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Mean-ETL Optimization in
HorseRace Competition
Barret P. Shao*

Tianyou Asset Management, LLC, Annandale, VA, United States

In this paper, we present the methodology and results of the portfolios submitted to the

HorseRace competition. The nine portfolios were constructed by applying the Mean-ETL

optimization approach. The Mean-ETL optimization approach uses three fundamental

variables (CTEF, MQ, and REG10) and three stock universes (GL, XUS, and EM), with

each of the three fundamental variables applied one at a time to one of the three

universes. This study assesses the return of the nine portfolios, and we report that all

of these Mean-ETL portfolios produce positive active returns and most of them are

statistically significant. Additionally, MQ variable is found to be the best among these

three variables in the Mean-ETL portfolio construction.

Keywords: mean-ETL optimization, earnings forecasts, global stock market, non-US stock market, emerging

stock market

1. INTRODUCTION

Fundamental data of stock markets have been researched and used in stock selection, portfolio
construction for a long time. As an addition to the CAPM model for the stock market, Fama, and
French [1] proposed the three famous factors: market factor, size factor, and value factor. Since
Fama and French’s finding in 1993, there have been many researches on portfolio construction
with these fundamental variables. Jegadeesh and Titman [2] show that price momentum effect can
generate statistically significant positive returns over certain holding periods. Guerard et al. [3]
developed the United States Expected Returns (USER) stock selection model with ten fundamental
variables, which will be described in greater details in the later section.

Modem Portfolio Theory (MPT) started with Markowitz’s pioneering work [4] in 1952, which
established the mean-variance portfolio optimization framework that maximizes the expected
return for a given level of risk. Guerard and Takano [5] reported mean-variance portfolios with a
compositemodel of the fundamental variables in theU.S. and Japanese stockmarkets outperformed
their benchmarks by approximately 4% annually. After 25 years since the 1992 finding, Guerard [6]
reported that the original model in Guerard and Takano [5] continued to be effective, which is a
remarkable out-of-sample test of the original stock selection model.

Mean-ETL portfolio construction on the fundamental variables has been investigated in the past,
e.g., Guerard [7] studied the Global Expected Return (GLER) on the global stock market and the
United States Expected Return (USER) on the U.S. stock market during the period of 2003–2011;
Shao [8] reported the results of using USER, Price Momentum (PM), and Mckinley Capital Quant
Score (MQ) variables on the U.S. stock market during the period of 2000–2013. The study is a more
comprehensive study on the application of Mean-ETL portfolio construction with three different
fundamental variables, and performs on three stock universes for the time period of 2005–2016.

As for the organization of this paper, we discuss the fundamental variables and the stock
universes used in this study in section 2. Then in section 3, we provide a description of the
Mean-ETL optimization framework. The simulation results are presented and analyzed in section
4. Section 5 contains the summary and conclusions of this study.
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2. HORSERACE VARIABLES AND THE
DATA

Mckinley Capital Management LLC (MCM) holds an annual
HorseRace competition to test the efficiency of different portfolio
construction techniques and risk models. MCM provides the
same dataset, which contains various fundamental variables and
stock universes, to the participants. The optimal portfolios in
MCM HorseRace have to the following requirements: (a) it has
to be long-only; (b) it is rebalanced monthly; (c) the maximum
monthly buy turnover rate is 8%; (d) the maximum weight of
underlying stock is 0.35%. This section describes the dataset
used in the HorseRace portfolio construction, which mainly
contains two components: three fundamental variables and
data of three stock universes. The three fundamental variables
used are REG10, Consensus Temporary Earnings Forecasting
(CTEF), and McKinley Capital Quant Score (MQ). The three
stock universes analyzed are Global (GL), Non-US (XUS), and
Emerging Market (EM).

2.1. Consensus Temporary Earnings
Forecasting (CTEF)
Earnings-per-share (EPS) is one of the most crucial factors
that indicate the short-term and long-term stock performance.
Graham and Dodd [9] showed the stocks with higher EPS
outperform those with lower EPS. Because of the importance
of the EPS, expectation of the EPS became a popular topic
in research. Elton et al. [10] showed the relationship between
the stock share price and the EPS’s expectation and EPS could
have profitable information in the stock selection; Arnott [11]
demonstrated that the past trends in the consensus earnings are
a highly consistent security indicator.

