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On the Complexity of Sparse Label
Propagation
Alexander Jung*
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This paper investigates the computational complexity of sparse label propagation which

has been proposed recently for processing network-structured data. Sparse label

propagation amounts to a convex optimization problem and might be considered as an

extension of basis pursuit from sparse vectors to clustered graph signals representing the

label information contained in network-structured datasets. Using a standard first-order

oracle model, we characterize the number of iterations for sparse label propagation to

achieve a prescribed accuracy. In particular, we derive an upper bound on the number

of iterations required to achieve a certain accuracy and show that this upper bound is

sharp for datasets having a chain structure (e.g., time series).

Keywords: graph signal processing, semi-supervised learning, convex optimization, compressed sensing,

complexity, complex networks, big data

1. INTRODUCTION

A powerful approach to processing massive datasets is via using graph models. In particular, we
consider datasets which can be characterized by an “empirical graph” (cf. [1, Ch. 11]) whose
nodes represent individual data points and whose edges connect data points which are similar
in an application-specific sense. The empirical graph for a particular dataset might be obtained
by (domain) expert knowledge, an intrinsic network structure (e.g., for social network data) or
in a data-driven fashion by imposing smoothness constrains on observed realizations of graph
signals (which serve as training data) [2–8]. Besides the graph structure, datasets carry additional
information in the form of labels (e.g., class membership) associated with individual data points.
We will represent such label information as graph signals defined over the empirical graph [9].

Using graph signals for representing datasets is appealing for several reasons. Indeed, having
a graph model for datasets facilitates scalable distributed data processing in the form of message
passing over the empirical graph [10]. Moreover, graph models allow to cope with heterogeneous
datasets containing mixtures of different data types, since they only require an abstract notion of
similarity between individual data points. In particular, the structure encoded in the graphmodel of
a dataset enables to capitalize, by exploiting the similarity between data points, on massive amounts
of unlabeled data via semi-supervised learning [1]. This is important, since labeling of data points
is often expensive and therefore label information is typically available only for a small fraction of
the overall dataset. The labels of individual data points induce a graph signal which is defined over
the associated empirical graph.We typically only have access to the signal values (labels) of few data
points and the goal is learn or recover the remaining graph signal values (labels) for all other data
points.

The processing of graph signals relies on particular models for graph signals. A prominent
line of uses applies spectral graph theory to extend the notion of band-limited signals from
the time domain (which corresponds to the special case of a chain graph) to arbitrary graphs
[1, 9, 11–14]. These band-limited graph signals are smooth in the sense of having a small variation

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2018.00022
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2018.00022&domain=pdf&date_stamp=2018-07-10
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alexander.jung@aalto.fi
https://doi.org/10.3389/fams.2018.00022
https://www.frontiersin.org/articles/10.3389/fams.2018.00022/full
http://loop.frontiersin.org/people/380676/overview


Jung On the Complexity of Sparse Label Propagation

over well-connected subsets of nodes, where the variation
is measured by the Laplacian quadratic form. However,
our approach targets datasets whose labels induce piece-wise
constant graph signals, i.e., the signal values (labels) of data points
belonging to well connected subset of data points (clusters) [15],
are nearly identical. This signal model is useful, e.g., in change-
point detection, image segmentation or anomaly detection where
signal values might change abruptly [16–20].

The closest to our work is Hallac et al.[16], Sharpnack et al.
[17], and Wang et al.[18] for general graph models, as well as
a line of work on total variation-based image processing [21–
23]. In contrast to Chambolle [21], Chambolle and Pock [22],
and Pock and Chambolle. [23], which consider only regular grid
graphs, our approach applies to arbitrary graph topology. The
methods presented in Fan and Guan [16], Sharpnack et al. [17],
and Wang et al. [20] apply also to arbitrary graph topologies
but require (noisy) labels available for all data points, while we
consider labels available only on a small subset of nodes.

