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The balance held by Brownian motion between temporal regularity and randomness
is embodied in a remarkable way by Levy’s forgery of continuous functions. Here we
describe how this property can be extended to forge arbitrary dependences between
two statistical systems, and then establish a new Brownian independence test based
on fluctuating random paths. We also argue that this result allows revisiting the theory of
Brownian covariance from a physical perspective and opens the possibility of engineering
nonlinear correlation measures from more general functional integrals.

Keywords: Brownian distance covariance, Brownian motion, nonlinear correlation, Levy’s forgery theorem,
statistical independence

1. INTRODUCTION

The modern theory of Brownian motion provides an exceptionally successful example of how
physical models can have far-reaching consequences beyond their initial field of development.
Since its introduction as a model of particle diffusion, Brownian motion has indeed enabled the
description of a variety of phenomena in cell biology, neuroscience, engineering, and finance [1]. Its
mathematical formulation, based on the Wiener measure, also represents a fundamental prototype
of continuous-time stochastic process and serves as powerful tool in probability and statistics [2, 3].
Following a similar vein, we develop in this note a new way of applying Brownian motion to the
characterization of statistical independence.

Our connection between Brownian motion and independence is motivated by recent
developments in statistics, more specifically the unexpected coincidence of two different-looking
dependence measures: distance covariance, which characterizes independence fully thanks to its
built-in sensitivity to all possible relationships between two random variables [4], and Brownian
covariance, a version of covariance that involves nonlinearities randomly generated by a Brownian
process [5]. Their equivalence provides a realization of the aforementioned connection, albeit in a
somewhat indirect way that conceals its naturalness. Our goal is to explicit how Brownian motion
can reveal statistical independence by relying directly on the geometry of its sample paths.

The brute force method to establish the dependence or independence of two real-valued random
variables X and Y consists in examining all potential relations between them. More formally, it is
sufficient to measure the covariances cov[f(X), g(Y)] associated with transformations f, g that are
bounded and continuous (see, e.g., Theorem 10.1 Jacod and Protter [6]). The question pursued
here is whether using sample paths of Brownian motion in place of bounded continuous functions
also allows to characterize independence, and we shall demonstrate that the answer is yes. In a
nutshell, the statistical fluctuations of Brownian paths B, B’ enable the stochastic covariance index
cov[B(X), B'(Y)] to probe arbitrary dependences between the random variables X and Y.
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Our strategy to realize this idea consists in establishing
that, given any pair f,g of bounded continuous functions and
any level of accuracy, the covariance cov[f(X),g(Y)] can be
approximated generically by cov[B(X),B'(Y)]. Crucially, the
notion of genericity used here refers to the fact that the
probability of picking paths B, B fulfilling this approximation
is nonzero, which ensures that an appropriate selection of
stochastic covariance can be achieved by finite sampling of
Brownian motion. This core result of the paper will be referred
to as the forgery of statistical dependences, in analogy with Levy’s
classical forgery theorem [2].

Actually Levy’s remarkable theorem, which states that any
continuous function can be approximated on a finite interval
by generic Brownian paths, provides an obvious starting point
of our analysis. Indeed, it stands to reason that if the paths
B and B’ approach the functions f and g, respectively, then
cov[B(X),B'(Y)] should approach cov[f(X),g(Y)] as well. A
technical difficulty, however, lies with the restriction to finite
intervals since the random variables X and Y may be unbounded.
Although it turns out that intervals can not be prolonged as
such without ruining genericity, we shall describe first a suitable
extension of Levy’s forgery that holds on infinite domains. Our
forgery of statistical dependences will then follow.

From a practical standpoint, using Brownian motion to
establish independence turns out to be advantageous. Indeed,
exploring all bounded continuous transformations exhaustively
is realistically impossible. (This practical difficulty motivates the
use of reproducing kernel Hilbert spaces, see e.g., Gretton and
Gyorfi [7] for a review). Generating all possible realizations of
Brownian motion obviously poses the same problem, but this
unwieldy task can be bypassed by averaging directly over sample
paths. In this way, and quite amazingly, the measurement of an
uncountable infinity of covariance indices can be replaced by a
single functional integral. We shall discuss how this idea leads
back to the concept of Brownian covariance and how the forgery
of statistical dependences clarifies the way it does characterize
independence, without reference to the equivalence with distance
covariance. Brownian covariance represents a very promising
tool for modern data analysis [8, 9] but appears to be still scarcely
used in applications (with seminal exceptions for nonlinear time
series [10] or brain connectomics [11]). Our approach based on
random paths is both physically grounded and mathematically
rigorous, so we believe that it may help further disseminate this
method and establish it as a standard tool of statistics.

