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This paper deals with fast simulations of the hemodynamics in large arteries by

considering a reduced model of the associated fluid-structure interaction problem, which

in turn allows an additional reduction in terms of the numerical discretisation. The

resulting method is both accurate and computationally cheap. This goal is achieved

by means of two levels of reduction: first, we describe the model equations with a

reduced mathematical formulation which allows to write the fluid-structure interaction

problem as a Navier-Stokes system with non-standard boundary conditions; second, we

employ numerical reduction techniques to further and drastically lower the computational

costs. The non standard boundary condition is of a generalized Robin type, with a

boundary mass and boundary stiffness terms accounting for the arterial wall compliance.

The numerical reduction is obtained coupling two well-known techniques: the proper

orthogonal decomposition and the reduced basis method, in particular the greedy

algorithm. We start by reducing the numerical dimension of the problem at hand with

a proper orthogonal decomposition and we measure the system energy with specific

norms; this allows to take into account the different orders of magnitude of the state

variables, the velocity and the pressure. Then, we introduce a strategy based on a greedy

procedure which aims at enriching the reduced discretization space with low offline

computational costs. As application, we consider a realistic hemodynamics problem with

a perturbation in the boundary conditions and we show the good performances of the

reduction techniques presented in the paper. The results obtained with the numerical

reduction algorithm are compared with the one obtained by a standard finite element

method.The gains obtained in term of CPU time are of three orders of magnitude.

Keywords: fluid-structure interaction, Navier-Stokes equations, reduced order modeling, proper orthogonal

decomposition, reduced basis method, hemodynamics

1. INTRODUCTION

When modeling hemodynamics phenomena in big arteries, the resulting model is a complex
unsteady fluid-dynamics system, usually coupled with a structural model for the vessel wall. In
specific cases, suitable assumptions can be made to reduce the complexity of the model equations.
In particular, when the displacement is small, the moving domain can be linearized around a
reference steady configuration and the dynamics of the vessel motion can be embedded in the
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equations for the blood flow. In such way we obtain a Reduced
Fluid-Structure Interaction (RFSI) formulation where a Navier-
Stokes system in a fixed fluid domain is supplemented by a Robin
boundary condition that represents a surrogate of the structure
model.

Although the RFSI model is faster with respect to fully three-
dimensional (3D)models where the structure is solved separately,
the numerical computation of one heartbeat is still expensive:
the resolution of an entire heartbeat, that typically lasts one
physical second, takes orders of hours of computational time
on a supercomputer. A big challenge in realistic applications is
to achieve a real time resolution of fluid-structure interaction
problems. In particular, in hemodynamics applications, this
would grant the possibility to perform real time diagnosis.
Nevertheless, the great variability of patient-specific data requires
the parametrization of the model with respect to many physical
and geometrical quantities. Moreover, as we have recalled above,
the complexity of the hemodynamics phenomena requires a
mathematical description with complex unsteady models that are
difficult to be solved in real time. The RFSI model is already a
simpler version of the fully 3D FSI system; a further reduction
of the physical model would result in an inaccurate estimation of
specific outputs, like e.g., the wall shear stress when using a rigid
wall model [1, 2]. Thus, to further reduce numerical costs, in this
work, we focus on the reduction of the discretization space. In
realistic applications, the finite element space has order of 106

degrees of freedom. The aim is to construct a discretization space
such that the number of degrees of freedom is reduced to less than
100 and then to be able to solve one heartbeat in 1 s.

In the past few years, due to their relevance in realistic
applications, a lot of interest has been devoted to discretization
reduction techniques for parametrized Partial Differential
Equation (PDE) problems (e.g., [3–6]). These techniques aim
to define a suitable reduced order model which can be solved
with marginal computational costs for different values of the
model parameters. Reduced order models are then important
in the many query context, when a parametrized model has
to be solved for different values of the parameter, and in the
real time problems, when the solution has to be computed with
marginal computational costs. To obtain a suitable reduced order
model, we typically start from a problemwritten in a high-fidelity
approximation framework, e.g., using the finite element method.
The dimension of the discretized system is then drastically
reduced through suitable projection operators. The construction
of these projection operators is the core of the reduced order
technique. Another key concept in the reduction framework
is the subdivision of the computational costs into two stages:
an offline stage, expensive but performed once, and an online
stage, real time and performed each time new values of the
model parameters are considered. During the offline stage the
projection space is generated by a reduced basis of functions of
the high-fidelity approximation space.

Reduced order models applied to the Burgers equation
parametrized with respect to the Péclet number is considered in
Yano et al. [7] andNguyen et al. [8]. Other applications of reduced
basis techniques applied to fluid problems can be found (e.g., in
[9–18] and in the recent volume [6]).

The aim of this work is indeed to propose a suitable
discretization reduction algorithm that can be applied to a RFSI
problem. The work is organized as follows. In section 2 we
present the partial differential equations that we are interested in
solving. We propose a possible parametrization of the unsteady
equations with respect to temporal varying data and with respect
to a perturbation of the boundary data. In section 3 we then
present how the standard proper orthogonal decomposition
algorithm can be applied to the problem at hand in order
to generate a suitable reduced space. Moreover, we propose
a way to improve the quality of the reduced approximation
based on a greedy procedure. Finally, in section 4 we apply
the reduction algorithms presented to a realistic hemodynamic
problem. Conclusions follow.

2. MODEL EQUATION

Blood is in large vessels can be modeled as an incompressible
viscous fluid the well-known Navier-Stokes equations (e.g., [19,
20]). Being [0, T] the temporal interval of interest the Navier-
Stokes system reads as follows:





ρf
∂u

∂t
+ ρf (u · ∇)u−∇ · σ nS = 0 in � × [0, T],

∇ · u = 0 in � × [0, T]

where u and p are the velocity and pressure of the blood,
respectively, and ρf is its density. We denote by σ nS the Cauchy
stress tensor

σ nS = µf (∇u+ (∇u)T)− pI,

with I being the identity tensor and µf the blood dynamic
viscosity. � denote the domain of interest, in our case, the lumen
of the vessels where we are interested in computing the dynamics
of blood. Due to the compliant vessel wall, � should be time
dependent. Considering that the wall displacement is relatively
small with respect to the arterial diameter, we assume � as
fixed which allows us to reduce the computational complexity
otherwise generated from a moving domain. Nevertheless, to
retrieve the physical effect of the wall compliance we introduce a
non-rigid boundary condition on the lateral surface of the lumen.
The condition is derived by a three dimensional linear isotropic
elastic model condensed as a two dimensional membrane [1, 21].
Denoting Ŵ the lateral surface (i.e., the fluid-structure interface),
5Ŵ(ds), the stress-strain relation of this membrane, can be
written as:

5Ŵ(ds) = hs
Esνs

(1− 2νs)(1+ νs)
tr

(
∇Ŵds + (∇Ŵds)

T

2

)

+hs
Es

2(1+ νs)
(∇Ŵds + (∇Ŵds)

T).