1.1. Contributions and Outline
In section 2, we formulate the problem of recovering clustered
graph signals as a convex optimization problem. We solve this
optimization problem by applying a preconditioned variant of
the primal-dual method of Pock and Chambolle [23]. As detailed
in section 3, the resulting algorithm can be implemented as a
highly scalable message passing protocol, which we coin sparse
label propagation (SLP). In section 4, we present our main result
which is an upper bound on the number of SLP iterations
ensuring a particular accuracy. We also discuss the tightness of
the upper bound for datasets whose empirical graph is a chain
graph (e.g, time series).

1.2. Notation
Given a vector x = (x1, . . . , xn)

T ∈ R
n, we define the norms

‖x‖1 :=
∑n

l=1 |xl| and ‖x‖2 :=
√

∑n
l=1(xl)

2, respectively. The

spectral norm of amatrixD is denoted ‖D‖2 := sup‖x‖2=1 ‖Dx‖2.
For a positive semidefinite (psd) matrix Q ∈ R

n×n, with
spectral decomposition Q = Udiag{qi}ni=1U

T , we define its
square root as Q1/2

:= Udiag{√qi}ni=1U
T . For a positive definite

matrix Q, we define the norm ‖x‖Q : =
√

xTQx. The signum
sign{x} of a vector x =

(

x1, . . . , xd
)

is defined as the vector
(

sign(x1), . . . , sign(xd)
)

∈ R
d with the scalar signum function

sign(xi) =











−1 for xi < 0

0 for xi = 0

1 for xi > 0.

(1)

Throughout this paper we consider convex functions g(x) whose
epigraphs epi g := {(x, t) : x ∈ R

n, g(x) ≤ t} ⊆ R
n × R are non-

empty closed convex sets [24]. Given such a convex function g(x),
we denote its subdifferential at x0 ∈ R

n by

∂g(x0) := {y ∈ R
n
: g(x) ≥ g(x0)+yT(x−x0) for any x} ⊆ R

n

and its convex conjugate function by Boyd and Vandenberghe
[25]

g∗(ŷ) := sup
y∈Rn

yT ŷ− g(y). (2)

We can re-obtain a convex function g(y) from its convex
conjugate via [25]

g(ŷ) := sup
y∈Rn

yT ŷ− g∗(y). (3)

2. PROBLEM SETTING

We consider network-structured datasets which are represented
by an undirected weighted graph G = (V , E ,W), referred to as
the “empirical graph” (see Figure 1). The nodes i ∈ V of the
empirical graph represent individual data points, such as user
profiles in a social network or documents of a repository. An
undirected edge {i, j} ∈ E of the empirical graph encodes a notion
of (physical or statistical) proximity of neighboring data points,
such as profiles of befriended social network users or documents
which have been co-authored by the same person. This network
structure is identified with conditional independence relations
within probabilistic graphical models (PGM) [4–8].

As opposed to PGM, we consider a fully deterministic graph-
based model which does not invoke an underlying probability
distribution for the observed data. In particular, given an edge
{i, j} ∈ E , the nonzero value Wi,j > 0 represents the amount
of similarity between the data points i, j ∈ V . The edge set E
can be read off from the non-zero pattern of the weight matrix
W∈R

N×N since

{i, j} ∈ E if and only ifWi,j > 0. (4)

According to (4), we could in principle handle network-
structured datasets using traditional multivariate (vector/matrix
based) methods. However, putting the emphasis on the

FIGURE 1 | Some examples of network-structured datasets with associated

empirical graph being (A) a chain graph (discrete time signals), (B) grid graph

(2D-images) and (C) a clustered graph (social networks).
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empirical graph leads naturally to scalable algorithms which
are implemented as message passing methods (see Algorithm 2
below).

The neighborhood N (i) and weighted degree (strength) di of
node i ∈ V are

N (i) := {j ∈ V :{i, j}∈E}, and di :=
∑

j∈N (i)

Wi,j, respectively. (5)

In what follows we assume the empirical graph to be connected,
i.e., di > 0 for all nodes i ∈ V and having no self-loops such that
Wi,i=0 for all i∈V . The maximum (weighted) node degree is

dmax := max
i∈V

di
(5)= max

i∈V

∑

j∈N (i)

Wi,j. (6)

It will be convenient to orient the undirected empirical

graph G = (V , E ,W), which yields the directed version
−→
G =

(V ,
−→
E ,W). The orientation amounts to declaring for each edge

e = {i, j} one node as the head (origin node) and the other node as
the tail (destination node) denoted e+ and e−, respectively. Given
a set of edges S ⊆ E in the undirected graph G, we denote the

corresponding set of directed edges in
−→
G as

−→
S . The incidence

matrix D∈R
|E|×|V| of

−→
G is [16]

De,i =











We if i = e+

−We if i = e−

0 else.

