u(t1)− u(s1)‖23 − ‖u(t2)− u(s1)‖23

∣
∣ ≤ π |t1−t2|.

We note that the neighborhood U where this estimate holds and
the constants are independent of the curvature. 2

The remainder of this section is devoted to the proof of
Theorem 2.2.

Lemma 2.1. Let q ∈ Bd(0, η
∗). Each of the following statements

hold for the matrix U defined in (2.9):

‖U(q)− U(0)‖ ≤ 2
√
d‖q‖d, (2.15)

‖U(q)‖ ≤ 2
√
d max
1≤ℓ≤d

‖q− qℓ‖d ≤ 4
√
dη∗, (2.16)

‖J(q)U(q)− J(0)U(0)‖ ≤ 4
√
d‖q‖d. (2.17)

With β∗ as in (2.11), for ‖q‖d ≤ 2β∗, ‖y‖d = 1,

‖J(q)U(q)y‖d ≥ γ /2. (2.18)

PROOF. In view of (2.6) and the mean value theorem, we have for
‖p‖d ≤ η∗,

‖u(q)− u(p)‖D ≤ 2‖q− p‖d. (2.19)

We observe further that for any integers m, ℓ, U(q)m,ℓ −
U(0)m,ℓ = um(q) − um(0). Consequently, for any y ∈ R

d,
‖y‖d ≤ 1,

‖(U(q)−U(0))y‖D = ‖u(q)− u(0)‖D
d
∑

ℓ=1

|yℓ| ≤ 2
√
d‖q‖d‖y‖d.

This proves (2.15).
In view of (2.19), used with qℓ in place of p, ℓ = 1, · · · , d, we

obtain for all y ∈ R
d, ‖y‖d ≤ 1,

∥
∥
∥
∥
∥
∥

d
∑

ℓ=1

yℓ(u(q)− u(qℓ))

∥
∥
∥
∥
∥
∥
D

≤
d
∑

ℓ=1

|yℓ|‖u(q)− u(qℓ)‖D

≤ 2
√
d max
1≤ℓ≤d

‖q− qℓ‖d.

This proves (2.16).
In view of (2.5), (2.16), (2.15), we obtain for ‖q‖d ≤ η∗ ≤

1/(2κ) that

‖J(q)U(q)− J(0)U(0)‖ =
‖(J(q)− J(0))U(q)+ J(0)(U(q)− U(0))‖

≤ ‖J(q)− J(0)‖‖U(q)‖ + ‖J(0)‖‖U(q)− U(0)‖
≤ 4

√
dη∗κ‖q‖d + 2

√
d‖q‖d = 2

√
d(1+ 2η∗κ)‖q‖d

≤ 4
√
d‖q‖d.

This proves (2.17). The estimate (2.18) follows easily from this
and (2.10). 2

PROOF OF THEOREM 2.2. In this proof only, let J (q) be the
Jacobian of 9 : Ji,j(q) = Di(‖u(q) − u(qj)‖2). Then J (q) =
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2J(q)U(q). The estimate (2.10) shows that J (0) is invertible, and
that ‖J (0)−1‖ ≤ 1/(2γ ). The estimate (2.17) then shows that

‖J (q)− J (0)‖ ≤ 1/(2‖J (0)−1‖), ‖q‖d ≤ 2β∗. (2.20)

Therefore, the inverse function theorem as given in [50,
Theorem 9.24 and its proof] implies that 9 is a diffeomorphism
on B(0, 2β∗) as claimed. For ‖q‖d ≤ 2β∗, (2.18) shows that
‖J (q)−1‖ ≤ 1/γ . Also, (2.16) and (2.6) show that ‖J (q)‖ ≤
16
√
dη∗. Hence, the mean value theorem implies that

γ ‖q− p‖d ≤ ‖9(q)− 9(p)‖d ≤ 16
√
dη∗‖q− p‖d. (2.21)

Together with (2.7), this implies (2.12).
The part (b) follows also from [50, Theorem 9.24 and its proof]

and (2.20).
2

2.3. Local Basis Functions
Having found a local coordinate map 8 on a neighborhood U

of x on X, the problem of extending f from {xj} ∩ U to U is

reduced to extending f ◦ 8 from C = {yj = 8(xj)} ⊂ [−1, 1]d, a
classical approximation problem. There is, of course, 100+ years
of research on this subject. We restrict ourselves to two examples,
which can be implemented using neural networks with one or
more hidden layers. One of the most popular activation function
in the deep learning literature (e.g., [14]) is the rectified linear
unit function

t+ = max(0, t).