where ∇Ŵds is the tangential gradient of ds, Es is the structural
Young modulus, νs is the Poisson’s ratio and hs is the material
thickness. All the physical parameters of the structure are
assumed homogeneous in space.
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Let us now suppose that the boundary ∂� is divided into three
non intersecting parts such that ∂� = Ŵ ∪ ŴD ∪ ŴN . ŴD is
the Dirichlet boundary, typically the inflow of a vessel, ŴN is
the Neumann boundary, typically the outflows.We introduce the
Hilbert space V = H1(�;Ŵ) = {v ∈ H1(�) v|Ŵ ∈ H1(Ŵ)} and
the correspondent vectorial spaces V = [V]3 and V = [V]3.
Moreover, we introduce a suitable couple standard finite element
spaces Vh and Qh such that Vh ⊂ V and Qh ⊂ L2(�) and they
represent a stable coupled of finite element spaces for the Navier-
Stokes equations. We set Xh := Vh ×Qh. We define [t0 T] a time
interval of interest and we divide it into subintervals [tn tn+1] for
n = 0, ..,NT − 1 such that t0 < t1 < t2 < . . . < tNT = T
and tn+1 − tn = 1t; let us define NT = {0, 1, . . . ,NT ,NT} the
collections of all the temporal indexes n. For a generic function
φ(t) we use φn

:= φ(tn). Finally, we define the operators D(·) and
DŴ(·) as follows:

D(v) =
∇v+ (∇v)T

2
and DŴ(v) =

∇Ŵv+ (∇Ŵv)
T

2
∀v ∈ V,

where ∇(·) is the standard gradient operator and ∇Ŵ(·) is the
tangential component of the gradient with respect to the surface
Ŵ.

The RFSI model as presented in Colciago et al. [1] is an
unsteady Navier-Stokes model set on a fixed domain with
generalized Robin boundary conditions (For similar models
see e.g., [21–24]). Let us introduce the velocity and pressure
unknowns [uh, ph] and the corresponding test functions [vh, qh].
Although the RFSI model lives in a fixed domain, it is
necessary to define an auxiliary variable which stands for the
displacement of the arterial wall ds,h. Using a backward Euler
finite difference method for the time derivatives, the fully discrete
weak formulation of the RFSI problem is written as follows:

for each n = 0, ..,NT − 1, find [un+1
h

, pn+1
h

] ∈ Xh such that

un+1
h

= gn+1
D on ŴD and

a0([u
n+1
h

, pn+1
h

], [vh, qh])+ a1(u
n
h, u

n+1
h

, vh) = F0(vh; h
n+1)

Fu(vh;u
n
h)+ Fds (vh; d

n
s,h) ∀[vh, qh] ∈ Xh, (1)

where

a0([u
n+1
h

, pn+1
h

], [vh, qh]) =

∫

�

(
ρf

un+1
h

1t
· vh + (2µD(un+1

h
)

−pn+1
h

I) :∇vh + qn+1
h

∇ · uh

)
d�

+

∫

Ŵ

(
hsρs

1t
un+1
h

· vh

+hs1t5Ŵ(u
n+1
h

) :∇Ŵvh

)
dŴ,

a1(u
n
h, u

n+1
h

, vh) =

∫

�

ρf (u
n
h · ∇)un+1

h
· vhd�,

F0(vh; h
n+1) =

∫

ŴN

gn+1
N · vhdŴN ,

Fu(vh; p
n
h)=

∫

�

ρf

1t
unh · vhd�+

∫

Ŵ

hsρs

1t
unh · vhdŴ,

Fds (vh; d
n
s,n) = −

∫

Ŵ

hs5Ŵ(d
n
s,h) :∇ŴvhdŴ, (2)

with dn+1
s,h

= dn
s,h

+ 1tun+1
h

and ρs represents the density of the
solid. The functions gN(x, t) and gD(x, t) are sufficiently regular
functions that stand for the Dirichlet and Neumann boundary
data, respectively. Finally the problem should be equipped with
suitable initial condition that, without any loss of generality, we
suppose to be equal to zero.

As said before, the RFSI problem (1) is indeed a linearized
Navier-Stokes on a fixed domain with a non standard boundary
condition on the interface Ŵ. In particular is a generalized Robin
boundary condition that contains both a mass and a stiffness
boundary term to mimic the presence of a compliant arterial wall
surrounding the fluid domain (see [25] for more detailed on the
analysis of partial differential equations with generalized Robin
boundary condition). We remark that dn

s,h
does not represents a

problem unknown since it is indeed reconstructed as a weighted
sum of the velocities at different time instants

2.1. Boundary Condition
Problem (1) is endowed with Dirichlet velocity boundary
condition on the inlet surface ŴD . Given the inlet velocity data
gD(x, t), at the time instant tn+1 we impose:

un+1
h

= gn+1
D on ŴD. (3)

The Neumann boundary condition D(un+1
h

)n = gN is imposed
weakly on ŴN . The solution of problems (1)–(3) depends on the
time variable t through the inlet and outlet data: gN(x, t) and
gD(x, t). We suppose that

gD(x, t) = σ1(t)̃gD(x) and gN(x, t) = σ2(t)̃gN(x), (4)

that is we separate the contribution of the space and temporal
variables in the inlet and outlet data. In realistic applications, the
separation of variables (4) often derives directly from modeling
choices. If at the outlet we prescribe an average normal stress, no
spatial variability is involved in the boundary condition data gN .
At the inlet, the Dirichlet data is imposed by means of a velocity
profile; typically Poiseuille or Womersley profiles are chosen in
hemodynamics applications [20]. The separation of variables in
gD(x, t) in this case is straightforward.

Assumption (4) allows to write an affine decomposition of the
operators in problem (2) with respect to σ1(t) and σ2(t). With
respect to the latter we have:

F0([vh, qh]; σ
n+1
2 , gN) = σ n+1

2

∫

ŴN

g̃N · vhdŴout .

The non homogeneous Dirichlet boundary condition (3) is not
directly included in the variational form (1). In order to write
the affine decomposition with respect to the parameter σ1(t),
a suitable choice to embed condition (3) into the variational
formulation has to be made. In the literature two possible
approaches are proposed: a strong imposition, using a lifting
function or suitable Lagrange multipliers [17], and a weak
imposition adding suitable penalty variational terms [2, 26]. Due
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to the fact that the Dirichlet data can be written in the form (4), a
single time independent lifting function can be constructed and
properly weighted by a scalar in order to represent the lifting at
each temporal instant.

We explain how problem (1) is modified when a lifting
function for the Dirichlet condition (3) is introduced. Let us
directly consider the fully discretized formulation (1). We define
the time independent lifting function R̃g : R

3 7→ R
3 such that

R̃g ∈ Vh and

R̃g(x) = g̃D(x) on ŴD and R̃gD(x) = 0 on ∂�\ŴD.

At the time level tn+1, the lifting function of the data gn+1
D =

σ n+1
1 g̃D reads Rgn+1

D = σ n+1
1 R̃gD. Then, for each tn+1, we

introduce the following change of variable:

ũn+1
h

= un+1
h

− Rgn+1
D . (5)

We define the space Xh,ŴD
as Xh,ŴD

:= Vh ∩ [H1
ŴD

(�)]d ×Qh and

we observe that dn+1
s,h

=
∑n+1

s=0 1tus
h
=

∑n+1
s=0 1t̃us

h
on Ŵ.