(7)

If we number the nodes and orient the edges in the chain graph in
Figure 1A from left to right, its weighted incidence matrix would
be

D =
(

W1,2 −W1,2 0
0 W2,3 −W2,3

)

.

The directed neighborhoods of a node i ∈ V are defined as
N+(i) := {j ∈ V : e = {i, j} ∈ E , and e+ = i} and N−(i) :=
{j ∈ V : e = {i, j} ∈ E , and e− = i}, respectively. We highlight
that the particular choice of orientation for the empirical graph G

has no effect on our results andmethods and will be only used for
notational convenience.

In many applications we can associate each data point i ∈ V

with a label xi, e.g., in a social network application the label xi
might encode the group membership of the member i ∈ V in a
social network G. We interpret the labels xi as values of a graph
signal x defined over the empirical graph G. Formally, a graph
signal x ∈ R

V defined over the graph G maps each node i ∈ V

to the graph signal value x[i] ∈ R. Since acquiring labels is often
costly and error-prone, we typically have access to a few noisy
labels x̃i for the data points i ∈ M ⊆ V within a (small) subset
M ⊆ V of nodes in the empirical graph. Thus, we are interested
in recovering the entire graph signal x from knowledge of its
values x[i] = x̃i on a small subsetM ⊆ V of labeled nodes i ∈ M.
The signal recovery will be based on a clustering assumption [1].
Clustering Assumption (informal). Consider a graph signal x ∈
R
|V| whose signal values are the (mostly unknown) labels x̃i of the

data points zi ∈ D. The signal values x[i], x[j] at nodes i, j ∈ V

within a well-connected subset (cluster) of nodes in the empirical
graph are similar, i.e., x[i] ≈ x[j].

This assumption of clustered graph signals x can be made
precise by requiring a small total variation (TV)

‖x‖TV :=
∑

{i,j}∈E
Wi,j|x[j]−x[i]|. (8)

The incidence matrix D (cf. (7)) allows to represent the TV of a
graph signal conveniently as

‖x‖TV = ‖Dx‖1. (9)

We note that related but different measures for the total variation
of a graph signal have been proposed previously (see, e.g., [26,
27]). The definition (8) is appealing for several reasons. First, it
conforms with the class of piece-wise constant or clustered graph
signals which has proven useful in several applications including
meteorology and binary classification [28, 29]. Second, as we
demonstrate in what follows, the definition (8) allows to derive
semi-supervised learning methods which can be implemented by
efficientmassing passing over the underlying empirical graph and
thus ensure scalability of the resulting algorithm to large-scale
(big) data.

A sensible strategy for recovering a graph signal with small TV
is via minimizing the TV ‖x̃‖TV while requiring consistency with
the observed noisy labels {x̃i}i∈M, i.e.,

x̂SLP ∈ arg min
x∈R|V |

∑

{i,j}∈E
Wi,j|x[j]−x[i]| s.t. x[i]= x̃i for all i ∈ M

(9)= arg min
x∈R|V |

‖Dx‖1 s.t. x[i]= x̃i for all i ∈ M. (10)

The objective function of the optimization problem (10) is the
seminorm ‖x‖TV, which is a convex function. 1 Since moreover
the constraints in (10) are linear, the optimization problem (10) is
a convex optimization problem [25]. Rather trivially, the problem
(10) is equivalent to

x̂SLP = arg min
x∈Q

‖Dx‖1. (11)

Here, we used the constraint set Q = {x : x[i] = x̃i for all i ∈
M} which collects all graph signals x ∈ R

|V| which match the
observed labels x̃i for the nodes of the sampling setM.