2. MAIN RESULTS

Here we motivate and describe our main results, with sufficient
precision to provide a self-contained presentation of the ideas
introduced above while avoiding technical details, which are
then developed in the dedicated section 3. We also use here
assumptions that are slightly stronger than is necessary, and some
generalizations are relegated to the Supplementary Material S1.

2.1. Extension of Levy’s Forgery
Imagine recording the movement of a free Brownian particle in a
very large number of trials. In essence, Levy’s forgery ensures that

one of these traces will follow closely a predefined test trajectory,
at least for some time. To formulate this more precisely, let us
focus for definiteness on standard Brownian motion B, whose
initial value is set to B(0) = 0 and variance at time ¢ is normalized
to (B(t)%) = [t|. We fix a real-valued continuous function f
with f(0) = 0 (the test trajectory) and consider the uniform
approximation event that a Brownian path B fits f tightly up to a
constant distance § > 0 on the time interval [—T, T,

U st = {IB(t) = f(B)] <8, V|t| < T}. 1

Levy’s forgery theorem states that this event is generic, ie., it
occurs with probability P(%} 1) > 0 (see Chapter 1, Theorem
38 in [2]). This result requires both the randomness and the
continuity of Brownian motion. Neither deterministic processes
nor white noises satisfy this property.

In all trials though, the particle will eventually drift away
to infinity and thus deviate from any bounded test trajectory.
Indeed, let us further assume that the function f is bounded
and examine what happens when T — o0. If the limit event
U 500 = (r=0 %51 occurs, the path B must be bounded too
since the particle is forever trapped in a finite-size neighborhood
of the test trajectory. However Brownian motion is almost surely
(a.s.) unbounded at long times [2], so that P(%f)g)oo) = 0. Hence
Levy’s forgery theorem does not work on infinite time domains.

To accommodate this asymptotic behavior, we should thus
allow the particle to diverge from the test trajectory, at least
in a controlled way. Let us recall that the escape to infinity
is a.s. slower for Brownian motion than for any movement at
constant velocity (which is one way to state the law of large
numbers [2]). This suggests adjoining to event (1) the loose
approximation event

& = {1B(W) = f(O < vit], V[t] = T} 2

whereby the particle is confined to a neighborhood of the test
trajectory that expands at finite speed v > 0.

Asymptotic forgery theorem. Let f be bounded and continuous,
andv,T > 0. Then P(&,,1) > 0.

An elegant, albeit slightly abstract, proof rests on a short/long
time duality between the classes of events (1) and (2), which maps
Levy’s forgery and this asymptotic version onto each other (see
section 3.1). For a more concrete approach, let us focus on the
large T limit that will be used to study statistical dependences.
Since the path B(#) and the neighborhood size v|t| both diverge,
the bounded term f(t) can be neglected in Equation (2) and
the event &, v thus merely requires not to outrun deterministic
particles moving at speed v. The asymptotic forgery thus reduces
to the law of large numbers, which ensures that P(¢,,, 1) is close
to one for all T > 1. This probability decreases continuously as T
is lowered [since the defining condition in Equation (2) becomes
stricter] but does not drop to zero until T = 0 is reached. This
line of reasoning can be completed and also generalized to allow
slower expansions (see Supplementary Material S1).

We now combine Levy’s forgery and the asymptotic version
to obtain an extension valid at all timescales. Specifically, let us
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== test trajectory f

— sample path in neighborhood (3)

sample path out of neighborhood

Ao .. I bottlenecks att = £7

expanding neighborhoods through the bottlenecks.

FIGURE 1 | Extended forgery of continuous functions. This example depicts a test trajectory (smooth curve), its allowed neighborhood (shaded area) and two sample
paths, one (solid random walk) illustrating the generic event (3) and the other (dotted random walk), the fact that arbitrary paths have low chances to enter the

0 T
time

examine the joint approximation event
jf,é‘,T = OZ/f)g)T ﬂ @(:)f,v,T with v = 5/T (3)

In words, the particle is constrained to follow closely the test
trajectory for some time but is allowed afterwards to deviate
slowly from it (Figure 1).

Extended forgery theorem. Let f be bounded and continuous
with f(0) = 0, and 8, T > 0. Then P(,@)S)T) > 0.