2.1.1. Affine Decomposition
Using the definitions of the functionals as in (2), we are now ready
to write the affine decomposition of problem (1) with respect
to the temporal parameters σ1(t) and σ2(t). We remark that the
lifting function R̃gD does not depend on the time variable, thus
the problem parameter at a fixed time level can be gathered in the
following vector:

(µn+1)T := [µ0,µ1,µ2] := [σ n+1
1 , σ n+1

2 , σ n
1 ]. (6)

One single time step of finite element approximation of the RFSI
problem can be written under the form:

for each n = 0, ..,NT − 1, find Ũn+1
h

∈ Xh,ŴD
such that

a(Ũn+1
h

,Wh; Ũ
n
h ,µ

n+1) = F(Wh; Ũ
n
h ,D

n
h ,µ

n+1) ∀Wh ∈ Xh,ŴD
,

(7)
where

a(Ũn+1
h

,Wh; Ũ
n
h ,µ

n+1) := a0(Ũ
n+1
h

,Wh)

+ µ2a1(R̃gD, Ũ
n+1
h

,Wh)

+ a1(Ũ
n
h, Ũ

n+1
h

,Wh),

F(Wh; Ũ
n
h , d

n
s,h,µ

n+1)) := µ1F0(Wh; h̃)+ Fu(Wh; Ũ
n
h)

+ µ2Fu(Wh; R̃gD)+ Fds (Wh; d
n
s,h)

− µ0a0(R̃gD,Wh)

− µ0a1(Ũ
n
h, R̃gD,Wh)

− µ2µ0a1(R̃gD, R̃gD,Wh).
(8)

Due to the fact that we use a semi-implicit treatment of the
convective term the formulation of the RFSI problem at one
single time instant tn+1 can be interpreted as a linear steady
problem parametrized with respect to µn+1, Ũn

h
and dn

s,h
.

Furthermore, we can introduce a parameter in the inlet flow
rate function representing a small perturbation with respect to a
reference value: the inlet flow rate function (4) is thenmodified as

g(x, t;α) = θ(α, t)σ1(t)̃gD(x), (9)

where α ∈ D, being D the set of the admissible value of α. The
same affine decomposition 8, with the following modification:
the parameter becomes (µn+1)T : = [µ0,µ1,µ2,µ3] : =

[σ n+1
1 , σ n+1

2 , σ n
1 , θ

n(α)] and in (8) we substitute µ0 with µ3µ0

and µ2 with µ2µ3.

3. NUMERICAL REDUCTION

In this section we briefly introduce some of the basic concepts
of the reduced basis method that are useful to our purpose.
For more details on the reduced basis theory we address the
interested reader to e.g., Rozza et al. [5], Hesthaven et al. [27],
and Quarteroni et al. [28]. We already introduced Ũn+1

h
that,

at each time instant is the a high-fidelity approximation of the
exact solution and is computed as a finite element solution with
a sufficiently fine mesh. The solutions Ũn+1

h
of problem (7) are,

in general, expensive to obtain from the computational point
of view, since in realistic applications the finite element spaces
has order of 106 degrees of freedom and the complexity of the
geometrical domain does not always allow for the generation of
structured meshes. We conclude that due to the magnitude of
the finite element problem a real time computation would be
impossible to achieve.

As in the standard reduced basis theory, we state the following
assumption: the family of solutions Ũn+1

h
= Ũn+1

h
(µn+1)

obtained for different realizations of the parameters belongs to
a low dimensional manifold M

µ

h
. The aim of the reduction

techniques is to find a suitable approximation of the manifold
M

µ

h
through the construction of a low dimensional space XN ⊂

Xh,ŴD
. The dimension of the reduced space N needs to be orders

of magnitude lower that the dimension of the finite element
space. The reduced approximation of RFSI problem reads:

given Ũ0
N = Ũ0

h
, for each n = 0, ..,NT − 1, find Ũn+1

N ∈ XN

such that

a(Ũn+1
N ,WN; Ũ

n
N ,µ

n+1) = F(WN; Ũ
n
N ,D

n
N ,µ

n+1) ∀WN ∈ XN ,
(10)

where a(·, ·) and F(·) are defined as in (8).

3.1. Proper Orthogonal Decomposition
We apply a discretization reduction to the RFSI problem (7) and
the Proper Orthogonal Decomposition (POD) method. In the
context of this work we only detail the specific choices performed
in relation to the problem at hand, for more details about POD
applied to fluid problems we address the reader to e.g., Rowley
[29] and Willcox and Peraire [30].

We define a subset of temporal indexes NS ⊂ NT with
cardinality NS and consider the solutions of problem (1) at the
time instants tnS for nS ∈ NS. The solutions Ũ

nS
h
, called snapshots,

represent our starting point for the POD analysis. Since the RFSI
problem (7) is a saddle point problem in two variables (velocity
and pressure) with different characteristic order of magnitude,
we split the POD into two eigenvalue decompositions: one for
the velocity variable and another for the pressure one [31].
We measure the energy associated to the snapshots using the
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following scalar products: for the velocity, we set

(uh, vh)V :=(uh, vh)H1(�) + (uh, vh)H1(Ŵ),

∀uh, vh ∈ Vh ⊂ V(= H1
ŴD

(�;Ŵ)), (11)

and for the pressure,

(ph, qh)Q := (ph, qh)L2(�), ∀ph, qh ∈ Qh ⊂ Q := L2(�). (12)

Then, we compute the two Gramian matrices

Gu
ij = (uih, u

j

h
)V and G

p
ij = (pih, p

j

h
)Q ∀j, i ∈ NS, (13)

and we perform the eigenvalue decomposition of Gu and the one
of Gp, obtaining the pairs (λu

k
, ζ u

k
) and (λ

p

k
, ζ

p

k
) where λu

k
, λ

p

k
∈ R

and ζ u
k
, ζ

p

k
∈ R

NS are the k − th eigenvalues and eigenvectors
of the velocity and pressure Gramian matrices, respectively, for
k ∈ NS. Fixing the same tolerance for both the velocity and
pressure decompositions, we select the firstNu andNp eigenpairs
such that:

∑Nu

j=1 λuj∑NS

k=1
λu
k

≥ 1− tol and

∑Np

j=1 λ
p
j∑NS

k=1
λ
p

k

≥ 1− tol, (14)

respectively. The j−th velocity eigenfunction φuj ∈ Vh is
reconstructed using the linear combination:

φuj =
1

λj

∑

nS∈NS

[ζ uj ]nSu
nS
h
, for j = 1, ..,Nu.