The CTEF variable (or referred to as CTEF) was created
by Guerard et al. [3]. CTEF is an equally weighted sum of
Forecasted Earnings Yield (FEP) from the I/B/E/S database,
Earnings Revisions (EREV) and Earnings Breadth (EB) of current
fiscal year (FY1) and next fiscal year (FY2). More specifically,
the variables involved in the CTEF calculation are: FY1 forecast
earnings per share/price per share, FY2 forecast earnings per
share/price per share, FY1 forecast earnings per share monthly
revision/price per share, FY2 forecast earnings per share monthly
revision/price per share, FY1 forecast earnings per share monthly
breadth/price per share, and FY2 forecast earnings per share
monthly breadth/price per share. The efficiency of CTEF has been
studied by many researches: Guerard et al. [12] demonstrated
that using a model based on CTEF generated statistically
significant returns for stock selection in the United States and
Japan; Shao et al. [13] showed that the Mean-ETL portfolio with
CTEF produces a statistically significant positive return in the
universe of global stocks.

2.2. REG10
REG10 is a stock selection model using 10 fundamental variables
in regression model. In previous works, REG10 may also be
referred to as Global Expected Returns (GLER) or United States
Expected Returns (USER) model. The difference among them is
the underlying stock universes.

In 1993, Bloch et al. [14] developed an underlying composite
model with fundamental variables to model security returns. In
2012, Guerard et al. [15] added CTEF, described previously, and
price momentum (PM) to the Bloch’s stock selection model to
construct the USERmodel. Compared to the USERmodel, GLER
model uses the same fundamental variables to construct the stock
selection model in the global universe from Thomson Financial
and FactSet database. Both GLER and USER can be referred as
REG10. We give a brief review of the REG10 model here and the
readers are referred to Guerard et al. [7] and Guerard [16] for
more details about REG10model. REG10model gives investor an
composite value rank across ten different fundamental variables
of stocks and the REG10 value of a stock at time t + 1 is
modeled as:

TRt+1 = a0 + a1EPt + a2BPt + a3CPt + a4SPt + a5REPt

+ a6RBPt + a7RCPt + a8RSPt + a9CTEFt + a10PMt + et

(1)

where et is error term and the ten fundamental variables and their
derivatives in the REG10 model are: EP is the earning-price ratio;
BP is the book-price ratio; CP is the cashflow-price ratio; SP is the
sales-price ratio; REP is the EP dividend by its average values over
the past 5 years; RBP is the BP divided by its average values over
the past 5 years; RCP is the CP divided by its average values over
the past 5 years; RSP is the SP divided by its average values over
the past 5 years; CTEF is the consensus earnings per share; and
PM is the price momentum. Guerard [16] noted that the CTEF
and PM variables contribute 40% of the weights in the REG10
model.

Previous works have shown that the REG10 variable is a
powerful indicator in stock selection with different universes and
portfolio construction methodologies: Guerard et al. [17] showed
that Mean-Variance portfolio construction with REG10 produces
statistically significant returns.

2.3. McKinley Capital Quant Score (MQ)
McKinley Capital Quant Score (MQ) is the equally weighted
sum of CTEF and PM variables. We have introduced the
CTEF variable before and the PM variable is the price of
last month divided by the price 12 month prior. Guerard
et al. [7] showed that CTEF and PM variables accounted
for the majority of the forecast performance in both GLER
and USER models. This is the main reason for using MQ as
one of the fundamental variables in this study. Compared to
REG10, CTEF, and PM, there have been fewer studies on the
efficiency of the MQ variable in stock selection: Guerard et al.
[18] found the MQ variable produces statistically significant
returns in the vast majority of the eight universes: the Russell
3000, MSCI All Country World, MSCI ex-US, MSCI Emerging
Markets, MSCI Japan, MSCI China, a broader China universe
and a two-analyst I/B/E/S global universe. Shao [8] showed
that the Mean-ETL portfolio of the U.S. stocks based on the
MQ variable outperforms the portfolio based on the USER
and PM variables with highly statistically significant active
returns.
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2.4. Stock Universe
In this study, we examine the above-mentioned three
fundamental variables (CTEF, MQ and REG10) in three
different universes: (1) Global universe (GL): stocks in MSCI
World Growth Index, (2) Emerging Markets (EM): stocks in
MSCI EM Growth Index, and (3) non-US (XUS) universe: stocks
in MSCI ACWI ex USA Index. The Mean-ETL portfolios are
examined on all three universes from January 2005 to December
2016. The number of stocks in the three universes increases
over the studied period: GL has 1,268 stocks in 2005 and 1,422
stocks in 2016; XUS has 980 stocks in the 2005 and 1,054
stocks in 2016; EM has 325 stocks in 2005 and 453 stocks in
2016. As for the benchmarks in the portfolio analysis, we use
MSCI World Growth index, MSCI ACWI ex USA Index, and
MSCI EM Growth index as the benchmarks for GL, XUS, and
EM universes, respectively. We use the monthly data of these
universes and all of these portfolios are rebalanced every month.