This result relies on the suitable integration of a “local” version of
the theorem (see section 3.2), but it can also be understood rather
intuitively as follows. Imagine for a moment that the events (1)
and (2) were independent. Their joint probability would merely
be equal to the product of their marginal probabilities, which
are positive by Levy’s forgery and the asymptotic forgery, and
genericity would then follow. Actually they do interact because
the associated neighborhoods are connected through the narrow
bottlenecks at t = +T (Figure 1) but this should only increase
their joint probability, i.e.,

P(Zss.1) > P(Us,1) P& 1) - (4)

The reason lies in the temporal continuity of Brownian motion.
A particle staying in the uniform neighborhood while [t| < T
necessarily passes through the bottlenecks, and is thus more likely
to remain within the expanding neighborhood than arbitrary
particles, which have low chances to even meet the bottlenecks
(Figure 1). In other words, the proportion P(/f,s,T)/P(%f,S,T) of
sample paths B € &}, 7 among all those sample paths B € %5 7
should be larger than the unconstrained probability P(&,,, 1),
hence the bound (4).

2.2. Forgery of Statistical Dependences
We now turn to the analysis of statistical relations using
Brownian motion. Let us fix two random variables X,Y and a

pair of bounded test trajectories f,g. Consider the covariance
approximation event

CXN fge = { ‘COV[B(X), B'(Y)] — cov[f(X),g(Y)]| <e¢ } (5)

whereby the stochastic covariance cov[B(X),B/(Y)], built by
picking independently two sample paths B, B’, coincides with
the test covariance cov[f(X),g(Y)] up to a small error ¢ > 0
(Figure 2). We argue that this event is generic too.

The first step is to ensure that the set (5) is measurable so
that its probability is meaningful. Physically, this technical issue is
rooted once again in the escape of Brownian particles to infinity.
The stochastic covariance can be expressed as a difference of
two averages (B(X) B'(Y)) and (B(X))(B'(Y)) (computed at fixed
sample paths) involving the coordinates B(¢), B'(') at random
moments ¢ = X,# =Y. Iflong times and thus large coordinates
are sampled too often, the two terms may diverge and lead to
an ill-defined covariance, i.e., 00 — 0o. To avoid this situation,
we should therefore assume that asymptotic values of X and
Y are unlikely enough. Actually we shall adopt hereafter the
sufficient condition that X,Y are Ly, i.e., they have finite mean
and variance. (See Supplementary Material S2 for a derivation of
measurability).

Forgery theorem of statistical dependences. Let X,Y be L,
random variables, f,g be bounded and continuous, and ¢ > 0.
Then P(6XY fge) > 0.

The idea is that one way of realizing the event (5) is to pick sample
paths B € s B e s, that fit the test trajectories f,g
tightly (§ < 1) over a long time period (T >>> 1), see Figure 2b.
Indeed, as shown below, we have then

cov[B(X), B'(Y)] — cov[f(X),g(Y)] = O() + O(v)  (6)

with v = §/T. This rough estimate explains why the event (5)
must occur whenever § and v are small enough [see section 3.3,
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probability density of
stochastic covariance

[en)}

FIGURE 2 | Forgery of statistical dependences. The distribution of the stochastic covariance (black histogram) and its standard deviation [B(X, Y)] are shown for
simulated dependent random variables [n = 104 black dots, Insert (a)] as well as a test covariance (plain arrow) and a sample (dotted arrow) falling within the allowed
error (shaded area). Insert (b) shows the associated functions. The case of independent variables is superimposed (yellow) for comparative purposes.

space

= cov|[f(X),g(Y)]
.cov[B(X), B'(Y)]

.0
covariance value

in particular Equations (27) and (28) for a more precise error
bound and the nested forgery lemma (29) for a full derivation].
In turn, the extended forgery ensures the genericity of this
selection of sample paths B,B’ and thus of the event @xy 4.
as well [the necessary condition f(0) = ¢(0) = 0 can indeed
be assumed without loss of generality, see Equation (31) in
section 3.3].

To understand Equation (6), imagine first that the random
times were bounded with |X|, |Y| < T. Then B(X), B'(Y) differ
from f(X), g(Y) by less than 8 for all times X, Y (Equation 1) so
the covariance error must be O(§) at most. Now for unbounded
random times the distance between sample paths and test
trajectories may exceed § and must actually diverge at long
times, which could have led to an infinitely large covariance
error if not for the fact that the occurence of |[X| > T
or |[Y| > T is very unlikely. So the fit divergence v|t|
(see Equation 2) is counterbalanced within averages by the
fast decay of long times probability [e.g., P(IX] > [t]) <
(X2)/t?]. The contribution of |[X| > T or [Y| > T to the
covariance error is thus finite and scales as O(v), which leads to
Equation (6).

This forgery theorem allows us to probe enough possible
relationships to establish statistical dependence or independence,
as we explain now. Consider the two probability densities of
stochastic covariance shown in Figure 2, which were generated
using simulations differing only by the presence or absence of
coupling between X and Y. The distribution appears significantly
wider for the dependent variables, so this suggests that width
is the key indicator of a relation. Actually, for the independent
variables the narrow peak observed reflects an underlying
Dirac delta function (its nonzero width in Figure 2 is due to
finite sampling errors in the covariance estimates). Indeed the
vanishing of all stochastic covariances is a necessary condition of
independence. The impossibility of sampling nonzero values also
turns out to be sufficient.