Similarly for φ
p
j ∈ Qh for j = 1, ..,Np. We remark that, since the

velocity basis are linear combinations of solutions of problem (7),
they all verify

∫
�
qh∇ · φuj = 0, ∀qh ∈ Qh for j = 1, ..,Nu. Thus,

the linear system induced by the bilinear form a(·, ·) as in (2)
would be singular if we consider the functional spaces generated
from the velocity functions φuj and the pressure modes φ

p
j . One

of the possibilities often employed in the context of Navier-Stokes
equations is to restrict the system and to solve the problem only
for the velocity unknown (see e.g., [32]). Unfortunately, this
is not possible when considering problem (2). The generalized
boundary condition applied onŴ derives from a structural model
which solution is driven by the pressure condition set on the
external boundary in the structural model (see [1, 22]). If we
solve the reduced system not taking into account the pressure
variable, we cannot recover the velocity on the boundary Ŵ and
the output functionals that depends on these values (e.g., wall
shear stress). For these reasons, following Rozza and Veroy [33],
for each selected pressure mode φ

p
j , we define the corresponding

supremizer function σ j ∈ Vh as the solution of the following
problem:

(σ j, vh) =

∫

�

φ
p
j ∇ · vhd� ∀vh ∈ Vh, for j = 1, ..,Np. (15)

We then add them to the POD basis. The POD reduced space
XPOD
N associated to the RFSI model is composed by the basis

functions {ψ j}
Nu+2×Np

j=1 , ξ j ∈ Xh defined as follows:

ψ j = [φuj , 0]
T for j = 1, ..,Nu

ψNu+j = [0, φ
p
j ]

T for j = 1, ..,Np and

ψNp+Nu+j = [φσj , 0]
T for j = 1, ..,Np,

(16)

where φσj for j = 1, ..,Np represent the orthonormalization

of the supremizer functions σ j, obtained with a Gram-Schmidt
algorithm with respect to the scalar product (·, ·)V.

3.2. Greedy Enrichment
The bottleneck of the POD procedure is the computation of
the high-fidelity solutions Ũn

h
necessary to build the correlation

matrix: we have to solve a finite element problem NT times.
Moreover if we choose NS = NT , the Gramian matrix becomes
too large and its eigenvalue decomposition gets too much
expensive. We can envision two situations where we would like
to improve the quality of the approximation obtained with the
POD reduced space without changing the snapshots sample. For
example, if NS is five times smaller than NT , the information
carried by the snapshots sample refers to only the 25% of the
entire set of the truth solutions. Is it possible to improve the
quality of the reduced approximation, without increasing the
number of snapshots selected? In another scenario, suppose
that a perturbation parameter α is introduced in the unsteady
problem (7), as proposed in (9), and that the snapshots are
computed for a specific value of α = α1. We would like to
generate a reduced space that suitably approximates also the
truth solutions for other values of α without recomputing all the
high-fidelity snapshots.

With these two scenarios in mind, we propose a strategy to
improve the quality of the reduced approximation based on a
greedy algorithm. For references to standard greedy algorithms
applied to parametrized PDEs see e.g., Hesthaven et al. [27] and
Quarteroni et al. [28].

We introduce another solution Un
N,h

that belongs to an
intermediate problem between (7) and (10): find Un

N,h
∈ Xh such

that

a(Un+1
N,h

,Wh; Ũ
n
N ,µ

n+1) = F(Wh; Ũ
n
N ,D

n
N ,µ

n+1) ∀Wh ∈ Xh,ŴD
,

(17)
We notice that problem (17) is set in the high-fidelity
approximation framework but the right hand side and the
advection field are defined by (10). In fact, in (7), these terms are
evaluated using the truth solution Ũn

h
, while in (17) it is evaluated

using the reduced solution Ũn
N , as in problem (10). Considering

the error between Ũn
N and Ũn

h
in a generic norm ‖ · ‖∗, the

following triangular inequality holds:

‖Ũn+1
N − Ũn+1

h
‖∗ = ‖Ũn+1

N − Un+1
N,h

+ Un+1
N,h

− Ũn+1
h

‖∗

≤ ‖Ũn+1
N − Un+1

N,h
‖∗ + ‖Un+1

N,h
− Ũn+1

h
‖∗
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The greedy procedure that we propose focuses on the first
contribution ‖Ũn+1

N − Un+1
N,h

‖∗. Subtracting problem (10) from
(17) allows to state a result of Galerkin orthogonality:

a(Un+1
N,h

− Ũn+1
N ,Wh; Ũ

n
N ,µ

n+1) = 0.

We assume that the dual norm of the residual can be used as an
indicator of the error ‖Un+1

N −Un+1
h

‖X. In particular, at each time
level tn+1, we consider

rn+1
N (Wh) := F(Wh; Ũ

n
N ,D

n
N ,µ

n+1)− a(Ũn+1
N ,Wh; Ũ

n
N ,µ

n+1)
(18)

and its associated dual norm ‖rn+1
N (Wh)‖X′ .

We now have defined all the necessary quantities, we can
proceed presenting the steps to be performed when we want to
enrich the POD basis with a greedy algorithm. First, perform
a POD on the snapshots Ũ

nS
h
, for nS ∈ NS and we construct

the reduced space XPOD
N . Then, we start the greedy enrichment

setting XN = XPOD
N :

1. Generate the reduced basis solutions Ũn
N , n ∈ NT , by solving

the reduced order problem (10).
2. Compute the dual norms of the residuals ‖rnN(Wh)‖X′ , n ∈

NT , which are used as error indicators.
3. Select n∗ such that

n∗ = arg max
n∈NT

‖rnN(Wh)‖X′ .

4. Compute theUn∗

N,h
by solving the reduced order problem (17).

5. Split Un∗

N,h
into its velocity and pressure components, un

∗

h
and

pn
∗

h
, respectively. Compute the supremizer σ n∗ associated with

the pressure component.
6. Compute φu representing the orthonormalization of the

velocity function un
∗

h
with respect to the reduced space XN ,

obtained with a Gram-Schmidt algorithm considering the
scalar product (·, ·)V; similarly for φp and pn

∗

h
.

7. Build XN+2 = XN ⊕ {ψu,ψp} defined as is (16).
8. Compute φσ representing the orthonormalization of the

velocity function σ n∗ with respect to the reduced space XN+2,
obtained with a Gram-Schmidt algorithm considering the
scalar product (·, ·)V.

7. Build XN+3 = XN+2 ⊕ {ψσ } defined as is (16).
8. Update the structures for the online computation of the

reduced solutions and the dual norms of the residuals.
9. Set N = N + 3 and XN = XN+3. Repeat until a predefined

stopping criterion is satisfied.

Remark. We remark that the functions that are added to the
space XN in step 5 are derived from Un∗

N,h
and not the truth

solution Ũn∗

h
. We have no guarantee that Un∗

N,h
is close to Ũn∗

h
or

that it belongs to the low dimensional manifoldM
µ

h
of the truth

solutions. We would like also to remark that even if we are trying
to reduce the error Ũn+1

N − Un+1
N,h

, to date we have no proof that
the algorithm converges. In fact, we cannot theoretically prove
that

‖|Ũn+1
N − Ũn+1

h
‖|∗ ≤ ‖|Ũn+1

N−1 − Ũn+1
h

‖|∗. (19)

For this lack of theoretical convergence results, to stop the
greedy enrichment procedure, we rather opt for a fixed number
of solutions Nmax chosen a priori, instead of using a certain
tolerance on the a posteriori error estimator. Nevertheless, in
the next section we will show some numerical evidence that
the greedy enrichment is able to improve the quality of the
approximation space.