3. METHODOLOGY

3.1. Mean-ETL Optimization
Markowitz’s pioneered work [4] introduced the modern portfolio
theory, which is to maximize the returns of the portfolio at a give
level of portfolio risk. It is often referred to as mean-variance
portfolio optimization because it uses variance as the portfolio
risk measure. Compared to the classical mean-variance portfolio
optimization, mean-ETL optimization uses the expected-tailed
loss (ETL) as the risk measure. There are many other names for
the ETL, such as conditional Value-at-Risk (CVaR) and expected
shortfall (ES) and we will use the ETL here to be consistent with
the previous works we have done1.

Before going into the structure of the Mean-ETL portfolio
optimization, we give a brief review on Value-at-Risk (VaR)
and ETL here. Introduced by JP Morgan in the late 1980s,
VaR measures the worst possible loss of a security or portfolio
over a period of time at a certain confidence level. Using
X to represent the distribution of portfolio returns and the
VaR of the portfolio at a (1 − α)100% confidence interval
can be defined as the lower α quantile of the return
distribution X:

VaRα(X) = −Inf (x : P(X ≤ x) ≥ α) = −F−1
X (α) (2)

Compared to the portfolio variance in the Mean-Variance
portfolio optimization, using VaR as the risk measure only
penalizes the negative deviation from the mean instead of
penalizing both negative and positive deviations form the mean.
VaR has been a very popular risk measure, but using VaR
in the portfolio optimization has a number of limitations: it
does not reflect the information about the losses that exceed
the VaR level and the optimization with VaR can not be
guaranteed to be convex. The readers are referred to Rachev
et al. [19] for more information about the limitations that
using VaR directly in the portfolio optimization has. Moreover,

1This paper is not intended to compare the Mean-Variance and Mean-ETL

portfolio optimizations and different portfolio construction methodologies have

their own merits.

VaR is not a coherent risk measure because it does not have
the sub-additivity property, which could be regarded as the
diversification in the portfolio optimization. The readers are
referred to Artzner et al. [20] for the formal definitions of
coherent risk measure.

Based on the definition of VaR, ETL, which accounts for the
average loss exceeding the VaR level and has a more informative
view on the extreme events, is defined as follows:

ETLα(X) = −E
(

X|X < −VaRα(X)
)

(3)

Even though ETL is a derivation of the VaR, it satisfies all the
axioms of the coherent risk measure [20] and using it as the
portfolio risk measure in the portfolio optimization leads to a
convex optimization problem, which has a unique solution. More
details of the properties of ETL (CVaR), as the risk measure
can be found in the seminal work by Rockafellar and Uryasev
[21]. When using the simulated scenarios in the ETL calculation
in practice, ETL is calculated on discrete points and can be
calculated as follows (see [21] for more details):

ETLα = − 1

α





1

n

⌈nα⌉−1
∑

k=1

r(k) +
(

α − ⌈nα⌉ − 1

n

)

r(⌈nα⌉)



 (4)

where r(k) is the sorted returns of the scenarios, r(1) ≤ r(2) ≤
· · · ≤ r(n), and ⌈x⌉ stands for the smallest integers greater than or
equal to x.