Brownian independence test. Two L, random variables X,Y are

independent iff cov[B(X),B/'(Y)] = 0 as.

To prove sufficiency, we show that the hypothesis
cov[B(X),B'(Y)] = 0 as. implies that all test covariances
vanish, which is equivalent to the independence of X and Y
(Theorem 10.1 Jacod and Protter [6]). This can be understood
concretely using the following thought experiment. Imagine
that cov[f(X),g(Y)] # 0 for some pair of test trajectories f, g
and let us fix, say, ¢ = |cov[f(X),g(Y)]|/4 (as in Figure 2).
We then generate sequentially samples of stochastic covariance
until the approximation event ¥Xyysg. (Equation 5, shaded
area in Figure 2) occurs. The forgery of statistical dependences
ensures that this sequence stops eventually and our choice of
¢, that the last covariance sample is nonzero. However this
contradicts our hypothesis, which imposes that all trials result
in vanishing covariance (see also section 3.4 for a set-theoretic
argument).

Figure 2 suggests a straightforward manner to implement the
Brownian independence test in practice. The sample distribution
of the stochastic covariance cov[B(X), B'(Y)] can be generated
by drawing a large number of sample paths B, B/, which can be
approximated numerically via random walks (black histogram in
Figure 2). Likewise, a null distribution can be built under the
hypothesis of independence, e.g., by accompanying each walk
simulation with a random permutation of the sample orderings
within X and Y so as to break any dependency, hence leading
to a finite-sample version of the Dirac delta (yellow histogram
in Figure 2). These two distributions can then be compared
statistically using, e.g., a Kolmogorov-Smirnov test. Actually, it
is sufficient to focus on a comparison of their variances since
width is the key parameter here. As it turns out, this provides a
more efficient implementation because it is possible to integrate
out B,B’ analytically in the variance statistic (i.e., all sample
paths are probed exhaustively without the need of random walk
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simulations). This idea leads back to the notion of Brownian
covariance.

2.3. Brownian Covariance Revisited

The forgery of statistical dependences provides an alternative
approach to the theory of Brownian covariance, hereafter
denoted B(X,Y). This dependence index emerges naturally in
our context as the root mean square (r.m.s.) of the stochastic
covariance (or equivalently its standard deviation since the mean
(cov[B(X), B'(Y)]) vanishes identically by symmetry B «— —B,
see also Figure 2). Thus

B(X,Y)? = (cov[B(X), B'(Y)]?), (7)

which is only a slight reformulation of the definition in Székely
GJ and Rizzo [5]. For L, random variables X, Y, the quadratic
Gaussian functional integrals over the sample paths B,B’ can
be computed analytically and the result reduces to distance
covariance, so (X, Y) inherits all its properties [5]. Alternatively,
we argue here that the central results of the theory follow in a
natural manner from Equation (7).

The first key property is that X,Y are independent iff
B(X,Y) = 0. This mirrors directly the Brownian independence
test since the r.m.s. (7) measures precisely the deviations of
stochastic covariance from zero. This argument thus replaces
the formal manipulations on the regularized singular integrals
that underlie the theory of distance covariance [4]. Furthermore
the forgery of statistical dependences clarifies how this works
physically: Brownian motion fluctuates enough to make the
functional integral (7) probe all the possible test covariances
between X and Y.

The second key aspect is the straightforward sample
estimation of B(X,Y) using a parameter-free, algebraic formula.
This is an important practical advantage over other dependency
measures such as, e.g., mutual information [12]. Instead of
relying on the sample formula of distance covariance [4, 5],
Equation (7) prompts us to estimate the stochastic covariance
(or rather, its square) before averaging over the Brownian paths.
So, given n joint samples X;,Y; (i = 1,...,n) of X,Y and
an expression for their sample covariance cov,, the functional
integral

g”(x’ Y)Z = <C/(RI" [B(X)’ B/(Y)]2>samples X1, Y1, X, Y, fixed (8)

determines an estimator En(X, Y) of Brownian covariance. If
X,Y are L, random variables, this procedure allows to build the
estimation theory of Brownian (and thus, distance) covariance
from that of the elementary covariance. For instance, the rather
intricate algebraic formula for the unbiased sample distance
covariance [13, 14] is recovered by using, quite naturally from
Equations (7) and (8), an unbiased estimator cov,[--]*> of
the covariance squared (see section 3.5 for explicit expressions
of these estimators and a derivation of this statement).
The unbiasedness property (Covy[--1%) = cov[,-]? is then
automatically transferred to the corresponding estimator (8), i.e.,

(Ba(X,Y)2) = BX, Y)?, 9)

because the L, convergence hypothesis is sufficient to ensure that
averaging over the samples X;, Y; commutes with the functional
integration over the Brownian paths B, B'.