4. APPLICATION TO A
FEMOROPOPLITEAL BYPASS

4.1. Application and Motivation
Atherosclerotic plaques often occur in the femoral arteries. The
obstruction of the blood flow results in a lower perfusion of the
lower limbs and the most common symptom of this disease is
an intermittent claudication, which affects the 4% of people over
the age of 55 years [34]. In order to restore the physiological
blood circulation, different medical treatments are possible. In
critical cases, the stenosis is treated with surgical intervention
that bypasses the obstruction using a graft and providing an
alternative way where blood can flow. The bypass creates a side-
to-end anastomosis between the graft and the upstream artery
(before the occlusion) and an end-to-side anastomosis with the
distal downstream part. In particular, the design of end-to-
side anastomosis affects the flow downstream the bypass and
provokes remodeling phenomena inside the arterial wall. The
arteries adapt their size in order to maintain a certain level of
shear stress, which results in a thickening of the intima layer
and in an increasing risk of thrombi formation. The arterial wall
remodeling is in fact linked with hemodynamic factors such as
the wall shear stress magnitude and direction. Moreover, velocity
profiles and separation of flows have been investigated when
studying the bypass end-to-side anastomosis [35, 36]. Studies
with idealized geometrical models have been proposed in order to
define an optimal design for the anastomosis [37]. Nevertheless,
the geometry of the vessel is one of the most important factors
that affect the pattern of the wall shear stress. Further, patient
specific data would be required in order to analyse each particular
case.

We focus our attention on the patient-specific femoropopliteal
bypass performed with a venous graft bridging the circulation
from the femoral artery to the popliteal one. As a domain of
interest we select the end-to-side anastomosis (see Figure 1). The
geometry was reconstructed by CT-scan images as it is detailed
in Marchandise et al. [38] and inlet and outlet flow rates are
provided from the experimental data in Marchandise et al. [38].

We compute the Reynolds number as Re =
4ρfQin

πDµ
, being ρf the

blood density, Qin the inlet flow rate, D the vessel diameter and
µ the blood viscosity. The average Reynolds number ranges from
144 and 380 (at the systolic peak), in agreement with the values
provided in Loth et al. [36].

4.2. Test Case
4.2.1. Application of the POD Algorithm
In this section we investigate the behavior of the POD and
the greedy enriched POD algorithms on a case representing
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FIGURE 1 | Realistic geometry of the end-to-side anastomosis. Graph of the inlet and outlet boundary conditions. (A) End-to-side geometry. (B) Inlet flow rate. (C)

Outlet pressure.

the femoropopliteal bypass application where the finite element
resolution is performed on a coarse mesh. The usage of a coarse
grid allows us to lower the offline computational costs and,
thus, to test and compare several reduced basis approximations.
Since we are interested in the realistic application of the
femoropopliteal bypass, the physical parameters and boundary
data are patient-specific. The coarse mesh is composed by
5,823 tetrahedra and 1.309 vertices. To obtain the high fidelity
solutions of the RFSI model we use standard P

1+Bubble-P1 finite
elements for a total of 22,702 degrees of freedom. The boundary
conditions are periodic with period of 0.8 s (one heartbeat). We
set the solutions at time t = 0 equal to zero. To get rid of the
dependence of these initial condition we perform the simulation
of an entire heartbeat and we focus on the solutions obtained
for the subsequent heartbeat. Thus, to test the POD reduction
algorithm, we compute the high fidelity numerical solutions for a
time lapse corresponding to the second heartbeat, from t0 = 0.8
s to tNT = 1.6 s with a time step 1t = 0.001 for a number of
time intervalsNT = 800. We denote with the superscript n ∈ NT

varying from 0 to NT the sequence of computed solutions:

Un
h ≈ Uh(tn) where t0 = 0.8, t1 = t0 + 1t, t2 = t0 + 21t,

t3 = t0 + 31t, .., tNT = 1.6s.

We save the finite element solutions every five time steps and we
use the apex nS ∈ NS, nS = 5k, with k = 0, ..,NS (NS = 160) to
address the stored functions, that represent the snapshot sample:

U
nS
h

≈ Uh(tnS ) where t5 = 0.805, t10 = 0.810, t15 = 0.815,

t20 = 0.820, .., tnNS = 1.6s.

Indeed, we compute the POD starting from the 160 snapshots
U
nS
h
, nS ∈ NS, which represent the 25% of the finite element

solutions computed for the second heartbeat. To check the
quality of the reduced space approximations, we monitor the
following errors:

• relative error of the velocity at time tnS and correspondent
space-time error:

εN(u
nS ) :=

‖u
nS
N − u

nS
h
‖V

‖u
nS
h
‖V

and

EN(u) :=

( ∑
nS∈NS

(
‖u

nS
N − u

nS
h
‖V

)2
)1/2

( ∑
nS∈NS

(
‖u

nS
h
‖V

)2
)1/2

; (20)

• relative error of the pressure at time tnS and correspondent
space-time error:

εN(p
nS ) :=

‖p
nS
N − p

nS
h
‖L2(�)

‖p
nS
h
‖L2(�)

and

EN(p) :=

( ∑
nS∈NS

(
‖p

nS
N − p

nS
h
‖L2(�)

)2
)1/2

( ∑
nS∈NS

(
‖p

nS
h
‖L2(�)

)2
)1/2

; (21)

• space-time dual norm of the residual scaled with respect to the
space-time norm of the global solution

RN(U) :=

(
NS

NT

)1/2

( ∑
n∈NT

‖rnN(Wh)‖
2
X′

)1/2

( ∑
nS∈NS

‖U
nS
h
‖X

)2
)1/2

; (22)

We build a sequence of POD reduced spaces with decreasing
values of the tolerance tol and we compute the aforementioned
indicators for each one of the reduced spaces generated.
The space-time errors are reported in Table 1. In particular,
we show: the number of selected velocity modes (#u basis);
the number of selected pressure modes (#p basis); the total
number of basis functions composing the reduced space ( #
basis = #u basis + 2 × #p basis ); the space-time errors
and residuals as defined above. Since the problem at hand

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 June 2018 | Volume 4 | Article 18

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Colciago and Deparis ROM for RFSI

is unsteady and the solution at a time instant tn depends
on the solutions at the previous instants, the POD model
errors EN(u) and EN(p) are bounded from above by the fixed
tolerance but they are however of the same order of magnitude
(see Table 1). We notice that, even if ‖rnN(Wh)‖X′ does not
represent an upper bound for the error, nevertheless, from
experimental results, we can use it as an indicator of ‖U

nS
N −

U
nS
h
‖X (see Figure 2). The apparent strong correlation between

the dual norm of the residual and the global error norm is
probably due to the strong contribution of the mass term
in the unsteady formulation. Indeed, if we choose a time
step of 0.001, the mass matrix is multiplied for a factor of
103. We remark that the magnitudes of the absolute errors
for the velocity span from 10−1 to 102 and the associated
velocity solutions norms are of order of 102 − 103. For
the pressure, we have absolute errors of order 100 − 103,
while their solutions norms are of order 103−5. Indeed, in
absolute terms the global error is mostly related with the
pressure one.

4.2.2. Application of the Greedy Enriched POD

Algorithm
The POD algorithm provided satisfactory results and we were
able to reduce the approximation space dimension from 105

to 10 − 100. In this section we aim at comparing the greedy
enrichment algorithm with the POD one, in order to understand
if using different basis functions than POD modes provides the
same quality of reduced approximations. Thus, we compare the
magnitude of the reduced approximation errors obtained using
a reduced space generated through a standard POD algorithm

with the ones obtained using the POD coupled with the greedy
enrichment as introduced in section 3.2. We recall that the
snapshots sample represents a subset of the time instants we solve
in the unsteady simulation: indeed we store only the 25% of the
time instants solutions computed. As there is no error bound
available, we use the dual norm of the residual as surrogate. This
is a rough approximation, also because the real error includes
time integration, while the dual norm of the residual can only
represent a space error. Of course we do not expect the greedy
enriched POD to perform better, on the contrary it can have (and
actually has) limitations.