Compared to the Markowitz’s Mean-Variance optimization
framework, Mean-ETL optimization uses the ETL as the risk
measure. In other words, the Mean-ETL optimization is try
to maximize the expected portfolio returns at a given level
of the portfolio’s ETL instead of the portfolio’s variance. The
object function and the constraints of the Mean-ETL portfolio
optimization in this work are summarized as follows:

maximize
wt

e⊺
(

w
⊺

t Yt

)

− λETLα

(

w
⊺

t Yt

)

subject to 0 ≤ wt ≤ 0.04,

e⊺ |wt − wt−1| ≤ 0.16

e⊺wt = 1

(5)

where wt is a column vector with the security weights in the
portfolio at time t. Yt is the matrix of scenarios with size of N× S
and contains the S scenarios of the N securities for time t. To
make it more clear, the matrix of scenarios Yt can also be written
as:

Yt =













y
(1,1)
t y

(1,2)
t . . . y

(1,S)
t

y
(2,1)
t y

(2,2)
t . . . y

(2,S)
t

...
...

...

y
(N,1)
t y

(N,2)
t . . . y

(N,S)
t













(N×S)

(6)

where y
(n,s)
t represents the sth scenario of the nth security

generated by the ARMA(1,1)-GARCH(1,1) model with MNTS
innovations at time t, which will be described later in this paper.
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As for the three constraints in this Mean-ETL optimization,
they refer to (1) it is a long-only portfolio with maximum
weight of each stock as 4%; (2) the monthly turnover rate
can not exceed 8%, and (3) the portfolio has to be fully
invested.

3.2. Scenarios Generation Method
As summarized in the previous section, we need to have
matrix of scenarios of the underlying stocks in the Mean-
ETL optimization. In these HorseRace portfolios, we use
similar scenarios generation method as previous works

by Shao et al. [13] and Shao [8]: Autoregressive moving
average (ARMA)—generalized autoregressive conditional
heteroscedasticity (GARCH) model with the innovations
follow multivariate normal tempered stable distribution
(MNTS). For the convenience and consistence reason, we
use ARMA-GARCH-MNTS to denote this model in this
paper. We briefly review this scenario generation method here
and readers are referred to Shao et al. [13] for more details
about it.

In the ARMA-GARCH-MNTS scenarios generation
framework, the variable return of nth stock at time t could

FIGURE 1 | Portfolio performance with GL (global) universe.

FIGURE 2 | Portfolio performance with XUS (non-US) universe.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 June 2018 | Volume 4 | Article 20

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Shao Mean-ETL Portfolio Optimization

be described as:

rn,t =cn + arn,t−1 + bσtηn,t−1 + σtηn,t

σ 2
n,t =αn,0 + α1σ

2
n,t−1η

2
n,t−1 + βn,1σ

2
n,t−1

(7)

where n = 1, 2, . . . ,N and the joint innovation term ηt =
(

η1,t , . . . , ηN,t

)

is generated from the standard MNTS with
parameters (α, θ ,β , ρ). There are many joint distributions could
be as the joint innovation terms here and we found that MNTS
had a better modeling ability for the heavy tails. Readers are
referred to the Exhibit 1 in Shao [22] for the comparison. We
will provide a summary of the MNTS distribution here.

The characteristic function for the one-dimensional standard
MNTS is defined as:

φX(t) = exp

(

− βti− 2θ1−α/2

α

((

θ − βti− θα/2

+
(

1− β2

(

2− α

2θ

)

t2

2

)α/2
)))

(8)

and d dimensions of the standard MNTS with parameters
(α, θ ,β , ρ) is defined as:

X = (X1,X2, . . . ,Xd) = β(T − 1)+ γ
√
Tε (9)

where

β = (β1,β2, . . . ,βd), |βk| <

√

2θ

2− α

γ = (γ1, γ2, . . . , γd), γk =
√

1− 2− α

2θ
β2
k

ε = (ε1, ε2, . . . , εd), εk ∼ N(0, 1)

ρ = cov(εk, εl) =
{

1, if k = l

ρk,l, if k 6= l

(10)

and k = 1, 2, . . . , d. t in the equation is a one-dimensional CTS
subordinator with parameter (α, θ). The readers are referred to
Shao et al. [13] for the details about the model estimation.

FIGURE 3 | Portfolio performance with EM (Emerging Market) universe.

TABLE 1 | Mean-ETL portfolio summary.