Since this function is not continuously differentiable, there are
some technical difficulties to use common algorithms like back-
propagation with these activation functions. Although we do not
need back-propagation in our theory, we prefer to deal with a
rectified quadratic unit function defined for t ∈ R by

σ (t) =
{

t2, if t ≥ 0,
0, if t < 0,

(2.22)

which is continuously differentiable on R. Our theory will work
in general with any activation function of order k ≥ 2; i.e., with a
function σ that satisfies

lim
t→−∞

σ (t)

tk
= 0, lim

t→∞
σ (t)

tk
= 1, (2.23)

but for the sake of clarity of exposition, we will use only the
activation function σ defined in (2.22).

2.4. Polynomials
The most basic class of classical approximants is the set of all
polynomials. For n > 0, we denote the class of all algebraic
polynomials of coordinatewise degree at most n in d variables by
5d

n. (It is convenient to use the same notation also when n is not

an integer; in this case, 5d
n is just 5

d
⌊n⌋.

The basic implementation of polynomials is given in [22,
Proof of Theorem 3.1], where an explicit construction is given for
finding the weights {wk}, the thresholds {bk} and the coefficients
{ak} used in (2.24) below.

Theorem 2.3. Let n > 0, N = 2⌈log2 n⌉, P ∈ 5d
N ⊇ 5d

n,
then there exist weights w1, · · · ,wdim(5d

N )
and real numbers

a1, · · · , adim(5d
N )
, b1, · · · , bdim(5d

N )
such that

P(x) =
dim(5d

N )∑

k= 1

ak(wk · x+ bk)
N , x ∈ R

d. (2.24)

Here, the weights {wk} and the thresholds {bk} are independent of
P and the coefficients {ak} are linear functionals on 5d

N .

We observe that

t2 = σ (t)+ σ (−t), x ∈ R, (2.25)

while

tN = ((t2)2 · · · )2, (log2 N times), (2.26)

so that the expression on the right hand side of (2.24) can be
expressed as a neural network with log2 N hidden layers.

We note that a neural network with one hidden layer is given
in Mhaskar [30], but using a C∞ activation function σ ; e.g.,
σ (t) = (1 + e−t)−1. This uses the fact that for w, x ∈ R

d and
b ∈ R, such that none of the derivatives σ (j)(b), j = 0, 1, · · · ,
equal to 0,

∂ |k|

∂wk
σ (w · x+ b)

∣
∣
∣
∣
w=0

= xkσ |k|(b). (2.27)

A finite difference scheme to implement this differentiation yields
a neural network with one hidden layer, containing exactly
dim(5d

n) neurons, and should be stable for C∞ functions. If
stability is a greater concern, then one may use other numerical
differentiation schemes to implement this formula, e.g., spectral
methods [51].

2.5. B-Splines
For t ∈ R, and integerm ≥ 1, let

tm+ =
{

tm, if t ≥ 0,
0, otherwise.

A tensor product cardinal B-spline at y ∈ [−1, 1]d is defined by

Nm(y) =
1

(m− 1)!d

∑

k∈Z,
k≥0, |k|∞≤m

(−1)|k|1
d
∏

j=1

(
m

kj

) d
∏

j=1

(yj − kj)
m
+.

(2.28)
It is explained in Mhaskar [7, 33] that the quantity Nm(y) can
be computed using a neural network with a sigmoidal function
of order m − 1 consisting of finitely many neurons arranged
in multiple hidden layers (the number of neurons and layers
depending on m and d alone). Thus, if m is a power of 2, then
each of the terms (yj − kj)

m
+ can be implemented as an iterated

power of (yj−kj)
2
+ (cf. (2.26).) The product of d such expressions

can be implemented using either Theorem 2.3 as a network with
mulitple hidden layer and utilizing the rectified quadratic unit
function as the activation function, or a discretization of the
formula (2.27) using a C∞ sigmoidal function as explained in
section 2.4.
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2.6. Function Approximation
In this section, if y ∈ R

d, |y|∞ is the ℓ∞ norm of y.