Remark We are interested to simulate a fluid-dynamics
phenomena with cyclic inputs. Typically in hemodynamics
applications, we are interested in several heartbeats. Thus, instead
of performing the greedy research only on one single heartbeat,
we exploit as much as we can the information on the truth
solutions coming from the snapshots. For each single snapshot
Ũ
ns
h
, we perform a simulation that starts from the initial time

tns and ends at tns+NT = tns + 0.8. We define a vector index
n = (nT , nS) with nT = nS + n such that Ũn

h
= Ũ

nS ,nT
h

being the approximate solution at time tnT obtained starting
from the initial condition Ũ

ns
h
. We define the set of indexes

N = {(nT , nS) : nT = nS + n, n ∈ N and nS ∈ NS}. The
generalization of the greedy enrichment presented in Section
3.2 is straightforwards substituting n with n. In particular, the
selection of the worst approximated index n∗ in the greedy
enrichment can be generalized as follows:

n∗ = argmax
n∈N

‖rnN(Wh)‖X′ .

TABLE 1 | Number of basis functions and space-time errors for the velocity and pressure.

tol tol1/2 #u basis #p basis # basis EN(u) EN(p) RN(U)

1e− 2 1e− 1 8 1 10 2.34e-1 3.73e-2 4.17e-2

1e− 3 3.16e− 2 16 1 18 2.16e-1 4.50e-2 4.92e-2

1e− 4 1e− 2 28 2 32 6.83e-2 1.32e-2 9.92e-3

1e− 5 3.16e− 3 44 3 50 9.09e-3 1.89e-3 1.42e-3

1e− 6 1e− 3 64 5 74 4.60e-3 8.46e-4 5.50e-4

1e− 7 3.16e− 4 88 8 104 1.04e-3 2.65e-4 2.14e-4

FEM solutions obtained on a coarse mesh, bypass application. Second column: number of selected velocity modes (#u basis). Third column: number of selected pressure modes (#p
basis). Forth column: total number of basis functions composing the reduced space (# basis = #u basis + 2× #p basis).

FIGURE 2 | Dual norms of the residuals and norms of the global errors with respect to time for different choices of the POD tolerance tol. (A) tol = 1e-5. (B) tol =
1e-6. (C) tol = 1e-7.
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In order to initialize the greedy enrichment algorithm we
compute a POD basis fixing the tolerance tol = 1e−5 (50 velocity
modes, 3 pressure modes, 3 supremizers). To compare the POD
approximation with the greedy enriched one, we augment the
initial reduced space with two strategies. On one side, we apply
the greedy enrichment and, at each iteration, we add the triplet
of functions selected by the largest dual norm of the residual
in space. On the other side, we augment the basis by adding, at
each algorithm iteration, one POD mode for the velocity and
one POD mode for the pressure with its associated supremizer.
In both cases, at each iteration, we increase the reduced space
dimensions of three units. The results obtained using only POD
modes are displayed in black and addressed with the label POD,
while the results obtained with the greedy enrichment are shown
in red and addressed with the label Greedy enriched POD (see
Figure 3).

From Figure 3, we note that the decrements of the errors

in the greedy enrichment algorithm are slower than when

adding POD modes. Nevertheless, we notice that both the
space-time pressure error and residuals are comparable

when adding POD modes or greedy basis functions (see
Figures 3B,C). On the contrary the decrements of the

velocity is much slower when we use the greedy enrichment
with respect to adding POD modes. We recall, however,

than the residual is mostly related to the pressure error
component.

4.3. Realistic Case
4.3.1. Application of the POD Algorithm
In this section we perform a discretization reduction of the
RFSI model applied to the femoropopliteal bypass case, where
the high fidelity approximations are computed using a fine
mesh. As before, a parabolic velocity profile is imposed at the
inlet section and a mean pressure condition at the outlet. The
P
1+Bubble-P1 discretization yields 1,410,475 degrees of freedom

on the fine mesh. We first test the discretization reduction
using a standard POD procedure: we compute the high fidelity
numerical solutions for two heartbeats with a time step 1t =

0.001 and we store the ones related to the second heartbeat
every five time steps. Thus, NT = 1, 2, 3, . . . , 800 and NS =

5, 10, 15, .., 800. We compute the Gramian matrices associated
to the 160 snapshots U

nk
h
, separating the velocity and pressure

components. We denote λu
k
and λ

p

k
for k = 1, ..NS the eigenvalues

associated to the decomposition of the correlation matrices
of the velocity and pressure, respectively (see section 3.1). In
both cases they decrease exponentially fast. The eigenvalues λ

p

k
associated to the pressure snapshots (Figure 4B) decrease faster
than the ones associated to the velocity (Figure 4A). Thus, by
fixing the same tolerance, we expect that a fewer number of
pressure modes will be selected with respect to the velocity
ones.

We compute the POD reduced spaces using three different
values for the tolerance: tol ∈ {1e − 4, 1e − 5, 1e − 6}. As

FIGURE 3 | Space-time errors vs. the number of basis, comparison between the standard POD and the greedy enriched POD, starting from 50 POD basis functions.

FEM solutions obtained on a coarse mesh, bypass application. (A) Space-time velocity error. (B) Space-time pressure error. (C) Space-time dual norm of the residuals.

FIGURE 4 | Velocity and pressure eigenvalues computed with 160 snapshots sampled every 0.005 s. (A) Velocity eigenvalues, λuk . (B) Pressure eigenvalues, λ
p
k .
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it was done in section 4.2, in Table 2, we record the selected
number of modes and we compute the space-time errors EN(u)
and EN(p) of the velocity and pressure, respectively. By taking
advantage of the generated reduced space, at each time iteration
we solve the reduced system and we compute a linear functional
of the approximate solution that evaluates the outlet flow rate.
We record the computational time associated with the offline
and online computations in Table 3. We can appreciate that the
resolution of the reduced problem combined with the evaluation
of a linear output functional is performed in almost real time:
using 35 basis functions we solve 1.6 physical seconds in 0.8
computational seconds, while a ten heartbeats simulation (8
physical seconds) selecting the POD space with 54 basis functions
takes 12.6 s on a notebook. Performing the same simulation
with the high fidelity model would have taken around 40 h
on 256 processors of a supercomputer. The offline costs of the
POD reduction (without the snapshots generation) are reported
in the third column of Table 3. We remark that most of this

TABLE 2 | Number of basis functions and space-time errors for the velocity and

pressure.

tol #u

basis

#p

basis

# tot

basis

EN(u) EN(p) RU
N

1e− 4 31 2 35 5.505e-2 1.188e-2 8.599e-3

1e− 5 48 3 54 9.840e-3 1.910e-3 1.441e-3

1e− 6 68 5 78 5.074e-3 9.131e-4 6.264e-4

FEM solutions obtained on a fine mesh, bypass application.