Portfolio Active Specific Momentum Value

Universe Variable Return (%) Risk (%) Return (%) Risk (%) IR T-Stat Return (%) T-Stat Return (%) T-Stat Return (%) T-Stat

GL CTEF 10.32 22.91 4.02 10.32 0.39 1.35 2.55 2.11 1.78 4.76 1.50 2.80

GL MQ 13.34 15.50 7.05 6.73 1.05 3.63 2.34 2.54 1.42 2.24 0.21 1.91

GL REG10 9.59 21.79 3.29 9.92 0.33 1.15 0.92 0.67 1.49 2.56 1.82 2.81

XUS CTEF 9.89 24.04 5.13 10.00 0.51 1.78 2.83 2.26 1.62 4.89 1.39 2.54

XUS MQ 12.76 17.49 8.00 6.19 1.29 4.47 4.43 3.85 1.61 2.47 0.43 2.91

XUS REG10 9.51 22.72 4.75 9.41 0.50 1.75 0.35 0.24 1.50 2.77 1.71 2.47

EM CTEF 13.78 26.29 6.79 7.88 0.86 2.99 3.81 2.59 0.78 3.38 1.41 2.81

EM MQ 14.66 20.62 7.67 7.05 1.09 3.77 1.99 1.47 1.43 2.43 0.48 3.04

EM REG10 14.32 25.86 7.33 8.39 0.87 3.03 4.84 2.76 −0.11 −0.32 1.47 2.26
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Using Rn,t to represent the HorseRace variables (CTEF, MQ
and REG10) with 1 ≤ n ≤ N and 1 ≤ t ≤ T, we
apply the ARMA-GARCH-MNTS model on their logarithmic
returns rn,t to generate the predicated scenarios. N and t
here are the number of stocks and the number of months
respectively; rn,t = log

(

Rn,t
Rn,t−1

)

when t ≥ 2. In this paper, the

same scenarios generation methodology is applied to different
variables, which makes the comparison more significant. To
estimate the parameters in the ARMA-GARCH-MNTS model,
we use a 120-month rolling window to estimate the parameters
and generate the predicted scenarios for the next month. The
number of scenarios generated in this study is S = 10, 000 and
we could derive the values in the scenarios matrix, used in (6), by

exp ˆrsn,t + log(Rn,t−1).

4. PORTFOLIO ANALYSIS

In this section, we present the results of the Mean-ETL
optimization with CTEF,MQ, and REG10 variables in three stock
universes, GL, XUS, and EM. Since all of nine portfolios are
optimized by the same methodology here, we use GL-CTEF, GL-
MQ, GL-REG10, XUS-CTEF, XUS-MQ, XUS-REG10, EM-CTEF,
EM-MQ, and EM-REG10 to represent these portfolios.

The cumulative returns, or the equity curves, of different
portfolios and benchmarks in the GL, XUS, and EM stock
universe are shown in Figures 1–3, respectively.

In Table 1, we report the summary statistics of all these nine
portfolios from January 2005 to December 2016. All of these nine
Mean-ETL portfolios produce positive active returns over their
benchmarks and most of them are statistically significant.

Among the three variables, MQ variable performs the best in
all of the GL, XUS and EM universes. In the XUS universe, XUS-
MQ produces a 8.00% annual active return with an information
ratio of 1.29 and a t statistic of 4.47. In the GL stock universe, GL-
MQ generates a 7.05% annual active return with an information
ratio of 1.05 and a t statistic of 3.63, which is much higher than
the GL-CTEF and GL-REG10. As for the EM stock universe, the
annual active return of EM-MQ is 7.67% with an information
ratio of 1.09 and a t statistic of 3.77. Other than the three
stock universes we have studied in this paper, the recent study
of Shao [8] reports that the MQ variable in the domestic (US)
stock universe generates an active annual return 9.72% with an
information ratio of 1.12 and a t statistic of 4.18 during the period
of 2000–2013.

As for different universes, the Mean-ETL portfolios perform
better in the XUS and EM universes than the GL universe.
In the EM stock universe, all of the CTEF, MQ, and REG10
variables generate highly statistically significant active returns:
the active returns of EM-MQ, EM-REG10, and EM-CTEF have
an information ratio 1.09 (t = 3.77), 0.87 (t = 3.03), and
0.86 (t = 2.99), respectively. While all three variables generate
positive active returns over the period of 2005–2016, only theMQ
variable generates statistically significant active returns in the GL
universe with a t statistic of 3.63.