Coming back to the implementation of the Brownian
independence test, once an estimator E,,(X,Y) is found, its
null distribution under the hypothesis of independence should
be derived for formal statistical assessment. This may be done
using large n approximations to obtain parametrically the
asymptotic distribution or nonparametric methods also valid at
small n (such as sample ordering permutations, as suggested
above). Asymptotic tests are derived explicitly in Székely et
al. [4], Székely and Rizzo [5, 13], where both parametric
and nonparametric approaches are also illustrated on examples
motivating the usefulness of this nonlinear correlation index in
data analysis (including comparisons to linear correlation tests
and assessments of statistical power).

It is noteworthy that our construction of Brownian covariance
and its estimator can be generalized by formally replacing the
Brownian paths B, B’ with other stochastic processes or fields
(in which case we may consider multivariate variables X,Y).
This determines a simple rule to engineer a wide array of
dependence measures via functional integrals, and opens the
question of what processes allow to characterize independence.
Our approach relied on the ability to probe generically all
possible test covariances but, critically, the class of processes
satistying a forgery of statistical dependences might be relatively
restricted. On the other hand, the original theory of Brownian
covariance does extend to multidimensional Brownian fields or
fractional Brownian motion [5], which are not continuous or
Markovian (two properties central for the forgery theorems).
So the forgery of statistical dependences provides a new and
elegant tool to establish independence, but it may only represent
a particular case of a more general theory of functional integral-
based correlation measures.

3. MATHEMATICAL ANALYSIS

We now proceed with a more detailed examination of our results.
The most technical parts of the proofs are relegated to the
Supplementary Material S3.

3.1. Asymptotic Forgery and Duality

We sketched in section 2.1 a derivation of the asymptotic forgery
theorem using the law of large numbers. A generalization can
actually be developed fully (see Supplementary Material SI).
However, this particular case enjoys a concise proof based on a
symmetry argument.

The short/long time duality. We start by establishing the duality
relation

P(&f 1) = P(%,01/1) > (10)
where the dual f;, of the function f is given by
[t|f(1/t) fort#0,
fo(t) = 0 s (11)

fort=0.
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Proof. By the time-inversion symmetry of Brownian motion [2],
replacing B(t) by [¢|B(1/¢) in the right-hand side of Equation (2)
determines a new event with the same probability as &%, .
Explicitly, this event is

{|1t1B(1/t) — f(5)] < vit], ¥ |t| = T}
={IB(t) — () <v, VO < || =1/T}, (12)
where ' = 1/t and Equation (11) were used. The condition at
¢ = 0 holds identically since B(0) = f(0) = 0, so (12) coincides
with %, 1,7 This yields Equation (10).

Proof of the asymptotic forgery theorem. The theorem
naturally follows from this duality and Levy’s forgery. The explicit
formula (11) establishes that f, is continuous [for ¢ # 0
this corresponds to the continuity of f, and for t = 0 to its
boundedness sup,.p |f ()| < M since then |tf(1/t)] < M|t| — 0
ast — 0]. Levy’s forgery theorem thus applies and shows that the
right-hand side of Equation (10) is nonzero.

3.2. Local Extended Forgery

We now describe an analytical derivation of the extended forgery
theorem that formalizes the intuitive argument given in section
2.1. The ensuing bound for the probability of the joint event (3)
does not quite reach that in Equation (4) but is sufficient to ensure
genericity.

Restriction to positive-time events. As a preliminary, it will be

useful to consider the positive- and negative-time events %}ta T

and gftv > which correspond to (1) and (2) except that their
defining conditions are enforced only for 0 < &t < T and %t >
T, respectively. These events are generic too because they are less
constrained (e.g., %J‘};)T contains % s = %}fg’T N %fié‘,T) so that

P(OZ/J_%)T) = P(%,B,T) >0, (13)
P(éjri,j) > P(&,r) >0, (14)

by monotonicity of the probability measure P(-), Levy’s forgery,
and the asymptotic forgery.
We are going to focus below on the derivation of
P( s N &,p) > 0. (15)
This is sufficient to prove the extended forgery because the
backward-time (¢ < 0) part of Brownian motion is merely an
independent copy of its forward-time (t+ > 0) part. Hence a
similar result necessarily holds for the negative-time events and,
in turn,
P(Zrs1) = [lo—s P(Z 51 &) > 0. (16)
The integral formula. The first step in the demonstration of
Equation (15) relies on the following explicit expression for the
joint probability as a functional integral. Let us introduce the
family of auxiliary events

