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Any movement performed repeatedly will be executed with inter-trial variability.

Oropharyngeal swallowing is a complex sensorimotor action, and swallow-to-swallow

variability can have consequences that impact swallowing safety. Our aim was to

determine an appropriate method to measure swallowing pressure waveform variability.

An ideal variability metric must be sensitive to known deviations in waveform amplitude,

duration, and overall shape, without being biased by waveforms that have both

positive and sub-atmospheric pressure profiles. Through systematic analysis of model

waveforms, we found a coefficient of variability (CV) parameter on waveforms adjusted

such that the overall mean was 0 to be best suited for swallowing pressure

variability analysis. We then investigated pharyngeal swallowing pressure variability

using high-resolution manometry data from healthy individuals to assess impacts of

waveform alignment, pharyngeal region, and number of swallows investigated. The

alignment that resulted in the lowest overall swallowing pressure variability was when the

superior-most sensor in the upper esophageal sphincter (UES) reached half its maximum

pressure. Pressures in the tongue base region of the pharynx were least variable and

pressures in the hypopharynx region were most variable. Sets of 3–10 consecutive

swallows had no overall difference in variability, but sets of two swallows resulted in

significantly less variability than the other dataset sizes. This study identified variability

in swallowing pressure waveform shape throughout the pharynx in healthy adults; we

discuss implications for swallowing motor control.

Keywords: deglutition, pressure, variability, high-resolution manometry, pharyngeal pressure

INTRODUCTION

Swallowing is a critical action in daily life. Oropharyngeal swallowing requires the coordinated
engagement of 31 pairs of muscles and involvement of six cranial nerves [1], with goals of
preparing food and liquid into a bolus, transporting the bolus quickly through the oral cavity
and pharynx into the esophagus, and protecting the airway from the bolus. Oropharyngeal
swallowing has both voluntary and reflexive components. For example, one has voluntary
control over when to start and stop chewing, but once the stereotyped pharyngeal all-or-none
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response is triggered, it cannot be interrupted or reversed [2].
Many components of oropharyngeal swallowing are believed to
be controlled by brainstem central pattern generators [3, 4], but
some characteristics are cortically modulated [5–8]. Breakdown
in any of the sensory or motor components of the oropharyngeal
swallow can lead to inefficient and unsafe swallowing (dysphagia).

Oropharyngeal dysphagia impacts 1 in 25 adults in the
United States [9] and is a consequence of many disease
processes, such as Parkinson disease [10], amyotrophic lateral
sclerosis [11], stroke [12], dementia [13], head and neck cancer
[14], and age-related muscle degeneration [15]. Dysphagia
is a risk factor for malnutrition, dehydration, aspiration
pneumonia, and death [16, 17]. Additionally, dysphagia can
have devastating effects on quality of life in patients and
their families [16, 18, 19]. Dysphagia treatment is largely
behavioral [20–22], but treatments are limited due to an
incomplete understanding of swallowing motor control [23,
24]. Investigations of within-individual, swallow-to-swallow
variability may give further insight into swallowing motor
control. Whenever a motor action is performed repeatedly, there
is inherent variability in the kinematics and the outcome of
each movement [25, 26]. This variability can arise from noise
or other subtle differences in neural and muscle activity [27–
33] that can occur both during movement preparation [34–
37] and execution [37–39]. Movement variability is sensitive
to the sensorimotor and timing demands of a task. Tasks
that have less complexity, fewer degrees of freedom, known
expectations, and adequate time for preparation are less
variable than conversely more difficult tasks (e.g., [35, 40,
41]).

Movement variability is an integral part of motor learning
[29, 42–44]. We can modulate the degree of variability used
during motor learning, as either part of a reward [45] or
error-based learning process [46], and this modulation in
variability eventually decreases once we master a new motor
skill [47–49]. Movement variability is also critical for responding
to permutations in the environment and producing on-line
corrections [44, 50, 51]. On the other hand, pathologically
increased movement variability has been characterized in many
neurologic conditions, including Parkinson disease [52–56],
stroke [39, 57], dystonia [41, 58], developmental coordination
disorder [59, 60], and cerebral palsy [61, 62], to name a few.