The “Momentum” factor plays an important role in the
portfolios based on the CTEF variable and it contributes highly

statistically significant positive returns to the CTEF portfolios.
The “Momentum” factor generates positive annual returns of
1.62% (t = 4.89), 1.78% (t = 4.76), and 0.78% (t = 3.38) in
XUS-CTEF, GL-CTEF, and EM-CTEF, respectively.

We perform further analyses of the Mean-ETL portfolios
based on the MQ variable, which generates the most statistically
significant positive active returns. The Axioma attribution of
the GL-MQ portfolio is shown in Table 2. In the GL-MQ
portfolio, statistically significant positive returns are derived
from the “Leverage” factor (debt-to-assets) and “Medium-Term
Momentum” (cumulative returns over past 12 months excluding
the last month).

Table 3 presents the Axioma attribution report of the
XUS-MQ portfolio. The “Medium-Term Momentum” factor
continues to generate statistically significant positive return: an
annual return 1.61% with information ratio of 2.71 and a t
statistic of 2.47.

The same Axioma analysis of EM-MQ is shown in Table 4.
The “Leverage,” “Medium-Term Momentum,” and “Value”
factors continue to generate strong positive returns, which
are statistically significant. However, the factor that has the
highest active return contribution is the “Country” factor, which
generates annual return 2.13%, which is much higher than the
GL-MQ and XUS-MQ portfolios. The top and bottom five
countries in the “Country” factor are shown in Table 5.

From a practitioner’s view, the past performance is not
guarantee of future results. The performance of the Mean-ETL

TABLE 2 | Axioma attribution of Mean-ETL-MQ (GL) portfolio.

Source of

return

Contribution

(%)

Avg exp

(%)

Hit rate

(%)

Risk

(%)

IR T-Stat

Portfolio 13.34 15.50

Benchmark 6.30 15.88

Total active 7.05 0.00 6.73 1.05 3.63

Specific

return

2.34 0.00 3.19 0.73 2.54

Exchange

rate

sensitivity

−0.05 0.0539 47.92 0.18 −0.26 −0.90

Growth 0.01 −0.0557 52.78 0.27 0.05 0.16

Leverage 0.14 −0.0997 59.03 0.19 0.75 2.59

Liquidity −0.17 −0.2622 43.75 0.49 −0.35 −1.21

Medium-term

momentum

1.42 0.4131 70.83 2.20 0.65 2.24

Short-term

momentum

−0.15 0.0217 47.22 0.88 −0.17 −0.57

Size 0.14 −0.2261 55.56 0.99 0.14 0.50

Value 0.21 0.1836 49.31 0.37 0.55 1.91

Volatility 0.63 −0.1372 55.56 1.62 0.39 1.34

Country 0.94 0.00 3.03 0.31 1.07

Industry 1.02 0.00 2.21 0.46 1.60

Currency 0.56 0.00 1.50 0.37 1.29

Local 0.00 −0.02 0.01 0.10 0.35

Market 0.00 0.00 0.00 0.06 0.20

Sectors 1.02 0.00 2.21 0.46 1.60
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TABLE 3 | Axioma attribution of Mean-ETL-MQ (XUS) portfolio.

Source of

return

Contribution

(%)

Avg exp

(%)

Hit rate

(%)

Risk

(%)

IR T-Stat

Portfolio 12.76 17.49

Benchmark 4.76 17.71

Total active 8.00 0.00 6.19 1.29 4.47

Specific return 4.43 0.00 3.99 1.11 3.85

Exchange rate

sensitivity

−0.05 0.0547 47.22 0.12 −0.43 −1.49

Growth 0.09 −0.0033 57.64 0.30 0.32 1.11

Leverage 0.15 −0.1577 54.17 0.22 0.65 2.26

Liquidity −0.19 −0.2018 43.06 0.40 −0.48 −1.66

Medium-Term

Momentum

1.61 0.4478 70.83 2.25 0.71 2.47

Short-Term

Momentum

−0.03 0.0279 49.31 0.86 −0.03 −0.12

Size 0.09 −0.2482 55.56 1.18 0.08 0.27

Value 0.43 0.2118 55.56 0.51 0.84 2.91

Volatility 0.65 −0.1410 57.64 1.42 0.45 1.58

Country −0.05 −0.01% 4.01 −0.01 −0.04

Industry 0.11 −0.01% 1.99 0.05 0.19

Currency 0.78 −0.01 2.11 0.37 1.28

Local 0.00 −0.05 0.01 0.09 0.33

Market 0.00 −0.01 0.01 −0.36 −1.25

Sectors 0.11 −0.01 1.99 0.05 0.19

portfolios with these variables and universes will be different in
the period outside 2005–2016. Like the updates of the original
models after 25 years in Guerard [6], we will revisit the robustness
of these portfolios with more data in the future.