The usefulness of the learning problem (10) depends on
two aspects: (i) the deviation of the solutions of (10) from the
true underlying graph signal and (ii) the difficulty (complexity)
of computing the solutions of (10). The first aspect has been
addressed in [30] which presents precise conditions on the
sampling set M and topology of the empirical graph G such
that any solution of (10) is close to the true underlying graph

1The seminorm ‖x‖TV is convex since it is homogeneous (‖αx‖TV=|α|‖x‖TV for

α ∈ R) and satisfies the triangle inequality (‖x+y‖TV≤‖x‖TV+‖y‖TV). These two
properties imply convexity [25, section 3.1.5].
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signal if it is (approximately) piece-wise constant over well-
connected subsets of nodes (clusters). The focus of this paper is
the second aspect, i.e., the difficulty or complexity of computing
approximate solutions of (10).

In what follows we will apply an efficient primal-dual
method to solving the convex optimization problem (10).
This primal-dual method is appealing since it provides a
theoretical convergence guarantee and also allows for an
efficient implementation as message passing over the underlying
empirical graph (cf. Algorithm 2 below). We coin the resulting
semi-supervised learning algorithm sparse label propagation
(SLP) since it bears some conceptual similarity to the ordinary
label propagation (LP) algorithm for semi-supervised learning
over graph models. In particular, LP algorithms can be
interpreted as message passing methods for solving a particular
recovery (or, learning) problem [1, Chap 11.3.4.]:

x̂LP ∈ arg min
x∈R|V |

∑

{i,j}∈E
Wi,j(x[i]−x[j])2 s.t. x[i]= x̃i for all i ∈ M.

(12)
The recovery problem (12) amounts to minimizing the weighted
sum of squares, while SLP (10) minimize a weighted sum of
absolute values, of the signal differences (x[i]−x[j])2 arising over
the edges {i, j} ∈ E in the empirical graph G. It turns out that
using the absolute values of signal differences instead of their
squares allows SLP methods to accurately learn graph signals x
which vary abruptly over few edges, e.g., clustered graph signals
considered in [28, 29]. In contrast, LP methods tends to smooth
out such abrupt signal variations.

The SLP problem (10) is also closely related to the recently
proposed network Lasso [18, 31]

x̂nLasso ∈ arg min
x∈R|V |

∑

i∈M
(x[i]− x̃i)

2 + λ‖x‖TV. (13)

Indeed, according to Lagrangian duality [25, 32], by choosing
λ in (13) suitably, the solutions of (13) coincide with those of
(10). The tuning parameter λ trades small empirical label fitting
error

∑

i∈M(x[i]− x̃i)
2 against small total variation ‖x̂nLasso‖TV

of the learned graph signal x̂nLasso. Choosing a large value of λ

enforces small total variation of the learned graph signal, while
using a small value for λ puts more emphasis on the empirical
error. In contrast to network Lasso (13), which requires to choose
the parameter λ (e.g., using (cross-)validation [33, 34]), the SLP
method (10) does not require any parameter tuning.

3. SPARSE LABEL PROPAGATION

The recovery problem (10) is a convex optimization problem
with a non-differentiable objective function, which precludes
the use of standard gradient methods such as (accelerated)
gradient descent. However, both the objective function and the
constraint set of the optimization problem (10) have rather a
simple structure individually. This suggests the use of efficient
proximal methods [35] for solving (10). In particular, we apply
a preconditioned variant of the primal-dual method introduced
by [36] to solve (10).

In order to apply the primal-dual method of [36], we
reformulate (10) as an unconstrained problem (see (11))

x̂SLP∈arg min
x∈R|V |

f (x) := g(Dx)+ h(x), with g(y)

:= ‖y‖1 and h(x) :=
{

∞ if x /∈ Q

0 if x ∈ Q.

(14)

The function h(x) in (14) is the indicator function (cf. [24]) of the
convex setQ and can be described also via its epigraph

epi h = {(x, t) : x ∈ Q, t ≥ 0} ⊆ R
|V| × R.

It will be useful to define another optimisation problem which
might be considered as a dual problem to (14), i.e.,

ŷSLP∈arg max
y∈R|E |

f̃ (y) := −h∗(−DTy)− g∗(y). (15)

Note that the objective function f̃ (y) of the dual SLP problem
(15) involves the convex conjugates h∗(x) and g∗(y) (cf. (2)) of
the convex functions h(x) and g(y) which define the primal SLP
problem (14).