TABLE 3 | CPU time XPODN : offline computations costs for the generation of the

POD reduced spaces (without the finite element computations) on 512

processors; CPU time 2HB - RB: online computational time corresponding to the

simulation of 2 heartbeats (2HB) on a personal laptop; CPU time 2HB - FE: finite

element computational time corresponding to the simulation of 2 heartbeats (2HB)

on 256 processes on a supercomputer.

tol # tot

basis

CPU time XPOD
N

CPU time

2HB - RB

CPU time

2HB - FE

1e− 4 35 ∼ 38 min 0.84 s ≈ 28,800 s (8 h)

1e− 5 54 ∼ 85 min 2.49 s ≈ 28,800 s (8 h)

1e− 6 78 ∼ 172 min 6.84 s ≈ 28,800 s (8 h)

time is spent in the generation of the structures for the residual
evaluation.

Note that the POD model errors EN(u) and EN(p)
decrease significantly when increasing the number
of basis functions, as it is reported from both the
values of Table 2. Once again, we notice that the
dual norm of the residual ‖rn+1

N (Wh)‖X′ is a good
indicator of the approximation error ‖U

nk
N − U

nk
h
‖X (see

Figure 5).
In the femoropopliteal bypass application, we are interested in

measuring also the errors on the output of interests. Being σ nS

the stress tensor and n the normal vector to the surface Ŵ, we
compute the wall shear stress as τnS := σ nSn − (σ nSn · n)n and
we also consider the averaged wall shear stresses on a generic
area A: τ

nS
A = 1/A

∫
A |τnS |dA. We remark that to properly

estimate the selected output of interest we need accurate high
fidelity solutions with a mesh refined at the wall, as shown by
Marchandise et al. [38]; the fine mesh used in this work is similar
to the fine one used in that paper. Reducing the dimension
of the finite element space does not lead to the same results
that we obtain reducing the degrees of freedom using the POD
decomposition. In fact, the wall shear stress values computed
using a coarse finite element space underestimate considerably
the values obtained with the fine grid (see Figure 6), while the
results obtained with the POD reduced approximation mostly
overlapped with the ones computed with the finite element
discretization.

4.3.2. Percentage of Flow Coming From the

Occluded Artery
In many cases, the artery is not completely occluded but
a residual flow is still provided by the original vessel.
Studying the distribution of fluid-dynamic quantities could
be important to identify, for example, whether it would be
better or not to surgically close the original artery. Our
approach allows to study the variation of the flow and
wall shear stress for different values of flow percentage
coming from the occluded artery with low computational
costs.

Here the percentage of flow coming from the occluded artery
is an additional parameter. We solve the high fidelity model for
two extreme cases: µ1 = 0% (full occlusion) and µ2 = 50%
of flow. Using a POD algorithm with tol = 10−5, we construct

FIGURE 5 | Dual norm of the residuals and X-norm of the errors with respect to the time instant for different choices of the POD tolerance tol. FEM solutions obtained

on a fine mesh, bypass application. (A) tol = 1e-4. (B) tol = 1e-5. (C) tol = 1e-6.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 June 2018 | Volume 4 | Article 18

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Colciago and Deparis ROM for RFSI

FIGURE 6 | Averaged wall shear stress (in [g/cm s]) computed in different location of the interface. Comparisons between the values obtained with the finite element

discretization on the fine mesh (FEM Fine), the coarse one (FEM Coarse) and the reduced basis approximation (POD tol = 1e-5). (A) Areas location. (B) Wss absolute

values - Area 1. (C) Wss absolute values - Area 2.

FIGURE 7 | Velocity profiles for two time instants of the diastolic phase. Comparisons between finite element and reduced approximations. Femoropopliteal bypass

application in which the high fidelity solutions are obtained using a finite element approximation on a fine mesh. (A) Systole, 0.9 s. (B) Peak systole, 1 s. (C) Diastole,

1.1 s. (D) Diastole, 1.2 s.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 June 2018 | Volume 4 | Article 18

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Colciago and Deparis ROM for RFSI

the reduced space X
POD,µ1
N1

of dimension N1, associated with
the snapshots computed with µ1. We obtain N1 = 54, where
48 basis functions are velocity modes, 3 pressure modes and 3
supremizers. Then, we consider the snapshots associated with

µ2, we build a second POD reduced space X
POD,µ2
N2

of dimension

N2, also fixing tol = 10−5. We obtain N2 = 55 where 47 basis
functions are velocity modes, 4 pressure ones and 4 supremizers.
Finally, we check that the basis functions are linear independent

and orthonormalize the basis ofX
POD,µ2
N2

with respect toX
POD,µ1
N1

.
Indeed, none of the basis functions obtained for µ2 = 0.5 is as
a linear combination of the basis related to µ1 = 0 and the final
reduced space XN has dimension N = N1 + N2 = 109.

We then choose a parameter µ3 = 25% of flow coming
from the occluded artery. We focus on the velocity profiles near
the systolic peak and in the early diastole (see Figure 7) and
the averaged wall shear stress (see Figure 8). We compare the
target outputs obtained using the finite element approximation
(label: FEM 25%) and the reduced ones (label: POD 25%).
Moreover, we display the selected quantities also for the high
fidelity solutions obtained with µ1 = 0 (label: FEM 0%),
µ2 = 0.5 (label: FEM 50%) in order to clarify how the system
dynamics changes when different values of the percentage are
considered.

During the systolic phase the reduced solutions well reproduce
the high fidelity ones, while during the diastole, the differences
are more visible, in particular in some locations as, for example,
near the anastomosis between the arterial vessel and the bypass
graft (see Figure 7). We remark that the velocity profiles for
different values of the parameter are significantly different
between themselves. Our reduced solution approximates well the
value of the wall shear stress associated to µ3 (see Figure 8). We
can appreciate the good agreement between the reduced and the
high fidelity results, even when the values of wall shear stress
associated to µ3 are not berween those associated to µ1 and
µ2 (see Figure 8B). Moreover, the approximation of the wall
shear stress using a finite element approximation with a coarse

FIGURE 8 | Averaged wall shear stress computed in the location A1, cf.
Figure 6. Comparisons between finite element (corse and fine meshe) and

reduced approximations.

grid leads to a consistent underestimation of their values (see
Figure 8C).

4.3.3. Application of the Greedy Enriched Algorithm

With Perturbed Data
In this section we apply the greedy enrichment in the case of
perturbed boundary data. In particular, as in (9), we introduce
a parameter in the inlet flow rate function representing a small
perturbation with respect to a reference value. The perturbation
function θ(α, t) is define as follows:

θ(α, t) = 1+ α sin

(
2π t

0.8

)

where α is supposed to vary between 0 and 0.2. Thus, the
maximum relative difference with the original flow rate is equal
to the 20%. We denote with Ũn

∗(α) with ∗ = {h}, {N} or {N, h}
the numerical solutions at the time instant tn that depend on the
parameter α and with rnN(Wh;α) the residuals. In the perturbed
case, the algorithm steps in section 3.2 are modified as follows.
First we perform a POD algorithm fixing α = α1 = 0.0; the

resulting reduced space is addressed with X
α1 ,POD
N , where the

apex α1 denotes the choice of the α parameter. Then, we set
α2 = 0.2:

1. Generate the reduced basis solutions Ũn
N(α2), n ∈ N by

solving the reduced order problem (10).
2. Compute the dual norms of the residuals ‖rnN(Wh;α2)‖X′ ,

n ∈ N , which are used as error indicators.
3. Select n∗ such that n∗ = argmaxn∈N ‖rnN(Wh;α2)‖X′ .