5. SUMMARY AND CONCLUSIONS

In this study, we have provided a comprehensive and
updated report on the application of the Mean-ETL portfolio
framework in portfolio construction when using different
fundamental variables and stock universes. Nine portfolios
based on three fundamental variables (CTEF, MQ, and
REG10) in three universes (GL, XUS, and EM) have been
studied and reported. Previous works of the Mean-ETL
framework with fundamental variables have been studied
with different universes or time periods, and it is difficult
to compare the efficiency of different variables. During the
period of 2005–2016, we find that the Mean-ETL optimization
continues to generate statistically significant active returns
with different markets or fundamental variables. In this study,
we also find that the MQ variable is a very significant
predictor of the stock selection in the Mean-ETL optimization
across the three universes (GL, XUS, and EM) during this
period. Despite the Mean-ETL portfolios with MQ variable
perform better than the other two variables across all three
universes in this period, we cannot draw the conclusion that
the MQ variable outperforms other variables with different
portfolio construction techniques or time periods. For example,

TABLE 4 | Axioma attribution of Mean-ETL-MQ (EM) portfolio.

Source of

return

Contribution

(%)

Avg exp

(%)

Hit rate

(%)

Risk

(%)

IR T-Stat

Portfolio 14.66 20.62

Benchmark 6.99 22.77

Total Active 7.67 0.00 7.05 1.09 3.77

Specific

return

1.99 0.00 4.69 0.42 1.47

Exchange

rate

sensitivity

−0.03 0.1186 48.61 0.18 −0.16 −0.55

Growth −0.12 −0.2782 35.42 0.42 −0.29 −1.01

Leverage 0.42 −0.2135 57.64 0.46 0.91 3.17

Liquidity −0.12 −0.1371 73.75 0.34 −0.36 −1.25

Medium-term

momentum

1.43 0.3600 71.53 2.04 0.70 2.43

Short-term

momentum

−0.15 0.0184 42.36 0.98 −0.15 −0.53

Size −0.08 −0.2796 55.56 1.38 −0.06 −0.19

Value 0.48 0.2027 54.17 0.55 0.88 3.04

Volatility 1.08 −0.1762 55.56 1.81 0.60 2.08

Country 2.13 0.00 4.62 0.46 1.60

Industry 0.96 0.00 1.94 0.50 1.72

Currency −0.37 0.00 2.14 −0.17 −0.61

Local 0.05 −0.16 0.13 0.39 1.35

Market 0.00 0.00 0.00 −0.40 −1.40

Sectors 0.96 0.00 1.94 0.50 1.72

TABLE 5 | Top and Bottom 5 countries in Mean-ETL-MQ (EM) portfolio.

Source of

return

Contribution

(%)

Avg exp

(%)

Hit rate

(%)

Risk

(%)

IR T-Stat

Country 2.13 0.00 4.62 0.46 1.60

Morocco 0.61 1.47 40.97 0.79 0.76 2.65

India 0.53 2.86 58.33 1.41 0.38 1.31

Thailand 0.47 5.36 53.47 1.73 0.27 0.95

Brazil 0.31 0.48 23.61 0.46 0.69 2.38

Jordan 0.31 0.48 23.61 0.46 0.69 2.38

Chile −0.10 0.36 47.22 0.36 −0.29 −1.00

Pakistan −0.21 1.84 22.22 1.31 −0.16 −0.56

Korea,

Republic of

−0.32 −8.25 53.47 1.51 −0.21 −0.73

Taiwan −0.33 0.97 45.83 1.01 −0.33 −1.14

Turkey −0.35 0.90 40.28 0.48 −0.74 −2.55

Mean-ETL portfolio with CTEF variable outperforms the
portfolio with MQ variable in the U.S. stock market in Shao
[8].
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