By elementary convex analysis [24], the solutions x̂SLP of (14)
are characterized by the zero-subgradient condition

0 ∈ ∂f (x̂SLP). (16)

A particular class of iterative methods for solving (14), referred
to as proximal methods, is obtained via fixed-point iterations of
some operator P : R

|V| → R
|V| whose fixed-points are precisely

the solutions x̂SLP of (16), i.e.,

0 ∈ ∂f (x̂SLP) if and only if x̂SLP = P x̂SLP. (17)

In general, the operator P is not unique, i.e., there are different
choices for P such that (17) is valid. These different choices for
the operator P in (17) result in different proximal methods [35].

One approach to constructing the operator P in (17) is based
on convex duality [24, Thm. 31.3], according to which a graph
signal x̂SLP ∈ R

|V| solves (14) if and only if there exists a (dual)
vector ŷ ∈ R

|E| such that

− (DT ŷSLP) ∈ ∂h(x̂SLP) , andDx̂SLP ∈ ∂g∗(ŷSLP). (18)

The dual vector ŷSLP ∈ R
|E| represents a signal defined over the

edges E in the empirical graph G, with the entry ŷSLP[e] being the
signal value associated with the particular edge e ∈ E .

Let us now rewrite the two coupled conditions in (18) as

x̂SLP − ŴDT ŷSLP ∈ x̂SLP + Ŵ∂h(x̂SLP) , and 23Dx̂SLP + ŷSLP

∈ 3∂g∗(ŷSLP)+ 3Dx̂SLP + ŷSLP, (19)

with the invertible diagonal matrices (cf. (4) and (5))

3 := (1/2)diag{λ{i,j} = 1/Wi,j}{i,j}∈E ∈ R
|E|×|E| and Ŵ

:= (1/2)diag{γi = 1/di}i∈V ∈ R
|V|×|V|. (20)
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The specific choice (20) for the matrices Ŵ and 3 can be shown
to satisfy [23, Lemma 2]

‖Ŵ1/2DT31/2‖2 ≤ 1/2, (21)

which will turn out to be crucial for ensuring the convergence of
the iterative algorithm we will propose for solving (14).

It will be convenient to define the resolvent operator for the
functions g∗(y) and h(x) (cf. (14) and (2)), [23, section 1.1.]

(I+ 3∂g∗)−1(y) := arg min
z∈R|E |

g∗(z)+ (1/2)(y−z)T3
−1(y−z), and

(I+ Ŵ∂h)−1(x) := arg min
z∈R|V |

h(z)+ (1/2)(x−z)TŴ
−1(x−z).

(22)

We can now rewrite the optimality condition (3) (for x̂SLP, ŷSLP
to be primal and dual optimal) more compactly as

x̂SLP = (I+ Ŵ∂h)−1(x̂SLP − ŴDT ŷSLP)
(23)

ŷSLP − 2(I+ 3∂g∗)−13Dx̂SLP = (I+ 3∂g∗)−1(ŷSLP − 3Dx̂SLP).

The characterization (23) of the solution x̂SLP ∈ R
|V| for the

SLP problem (10) leads naturally to the following fixed-point
iterations for finding x̂SLP (cf. [23])

ŷ(k+1)
:= (I+ 3∂g∗)−1(ŷ(k) + 3D(2x̂(k) − x̂(k−1)))

x̂(k+1)
:= (I+ Ŵ∂h)−1(x̂(k) − ŴDT ŷ(k+1)). (24)

The fixed-point iterations (24) are similar to those considered in
[36, section 6.2.] for grid graphs arising in image processing. In
contrast, the iterations (24) are formulated for an arbitrary graph
(network) structure which is represented by the incidence matrix
D ∈ R

|E|×|V|. By evaluating the application of the resolvent
operators (cf. (22)), we obtain simple closed-form expressions
(cf. [36, section 6.2.]) for the updates in (24) yielding, in turn,
Algorithm 1.