4. Compute the Un∗

N,h
(α2) by solving the reduced order problem

(17).
5. Split Un∗

N,h
(α2) into its velocity and pressure components, un

∗

h

and pn
∗

h
, respectively. Compute the supremizer σ n∗ associated

with the pressure component.
6. Compute φu representing the orthonormalization of the

velocity function un
∗

h
with respect to the reduced space XN ,

obtained with a Gram-Schmidt algorithm considering the
scalar product (·, ·)V; similarly for φp and pn

∗

h
.

7. Build XN+2 = XN ⊕ {ψu,ψp} built as is (16).
8. Compute φσ representing the orthonormalization of the

velocity function σ n∗ with respect to the reduced space XN+2,
obtained with a Gram-Schmidt algorithm considering the
scalar product (·, ·)V.

7. Build XN+3 = XN+2 ⊕ {ψσ } built as is (16).
8. Update the structures for the online computation of the

reduced solutions and the dual norms of the residuals.
9. Set N = N + 3 and XN = XN+3. Repeat until a predefined

stopping criterion is satisfied.

The real modification is indeed related to the fact that the
initial POD is computed for α = α1 = 0, while the
greedy enrichment is performed fixing α = α2 = 0.2. The
resulting reduced space XN aims to represent a suitable space
of approximation for both values of α. In the parametrized
case, by using greedy enrichment we aim at saving a part
of the offline computational costs: indeed, in a standard
POD-Greedy procedure (see [39]), each new evaluation of
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the parameter α requires the computation of the associated
finite element solutions for each time instant n ∈ NT .
In our application, this would require about 8 h on 256
processors. Instead, during the greedy enrichment, we perform
only one finite element resolution for a single time step, while
the remaining computations are dedicated to reduced basis
structures.

We test the greedy enrichment algorithm by initializing it
with two different starting POD reduced spaces: in one case
we consider the modes selected with tol = 1e − 4 (35 POD
basis functions) and in the other one we consider the POD
modes corresponding to tol = 1e − 5 (54 POD basis functions).

In the first case, we enrich the space X
α1 ,POD
35 by adding 8

triplets selected by the greedy algorithm; we obtain the reduced

space X59. In the second case, starting from X
α1 ,POD
54 , we enrich

the space adding 12 triplets, obtaining X90. All the errors and
residuals computed and shown below are referred to the solutions
obtained with α2 = 0.2. In particular, in Table 4 we report the
velocity and pressure errors generated by the greedy enriched
reduced spaces as well as the ones obtained with the standard
POD ones. Moreover, we compute the space-time dual norm
of the residual, scaled by the solution norm (sixth column of
Table 4).

We note that the space-time velocity error does not decrease
significantly neither when adding greedy basis functions nor

TABLE 4 | Number of basis functions and space-time errors for the velocity and

pressure.

#u basis

(Greedy)

#p basis

(Greedy)

# tot basis EN(u) EN(p) RU
N

31 (0) 2 (0) 35 1.403e-01 1.256e-02 1.284e-02

48 (0) 3 (0) 54 1.301e-01 3.878e-03 7.125e-03

39 (8) 10 (8) 59 1.326e-01 2.966e-03 3.048e-03

68 (0) 5 (0) 78 1.217e-01 3.239e-03 6.594e-03

60 (12) 15 (12) 90 1.261e-01 1.748e-03 1.630e-03

Femoropopliteal bypass application in which the high fidelity solutions are obtained using
a finite element approximation on a fine mesh.

when augmenting the number of selected POD modes. If we
look at the pressure, using the greedy enrichment we manage
to decrease its error more than if we use POD modes. Also the
space-time dual norm of the residual is smaller when considering
the greedy enriched space than the POD ones.

Regarding the offline costs, to generate the space X59

starting form the X0,POD
35 , we perform 8 iterations of the

greedy enrichment algorithm: this takes 82 min on 512
processors where the most of the time is devoted to the
generation of the reduced structures for the residual evaluation.
We remark that computing a standard POD reduced space
for the parameter evaluation corresponding to α = 0.2
would require about 8 h on 256 processors for the finite
element computation of two periods, plus about 1 h on
512 processors for the generation of the reduced space
itself.

To explain why we obtain better results for the pressure
than for the velocity, we investigate the absolute values of
velocity, pressure and global solutions errors and we compare
them to the dual norms of the residuals (see Figure 9). Since
the velocity and pressure norms have two different magnitudes
(10 − 102 for the velocity and 103 − 105 for the pressure), the
corresponding absolute values of the pressure errors are bigger
than the velocity ones, even if the relative errors are lower. The
greedy procedure selects the worst approximated time instant
based on the dual norms of the residuals and these quantities
are indicators of the global absolute errors. Since the latter is
mostly due to the pressure error, this can explain why the greedy
enrichment provides better results for the pressure than for the
velocity.

5. CONCLUSIONS

In this work we presented an application of reduced order
modeling to a RFSI problem that is indeed an unsteady Navier-
Stokes problem with generalized Robin boundary conditions.
We detailed how an affine decomposition with respect to
boundary data varying in time can be obtained under suitable
hypothesis. Moreover, we presented and detailed how the POD
can be applied to the RFSI problem in order to take into

FIGURE 9 | Dual norms of the residuals and norms of the global errors with respect to time for different choices of the POD tolerance tol. Femoropopliteal bypass

application in which the high fidelity solutions are obtained using a finite element approximation on a fine mesh. (A) 54 Basis - POD. (B) 78 Basis - POD. (C) 90 Basis -

Greedy enriched POD.
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account the different order of magnitudes of the variables.
We discussed the introduction of the supremizer functions
inside the reduced basis, necessary to include the pressure in
the reduced system. Afterwards, we proposed an enrichment
of the POD reduced basis based on a greedy algorithm. All
the algorithms presented were then numerically tested on a
realistic hemodynamics problem. We tested the POD and greedy
enrichment algorithm on two cases: a test case, where the
finite element solution is obtained with a coarse grid, and
a fine case, where the finite element space has order of 106

degrees of freedom. The results showed the good performances
of the POD reduction algorithm on the RFSI problem, also
with respect to the evaluation of specific hemodynamics target
output (wall shear stress). Moreover we provided numerical
evidence of how the reduced approximation can be improved
using the greedy enrichment algorithm, in particular regarding
the pressure error. The different behavior of the velocity and
pressure errors is due to the use of the dual norm of the
residual as an indicator of the global solution error. Indeed,
since we do not have suitable a-posteriori error estimators, one
for the velocity and one for the pressure variables, we measure
the dual norm of the residual as a surrogate estimator. Being
the pressure variable and the correspondent error two order
of magnitudes grater that the velocity ones, the residual is
indeed an indicator of the pressure errors. Nevertheless, even
in lack of theoretical results, numerical experiments showed

that the greedy enrichment is able to improve the quality of

the reduced approximation allowing us to save computational
time. The development of suitable a-posteriori error estimators
for the pressure and velocity in the case of RFSI problem
would be required to improve the performances of the greedy
enrichment.
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