ﬂif’f&T={|B(t)+x—f(T+t)|<5+vt,\7’t20} (17)

and denote their probability by

pf,S,T(x) = P(%Jfgj) (18)
for all x € R. Then
P(%;a,T N éjfjfv,T) = <1%ff“ prar(B(D)). (19)

The first factor in this expectation value denotes the indicator
function of the event 02/; 5,r and enforces the constraint that
all considered sample paths B must lie within the uniform
neighborhood (1) for 0 < ¢ < T. In the second factor the
function (18) is evaluated at the position of the random path B(t)
att = T. As we explain below this function is Borel measurable,
so prsr(B(T)) represents a proper random variable and the
expectation value is well defined.

Proof. The formula (19) is a direct consequence of the two
following statements, each involving the conditional probability
P[é}f o | B(T)] that the event éjf 7 occurs under the constraint
that the Brownian motion passes at time t = T through a given
location x randomly distributed as B(T):

P (6f) = (g, PIE, 1B, (20)
and
P&, 1 |B(D)] = prsr(B(D) as. 1)

They follow from fairly standard arguments about Brownian
motion [2, 3] that we detail in the Supplementary Materials $3.1
and S3.2. The first implements the Markov property that é?' T
depends on its past only via B(t) at the boundary time ¢t = T. The
second provides an explicit representation of the random variable

P[é;’,Jr o | B(T)] (see also Chapter 1, Theorem 12 in Kraskov et al.

(2]).

The next step is to show that the integrand in the right-hand
side of Equation (19) cannot vanish identically, which provides
a “local” version of the extended forgery. The full theorem will
follow by integration.

Extended forgery theorem (local version). There exists a
subinterval ] of the bottleneck interval f(T) — 6 < x < f(T) + 6
att = T such that

(%}, NB(D) € J)) = P, 1) (22)
for some continuous function g satisfying g(0) = 0 and some
distance parameter £ > 0, and

prar(x) > P(é}fﬂ) (23)

forallx € J.

By Equations (13) and (14), both lower bounds are positive.
The two parts of the theorem are closely related to Levy’s forgery
and the asymptotic forgery, and we treat them separately.

Proof of (22). This property actually holds for arbitrary
subintervals ], which we shall choose open and parameterized as
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x0 — € < x < x9 + £ with [xg — f(T)| < & — £ to ensure inclusion
in the bottleneck. We also define the continuous function g by
g(t) = f(t) + tlxo — f(T)]/T. This setup ensures that 5//;,@1 -

glfTB,T and ?{;[’T C {B(T) € J}, as the condition |B(t) —g(#)| < ¢
forall 0 <t < T implies

1B(®) —f(O)] = 1B(t) =g +1g(t) = f()] < £+ |xo —f(T)] <6

and |B(T) — x| = |B(T) — g(T)| < € as g(T) = x¢. The bound
(22) follows from these two inclusions by the monotonicity of
P(.).

Two properties of the function py 5 1. For the second part it is
useful to interject here the following simple statements about the
function (18):

(i) py 5,1 vanishes identically outside the bottleneck,

(ii) pys,r is continuous within the bottleneck (and therefore, it
is Borel measurable as well).

The first claim rests on the observation that the set (17) is
empty whenever |x — f(T)| > 8 (since its defining condition at
t = 0 cannot be satisfied, as B(0) = 0), so we find pss51(x) =
P(®) = 0.

The second claim may appear quite clear as well, since the set
(17) should vary continuously with x, but this intuition is not
quite right. For a more accurate statement, let us fix a point x in
the bottleneck and consider an arbitrary sequence x, converging
to it. Then the limit event of fgffng (assuming it exists) coincides

with %"5 , modulo a zero-probability set, so by continuity of P(-)

JLim prs r(xn) = prsr(x). (249)

The full proof appears rather technical, so we only sketch the
key ideas here and relegate the details to the Supplementary
Material $3.3. The limit event imposes that sample paths lie
within the expanding neighborhood associated with (17) but
are allowed to reach its boundary [essentially because the large
n limit of the strict inequalities (17) at x = x, yields a
nonstrict inequality]. However the latter hitting event a.s. never
happens because the typical roughness of Brownian motion
forbids meeting a boundary curve without crossing it and thus,
leaving the neighborhood (see Supplementary Material S3.4 for
this “boundary-crossing law”, which generalizes Lemma 1 on
page 283 of [3] to time-dependent levels.).