Note that the Algorithm 1 does not directly output the iterate
x̂(k) but its running average x̄(k). Computing the running average
(see step 8 in Algorithm 1) requires only little effort but allows for
a simpler convergence analysis (see the proof of Theorem 1 in the
Appendix).

One of the appealing properties of Algorithm 1 is that it
allows for a highly scalable implementation via message passing
over the underlying empirical graph G. This message passing
implementation, summarized in Algorithm 1, is obtained by
implementing the application of the graph incidence matrix D

and its transpose DT (cf. steps 2 and 5 of Algorithm 1) by local
updates of the labels x̂[i], i.e., updates which involve only the
neighborhoods N (i), N (j) of all edges {i, j} ∈ E in the empirical
graph G.

Note that executing Algorithm 2 does not require to collect
global knowledge about the entire empircal graph (such as the
maximum node degree dmax (6)) at some central processing
unit. Indeed, if we associate each node in the data graph with a
computational unit, the execution of Algorithm 2 requires each

Algorithm 1 Sparse Label Propagation

Input: directed empirical graph
−→
G with incidence matrix D ∈

R

−→
E ×V (cf. (7)), sampling setM, initial labels {x̃i}i∈M.

Initialize: k:= 0, x̄ = x̂(−1) = x̂(0) = ŷ(0):= 0, γi := 1/(2di),
λ{i,j} = 1/(2Wi,j).

1: repeat

2: x := 2x̂(k) − x̂(k−1)

3: ŷ(k+1)
:= ŷ(k) + 3Dx with 3 = diag{λ{i,j}}{i,j}∈E

4: ŷ(k+1)[e] : = ŷ(k+1)[e]/max{1, |ŷ(k+1)[e]|} for all edges

e ∈ −→
E

5: x̂(k+1)
:= x̂(k) − ŴDT ŷ(k+1) with Ŵ = diag{γi}i∈V

6: x̂(k+1)[i] := x̃i for all sampled nodes i ∈ M

7: k := k+ 1

8: x̄(k) := (1− 1/k)x̄(k−1) + (1/k)x̂(k)

9: until stopping criterion is satisfied

Output: labels x̂SLP[i] := x̄(k)[i] for all i ∈ V

node i ∈ V only to store the values {ŷ[{i, j}],Wi,j}j∈N (i) and

x̂(k)[i]. Moreover, the number of arithmetic operations required
at each node i ∈ V during each time step is proportional to
the number of the neighbors N (i). These characteristics allow
Algorithm 2 to scale to massive datasets (big data) if they can
be represented using sparse networks having a small maximum
degree dmax (6)). The datasets generated in many important
applications have been found to be accurately represented by
such sparse networks [37].

4. COMPLEXITY OF SPARSE LABEL
PROPAGATION

There are various options for the stopping criterion in Algorithm
1, e.g., using a fixed number of iterations or testing for sufficient
decrease of the objective function (cf. [38]). When using a
fixed number of iterations, the following characterization of
the convergence rate of Algorithm 1, we need to have a
precise characterization of how many iterations are required to
guarantee a prescribed accuracy of the resulting estimate. Such a
characterization is provided by the following result.

Theorem 1. Consider the sequences x̂(k) and ŷ(k) obtained from
the update rule (24) and starting from some arbitrary initalizations
x̂(0) and ŷ(0). The averages

x̄(K) = (1/K)

K
∑

k=1

x̂(k), and ȳ(K) = (1/K)

K
∑

k=1

ŷ(k) (25)
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Algorithm 2 Sparse Label Propagation as Message Passing

Input: directed empirical graph
−→
G = (V ,

−→
E ,W), sampling set

M, noisy labels {x̃i}i∈M.

Initialize: k:= 0, x̄ = ŷ(0) = x̂(−1) = x̂(0):= 0, γi := 1/(2di),
λ{i,j} = 1/(2Wi,j).