2.6.1. Spline Based Approximation
In [52, section 4.5], [53], a quasi-interpolatory spline function is
defined by

Qm(f )(y) =
∑

k∈Zd

λ∗m(f (· + k))Nm(y+m/2+ k), y ∈ R
d,

(2.29)
where λ∗m are compactly supported linear functionals, designed
specifically to ensure that Qm(P) = P for every polynomial
P of coordinatewise degree at most m − 1 in d variables.
With Qm,h(f )(y) = Qm(f (h(·)))(y/h), h > 0, one has the
approximation bound for small h:

max
y∈[−1,1]d

|Qm,h(f )(y)− f (y)| = O(hm). (2.30)

The linear functionals λ∗m are based on finitely many samples of
f at the grid points in a compact subset of Z

d. In our context, the
data for approximating f is not in this form. Therefore, we may
use the following algorithm given in Mhaskar et al. [54], where
we assume that λ∗m is scaled so as to be supported on [−1, 1]d.

Given: A set C = {ξ j} of points in [−1, 1]d. Let

δ(C) = max
x∈[−1,1]d

min
ξ∈C

|x− ξ |∞,

and δ(C) be sufficiently small.

Objective: To find real numbers {aξ }ξ∈C such that the
functional

γ (f ) :=
∑

ξ∈C
aξ f (ξ ) (2.31)

satisfies

γ (P) = λ∗m(P), if P is d − variate polynomial of

coordinatewise degree ≤ m − 1.

Steps:

1. Divide [−1, 1]d into congruent subcubes of side not
exceeding 2δ(C).

2. Choose C0 ⊆ C, so that each subcube has exactly
one point of C0.

3. Solve the following (underdetermined) system of
equations for the unknowns aξ , ξ ∈ C0.

∑

ξ∈C
aξ ξ

k = λ∗m((·)k), |k|∞ ≤ m− 1. (2.32)

4. Set aξ : = 0 if ξ ∈ C \ C0.
5. Output (aξ )ξ∈C .

Substituting γ in place of λ∗m in the definition of Qm(f ) yields the
desired spline approximation

Q̃m(f )(y) =
∑

k∈Zd

γ (f (· + k))Nm(y+m/2+ k), y ∈ R
d,

(2.33)
and it is proved in Mhaskar et al. [54] that the estimate (2.30)
holds with Q̃m replacing Qm.

2.6.2. Polynomial Quasi-Interpolation
A standard method for polynomial approximation is to consider
a filtered projection defined in (2.38) below.

The Chebyshev polynomials (of first kind) are defined
recursively for t ∈ R and integerm ≥ 0 by

T0(t) = 1, T1(t) = t, Tm(t) = 2tTm−1(t)−Tm−2(t). (2.34)

In terms of monomials, the Chebyshev polynomials are given by

T2n(t) =
n
∑

j=0

(−4)j

(2j)!

j
∏

ℓ=1

(n2 − (j− ℓ)2))t2j,

T2n+1(t) =
n
∑

j=0

(−1)j(2n+ 1)2

(2j+ 1)!

j
∏

ℓ=1

((2n+ 1)2 − (2j− 2ℓ + 1)2)t2j+1.

(2.35)

For y ∈ R
d and multi-integerm = (m1, · · · ,md) ≥ 0, the tensor

product Chebyshev polynomial is defined by

Tm(y) =
d
∏

j=1

Tmj (yj). (2.36)

We choose a smooth low pass filter h; i.e., an even function
h : R → [0, 1] such that h(u) = 1 if |u| ≤ 1/2, and h(u) = 0
if |u| ≥ 1, and abuse the notation as usual to define

h(u) =
d
∏

j=1

h(uj).

With this filter, we define the kernel

8n(y, t) =
∑

k∈Zd

h(k/n)Tk(y)Tk(t), n > 0, y, t ∈ [−1, 1]d.

(2.37)
Then the filtered projection operator is defined by

Vn(f )(y) =
∫

[−1,1]d
f (t)8n(y, t)

dt
√

(1− (t1)2) · · · (1− (td)2)
,

y ∈ [−1, 1]d, (2.38)

It is well known that if f is any continuous function on [−1, 1]d,
then {Vn(f )} converges uniformly to f at the near optimal rate
of approximation. For example, if f has partial derivatives up to
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order r in each variable, then analogously to (2.30), but for large
n rather than small h,

max
y∈[−1,1]d

|Vn(f )(y)− f (y)| = O(n−r). (2.39)

Theoretically, the question then is to compute Vn(f ) using the
data C as in section 2.6.1. The procedure we describe below from
Mhaskar [55, 56] and Mhaskar et al. [5] also describes the choice
of the parameter n depending upon the data.