Proof of (23). The key observation here is that

o exp(—x?/2T)
PP AN Sntlts

wn= [ = 29

praor(x),

which is merely the integral formula (19) with the constraint B €
”Z/ff 5.7 removed (equivalently, this is Supplemental Equation .18
with § = R) and the expectation over B(T) made explicit.
If prsr(x) < P(é}f ,.r) everywhere, then for almost all x this
inequality must saturate to an equality by Equation (25) and thus
Prs,r(x) > 0 by Equation (14). This contradicts property (i) of
Pr.s,1> s0 that Equation (23) must hold for at least one point x

in the bottleneck, and thus also on some subinterval ] by the
continuity property (ii).

Proof of the extended forgery theorem. Finally we combine the
local version of the theorem with the integral formula (19) to
obtain

P(%;ta,T N éj"tv,T) = P(%;:l,T) P(éjj,_v,T)' (26)

Indeed, further constraining the paths to B(T) € ] allows to
bound the right-hand side of (19) from below by

(14, nieen rar(BD)) > P(#f5 1 MBI € ) P&, )
by (23),
> P(U, 1) P(EF, 1)
by (22).

In passing through the first inequality we also used the identity
(1_4) = P(.#) valid for any event .#. The theorem (15) follows
from the inequality (26) together with Equations (13) and (14).

It is noteworthy that we stated and proved the extended
forgery under the assumption that v = §/T for convenience, but
in the above arguments this restriction was actually artificial so
the theorem holds for arbitrary parameters §,v, T > 0.

3.3. Nested Forgery of Statistical

Dependences

We showed in section 2.2 that the forgery of statistical
dependences is induced by the extended forgery using the
somewhat rough estimate (6) of the covariance error. We provide
now an exact upper bound and a complete proof of the theorem.

Error bound. For arbitrary sample paths B € 557 and B e
H g5, We have

|c0V[B(X), B'(Y)] — cov[f(X),g(Y)]| < ep(8,v)  (27)
where v = §/T and the error bound &3(8, v) is given by
e(8,v) = 2(My + Mg)s + 28 + 2(Mg (IX]) + Mp(|Y]))v 08)

+ 20X+ 1Y DSv + (IXY]) + (IXDAY D),

with My = sup,g |f(¢)| and Mg = sup,p 1g(2)].

The derivation of this estimate relies on a relatively
straightforward application of a series of inequalities and is
relegated to the Supplementary Material S3.5. Its significance
rests on the fact that, when the polynomial coefhicients in (28)
are finite, the covariance error can be made arbitrarily small by
taking 8, v — 0. Hence we obtain the following key intermediate
result.

The nested forgery lemma. Assume that My, Mg, UX1), (Y1), and
(IXY]) are finite, and let ¢ > 0. Then there exists §,T > 0 such
that

Fror < Fgsr C Cx Y fge (29)
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where the prime on event Fes.T indicates that it applies to the
process B

Proof of the forgery theorem of statistical dependences. This
is a direct corollary. The L, hypothesis and the boundedness
assumption on f, g ensure that the lemma (29) applies. Using the
monotonicity of P(-) and the independence of B, B’ then yields

P(%)X,Y,f,g,g) > P(ff,(sj X /é,B,T) = P(ff,gj) P(fg,gj) . (30)

It is now tempting to invoke the extended forgery theorem, but
here the conditions f(0) = g(0) = 0 were not imposed. This
is however not an issue thanks to the translation invariance of
covariance, i.e., cov[f(X), g(Y)] = cov[f(X) — f(0),g(Y) — g(0)].
Thus

P(EX Y fge) = P(EXY f—£(0).g—g(0).¢) (31)

= P(/f—f(o),é,T) P(/g—g(o),a,T) >0,

where we used Equation (30) and the extended forgery theorem
in the second line.

Note that the L, assumption used in section 2.2 was slightly
stronger than needed, as made clear by the nested forgery lemma.

3.4. Brownian Independence Test and
Dichotomy
To prove that the assertion cov[B(X),B'(Y)] = 0 a.s. implies
cov[f(X),g(Y)] = 0, we used in section 2.2 a discrete sampling
method for which it is straightforward that the covariance
approximation event (5) must occur simultaneously with the zero
covariance event

Py = {COV[B(X), B'(Y)] = 0} . (32)
Their compatibility, which was indeed central in our derivation,
is actually a general property of probability theory and we use it
here to provide an alternative, set-theoretic argument.

The dichotomy lemma. For arbitrary functions f,g and
parameter €, we have

Zxy if [cov[f(X),g(Y)]| <&

EXy 2%y =
Yfge M2 1) otherwise.

(33)

Proof. It is a direct consequence of Equations (5) and (32)
that the intersection is characterized equivalently by the two

conditions cov[B(X), B'(Y)] = 0 and |cov[f(X),g(Y)]| < e.