1: repeat

2: for all nodes i ∈ V : x[i] := 2x̂(k)[i]− x̂(k−1)[i]

3: for all edges e = (i, j) ∈ −→
E : ŷ(k+1)[e] : = ŷ(k)[e] +

Wi,jλ{i,j}(x[e+]− x[e−])

4: for all edges e ∈ −→
E : ŷ(k+1)[e] : =

ŷ(k+1)[e]/max{1, |ŷ(k+1)[e]|}

5: for all nodes i ∈ V : x̂(k+1)[i]: = x̂(k)[i] −
γi

[

∑

j∈N+(i)
Wi,jŷ

(k+1)[{i, j}]−
∑

j∈N−(i)
Wi,jŷ

(k+1)[{i, j}]
]

6: for all sampled nodes i∈M: x̂(k+1)[i] := x̃i

7: k := k+ 1

8: for all nodes i∈V : x̄[i] := (1− 1/k)x̄[i]+ (1/k)x̂(k)[i]

9: until stopping criterion is satisfied

Output: labels x̂SLP[i] := x̂(k)[i] for all i ∈ V

obtained after K iterations (for k = 0, . . . ,K − 1) of (24), satisfy

‖x̄(K)‖TV−‖x̂SLP‖TV ≤ 1

2K

(

‖x̂(0)− x̂SLP‖2
Ŵ
−1 +‖ŷ(0)− ỹ(K)‖2

3
−1

)

(26)
with ỹ(K) = sign{Dx̄(K)}. Moreover, the sequence ‖ŷ(0)− ỹ(K)‖

3
−1 ,

for K = 1, . . ., is bounded.

Proof: see Appendix.

According to (26), the sub-optimality in terms of objective value
function incurred by the output of Algorithm 1 after K iterations

is bounded as

‖x̄(K)‖TV − ‖x̂SLP‖TV ≤ c/K, (27)

where the constant c does not depend on K but might depend
on the empirical graph via its weighted incidence matrix D

(cf. (7)) as well as on the initial labels x̃i. The bound (27)
suggests that in order to ensure reducing the sub-optimality by
a factor of two, we need to run Algorithm 1 for twice as many
iterations.

Let us now show that the bound (27) on the convergence
speed is essentially tight. What is more, the bound cannot be
improved substantially by any learning method, such as SLP (14)
or network Lasso (13), which is implemented as message passing
over the underlying empirical graph G. To this end we consider
a dataset whose empirical graph is a weighted chain graph (see
Figure 2) with nodes V = {1, . . . ,N} which are connected by
N−1 edges E = {{i, i+1}}i=1,...,N−1. The weights of the edges are
Wi,i+1 = 1/i. The labels of the data pointsV induce a graph signal
x defined over G with x[i] = 1 for all nodes i = {1, . . . ,N − 1}
and x[N] = 0. We observe the graph signal noise free on the
sampling set M = {1,N}, resulting in the observations x̃1 = 1
and x̃N = 0. According to [30, Theorem 3], the solution x̂SLP
of the SLP problem (14) is unique and coincides with the true
underlying graph signal x. Thus, the optimal objective function
value is ‖x̂SLP‖TV = ‖x‖TV = 1/(N − 1). On the other
hand, the output x̄(K) of Algorithm 1 after K iterations satisfies
x̄(K)[1] = 1 and x̄(K)[i] = 0 for all nodes i ∈ {K + 1, . . . ,N}.
Thus,

‖x̄(K)‖TV ≥ 1/WK,K+1 = 1/K, (28)

implying, in turn,

‖x̄(K)‖TV − ‖x̂SLP‖TV ≥ 1/K − 1/N. (29)

For the regime of K/N ≪ 1 which is reasonable for big
data applications where the number of iterations K computed
in Algorithm 1 is small compared to the size N of the
dataset, the dependency of the lower bound (29) on the
number of iterations is essentially ∝ 1/K and therefore
matches the upper bound (27). This example indicates that, for
certain structure of edge weights, chain graphs are among the

FIGURE 2 | The empirical graph G is a chain graph with edge weights Wi,i+1 = 1/i. We aim at recovering the graph a graph signal from the observations x̃1 = 1 and

x̃N = 0 using Algorithm 2.
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most challenging topologies regarding the convergence speed
of SLP.

5. CONCLUSIONS

We have studied the intrinsic complexity of sparse label
propagation by deriving an upper bound on the number of
iterations required to achieve a given accuracy. This upper bound
is essentially tight as it cannot be improved substantially for the
particular class of graph signals defined over a chain graph (such
as time series).
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