Given: A set C = {ξ j} of points in [−1, 1]d. Let

δ◦(C) = max
x∈[−1,1]d

min
ξ∈C

max
1≤j≤d

| arccos(xj)− arccos(ξ j)|.

and δ◦(C) be sufficiently small. We also fix an integer
n > 0.

Objective: To find real numbers {wξ }ξ∈C such that the
functional

γ ◦(f ) :=
∑

ξ∈C
wξ f (ξ ) (2.40)

satisfies

γ ◦(P) =
∫

[−1,1]d

P(t)dt
√

(1− (t1)2) · · · (1− (td)2)
,

for all d-variate polynomials P of coordinatewise
degree ≤ n− 1.

Steps:

1. Divide [−1, 1]d into congruent subcubes of side not
exceeding 2δ◦(C).

2. Choose C0 ⊆ C, so that each subcube has exactly
one point of C0.

3. Solve the following (underdetermined) system of
equations for the unknowns wξ , ξ ∈ C0.

∑

ξ∈C
wξTk(ξ ) =

∫

[−1,1]d

Tk(t)dt
√

(1− (t1)2) · · · (1− (td)2)

= δk,0, |k|∞ ≤ n− 1. (2.41)

4. Set wξ := 0 if ξ ∈ C \ C0.
5. Output (wξ )ξ∈C .

It is proved in the papers cited above that with the discretized
operator

Vn,C(f )(y) =
∑

ξ∈C
wξ f (ξ )8n(y, ξ ), (2.42)

one obtains the near best rates of approximation. In particular, if
f has partial derivatives up to order r in each variable, then (2.39)
holds with Vn,C(f ) replacing Vn(f ). In practice, we choose n to be
the largest integer such that either the condition number of the

system of equations in (2.41) is “reasonable” or else by checking
the resulting errors in (2.41) [57].

The formula (2.42) can be re-written in the form

Vn,C(f )(y) =
∑

|k|∞≤n−1

h(k/n)f̂ (C, k)Tk(y), (2.43)

where

f̂ (C, k) =
∑

ξ∈C
wξ f (ξ )Tk(ξ ). (2.44)

Therefore, rather than evaluating the Chebyshev polynomials as
defined in (2.36), (2.35), one can use a multi-layered network to
evaluate Vn,C(f ) in a more stable manner as follows. The first

layer computes the coefficients h(k/n)f̂ (C, k) using the available
data. The output of this layer is input to a recurrent network
to execute a multi-variate version of the well known Clenshaw
algorithm [58, pp. 78–80].

3. EXTENSIONS

Since the starting point of diffusion geometry is to consider eigen-
decomposition of a diffusion matrix, which is constructed using
the available data, the entire computation needs to be redone if
a new data becomes available. Since the manifold X is only an
abstract model, it is not even clear that the new data will belong
to this manifold. This gives rise to two related questions. One is to
find new points on the manifold; the so called pre-image problem
[41] and the other is the out-of-sample extension problem; i.e.,
extend the target function to points not necessarily on X. In
this section, we make some comments on how to use the theory
described in the previous sections for solving these problems.

3.1. Pre-image Problem
In Remark 2.1, we have given an onto diffeomorphism 8 : U →
[−1, 1]d where U ⊂ X. The pre-image problem is the following.
Given a point y ∈ [−1, 1]d, find x ∈ X such that 8(x) = y.
This amounts to approximating the D-output function 8−1 on
[−1, 1]d, given its values at the known points {8(ξ ) : ξ ∈ C}, and
can therefore be solved using any of the techniques described in
the previous sections.

3.2. Out of Sample Extension
One well known strategy for function extension outside the
manifold is the following. One starts with a compact, positive-
semi-definite symmetric kernel K : R

D × R
D and considers the

eigen-decomposition of K restricted to X×X; thus, for example,
if µ∗ is the volume measure on X, one finds numbers λk ≥ 0 and
orthonormal functions φk on X such that

∫

X

K(x, y)φk(y)dµ
∗(y) = λkφk(x), k = 0, 1, · · · , x ∈ X.