Second proof of sufficiency for the Brownian independence
test. By the forgery of statistical dependences the event €y 1.
is generic for f,g bounded and continuous and ¢ > 0, and
by hypothesis the event 2y occurs a.s. Since the intersection
of a generic event and an almost sure event is never empty
[if it were empty, the generic event would be a subset of a
zero probability event (i.e., the complement of the almost sure
event), which is forbidden by monotonicity of P(-)], the second
possibility in Equation (33) is ruled out so |cov([f(X),g(Y)]| < &
must hold true. Since ¢ > 0 was arbitrary, we conclude that
cov[f(X),g(Y)] = 0.

3.5. Unbiased Estimation of Brownian

Covariance

We now exemplify how an explicit estimator of Brownian
covariance can be derived from the functional integral (8). Our
construction enforces unbiasedness at finite sampling and allows
to recover the unbiased sample formula of distance covariance
[13, 14] that we review first.

The unbiased estimator. Let us introduce the distance a;; =
|Xi — X;| between the samples X; of X as well as its “U-centered”
version

> i(ai + agg)
n—2

> k1 O

-2 Y

A,-j:a,-j—

where 1 < 4,j,k,] < n. The analogous matrices for the
corresponding samples of Y are denoted b;; and Bj;, respectively.
With these notations and assuming n > 4,

R 1
B,(X,Y)? = y— Z AyiBij. (35)

distinct
ij

This expression differs from the formula given in Székely and
Rizzo [13] and Rizzo and Székely [14] by a trivial factor 1/4 due
to our use of the standard normalization for Brownian motion.
The asymptotic distribution of this estimator under the null
hypothesis of independence was worked out in Székely and Rizzo
[13]. The unbiasedness property (9) of Equation (35) was also
proven in Székely and Rizzo [13] and Rizzo and Székely [14],
but here it will follow directly from our derivation based on the
functional integral (8), which starts naturally from an unbiased
estimation of the covariance squared.

Estimation of covariance squared. It is convenient to introduce
the variables x = B(X), y = B'(Y) and their samples X; =
B(X;),yi = B/(Y)), all being defined at fixed sample paths B, B’.
An unbiased estimator for cov(x,y) itself is well-known from
elementary statistics, but it can be checked by developing its
square that the estimation of cov(x,y)? is then hampered by
systematic errors of order 1/n. Here, given n > 4, we shall rather
define

(n— 4)! ’
o Z XX (Yi¥i —Yi¥k =YYk + YY) » (36)

ovu(x,y): =

where the primed sum is taken over all distinct indices 1 <
i,j,k,] < n. This expression differs from the aforementioned
development by O(1/n) and is indeed free from finite sampling
biases.

This can be proven by averaging Equation (36) over the # joint
samples X;,Y;. Indeed, using the identities (X;X;y;y;) = (xy)?,
(XiXjYiyr) = (xy)(x)(y), and (X;;yxy;) = (x)*(y)? and the fact
that the primed sum contains n!/(n — 4)! terms, we find

(v, y)?) = (xy)? = 2(xy) (X)(y) + (X)*(y)? = cov(x,y)*.
(37)

Derivation of Equation (35) from Equation (8). We now
average Equation (36) with x; = B(X;) and y; = B/(Y;) over
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the independent random paths B, B/, while the samples X;, Y; are
being kept constant. The computation factors into the functional
integration of x;x; = B(X)B(X;) and y;y; = B'(Y;)B'(Y)), so
B,(X,Y)? is obtained from the right-hand side of Equation (36)
by replacing X;X; and y;y; with the autocorrelation functions [2]

(B(X/B(X))) =
(B'(Y)B'(Y)) =

(IXil + 1Xj] — ai) ,

(38)
(1Yil + Y| — by).

1
2
1
2

This substitution rule can actually be simplified further to X;X; —
—aijj/2 because the terms involving |X;| cancel out thanks to the
algebraic identity

E (Yi¥j — YiYk — Yj¥x + YY) = 0. (39)
all distinct
ikl

Similar cancellations also allow to use y;y; — —bjj/2. We thus
obtain the unbiased estimator

(n—4)!

~ 2
Bn(xy Y) - 411'

’
Z aijj (bjj — bix — by + byy) . (40)

The equivalence with Equation (35) is not obvious at first sight.
To make contact with it, let us fix i,j and consider the sum
of the second factor over k,I, all indices being distinct. This
contribution is the sum of the following four terms:

Y kbi = (n = 2)(n = 3)by,
=i = (n = 3)(by — Xybi)
_Z;c,lbkj = (n - 3)(by — Zkbkj))
bk = Yiibr — 22k (b + bg) + 2byj,
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