(3.1)
A function on X can then be expanded in terms of the
orthonormal system of functions {φk}. The extension to R

D is
achieved by treating (3.1) as a definition of φk on R

D (which can
be done since K is defined on R

D × R
D), and the expansion
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of the original function f where the basis functions are now
interpreted as extended by (3.1) as the desired extension. This
leads to a variety of theoretical problems related to the judicious
construction of kernels defined on the whole space whose
eigenfunctions are meaningful as functions on X (e.g., kernels
that commute with the Laplace-Beltrami operator) so as to allow
such a construction. In the end, it is not clear how well this
extension will behave outside of X.

Our construction gives an alternative method for extending
a function on X to a tubular neighborhood of X, which we feel
is more appropriate for most applications rather than trying to
extend the function to the entire ambient space. Toward this goal,
we first explain the local coordinate learning phase for tubular
neighborhood of X.

Let s ≥ d be an integer, s ≤ D. For q ∈ R
s (or q ∈ R

D), we
write πc(q) = (q1, · · · , qd), and

v(q) = u(πc(q))+ (0, · · · , 0
︸ ︷︷ ︸

d times

, qd+1, · · · , qs, 0, · · · , 0
︸ ︷︷ ︸

D−s times

) ∈ R
D.

If Js is the Jacobian matrix for v, i.e., (Js)i,j(q) = Div
j(q), then it is

easy to check that

Js(0) = [Is|0s,D−s]. (3.2)

Moreover, if p, q ∈ Bd(0, δ
∗), then p = πc(p), q = πc(q).

Therefore,

(Js(q)− Js(p))(z) = (Jd(πc(q))− Jd(πc(p)))(z),

p, q ∈ Bd(0, δ
∗), z ∈ R

D. (3.3)

Consequently,

‖Js(q)− Js(0)‖ ≤ κ‖πc(q)‖d ≤ κ‖q‖s. (3.4)

If we now define for p, q ∈ Bd(0, δ
∗)

ρ1(v(p), v(q))
2
: = ρ(u(πc(p)), u(πc(q)))

2 +
s
∑

k=d+1

|pk − qk|2,

then following the same argument as the one leading to (2.7)
leads to

(1/2)ρ1(v(p), v(q)) ≤ ‖p− q‖s ≤ 2ρ1(v(p), v(q)), ‖p‖s, ‖q‖s ≤ η∗.

Thus, there is no loss of generality in assuming that X is
already a s dimensional submanifold of R

D, defined by v, and
with geodesic distance ρ1. This has several consequences. Even
if one overestimates the dimension of the original manifold
to be s rather than d, the resulting “distance respecting”
coordinate system will also be “distance respecting” for the

original manifold, except for the presumably small error resulting
from the overestimate. If we have no information about d (or s),
we may take s = D. This would answer the question regarding
points off the manifold, as well as take noise into account.
However, then the advantage of dimension reduction is lost. Also,
all the constants will depend upon D rather than s (or d).

Having defined a local coordinate system for the tubular
neighborhood of X in this way, we can then construct the local
basis functions on this neighborhood as in section 2.3. However,
since the original data C is not dense on the local coordinate
patch in the tubular neighborhood, one cannot use the ideas in
section 2.6. We would like instead to keep some control on the
growth of the extension operator. For this purpose, we propose to
use the minimal Sobolev norm (MSN) interpolant introduced in
Chandrasekaran et al. [59] and used very fruitfully in solutions of
partial differential equations [60] and image segmentation [61].

Thus, using the procedures explained in these papers,
we consider a differential operator 1 depending upon the
application, and find an integer N and coefficients c∗k, |k|∞ ≤ N,
so as the s-variate polynomial P∗ =

∑

k : |k|∞≤N c∗kTk minimizes

∫

[−1,1]s
|1P(t)|2 dt

√

(1− (t1)2) · · · (1− (ts)2)
(3.5)

over all s-variate polynomials P of coordinatewise degree ≤ N,
subject to the conditions

P(8(xj)) = f (xj), xj ∈ C. (3.6)

The polynomial P∗ then defines an extension of f to the tubular
neighborhood of the local coordinate patch of X.
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