To date, there have been very few investigations of swallowing
movement variability [63–66]. Swallowing kinematics are
difficult tomeasure, asmost of the relevantmusculature is located
internally within the mouth and throat. Standard swallowing
evaluation techniques involve capturing video using an x-ray or
endoscopic approach [67, 68], which is limited by low temporal
resolution (30Hz), inadequate measurement reliability [69], and
patient exposure to radiation [70]. Recent improvements in
diagnostic technology have allowed for the quantification of
contact pressures along the pharynx and esophagus at high-
resolutions in time (50–100Hz) and space (sensors spaced≤1 cm
apart) [71] (Figure 1). This high-resolution manometry technique
allows for the quantitative and time-efficient evaluation of

Abbreviations: UES, upper esophageal sphincter; CV, coefficient of variability.

swallowing motor behavior that is well-suited for movement
variability analyses.

During the pharyngeal phase of swallowing, the soft palate
closes against the walls of the nasopharynx to occlude the nasal
cavity. The base of the tongue retracts against the pharyngeal
constrictors, which puts a positive pressure on the tail of
the bolus and propels it through the pharynx. At the same
time, the upper esophageal sphincter (UES) is relaxed and
the entrance to the airway is elevated and closed, creating a
negative pressure gradient through which the bolus can enter the
esophagus [16]. Thus, pharyngeal high-resolution manometry
results in a set of 9–15, time-linked ballistic pressure waveforms,
some of which are comprised of positive pressure values and
others that have both positive and sub-atmospheric values [72].
Swallow-to-swallow differences in pressure amplitude, timing,
and coordination may have drastic effects on swallowing safety
and efficiency.

There are many metrics with which to measure biomedical,
movement, or force variability at the waveform level (see
Variability Metrics section). Most metrics compare the spread
of waveforms compared to the mean (e.g., standard deviation,
root mean square, coefficient of variation) [49, 62, 65, 73] or
measure similarity between each waveform (e.g., correlation,
linear regression, distance between two waveforms) [74, 75].
Non-linear dynamics have also been used to describe gait, voice,
and robotic prosthesis control (e.g., [76–79]). Most reports of
variability simply state the metric used to measure variability;
few describe the construct validity in respect to the nature of the
biomedical signals analyzed [49, 75, 80]. It is unclear how these
metrics used to measure variability perform with modeled data
and specifically with swallowing pressure data.

The aim of the present study was to determine an appropriate
method for evaluating swallowing pressure waveform variability.
A variability metric must be sensitive to known deviations
in waveform amplitude, duration, and overall shape, without
being biased by waveforms that have both positive and sub-
atmospheric pressure profiles. A method by which to align
swallowing pressures from trial to trial should keep pressure from
different regions in the pharynx time-locked to a common event,
to allow for consideration of swallowing pressure coordination.
After a variability metric and an alignment method were chosen,
we aimed to determine differences in pressure variability across
pharyngeal regions and differences in pressure variability based
on the number of swallow trials analyzed. We hypothesized
that swallowing pressures from different regions in the pharynx
would differ from each other, due to contrasts in muscular
contractions responsible for generating such pressures. We also
hypothesized that variability would increase with increased
numbers of swallows analyzed, as more trials would allow more
opportunities to be variable.

MATERIALS AND METHODS

Literature Review
Instead of developing a novel variability metric, we reviewed
extant literature and adapted metrics developed for other
waveform types. We performed a search of the Medline
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FIGURE 1 | Pharyngeal high-resolution manometry probe in situ and pharyngeal regions of interest. (A) High-resolution manometry spatiotemporal plot from a healthy,

24 year-old female. (B) Pressure waveforms used for pressure variability analysis. (C) Still image from concurrent videofluoroscopy.

database using the search terms “variability” OR “similarity”
OR “stability” AND “waveform” OR “pressure” OR “gait” OR
“action potential” OR “time series.” Variability metrics chosen
for analysis must have been used to measure a biomedical
waveform in series, as opposed to timing or amplitude of one
aspect of a waveform. For example, heart rate variability is
commonly evaluated on sinus beat-to-beat intervals [81] and as
such, would not be a suitable parameter for the purposes of this
study.

Variability Metrics
Signal-to-Noise Ratio
Johnson and colleagues used signal-to-noise ratio to capture
variability of electromyography (EMG) activity from elbow flexor
and extensor muscles [82]. After aligning EMG data from each

trial into one vector with the inter-trial intervals removed and
normalizing data to the overall mean, they calculated a signal-to-
noise ratio by dividing the mean by the standard deviation:

Signal to Noise Ratio =
X

σ

Root Mean Square
Multiple groups have used root mean square, or some variation
thereof, to quantify variability. For example, Stratton et al. [73]
evaluated action potential waveforms with a conventional root
mean square calculation, after aligning the data into one vector:

Root Mean Square =

√

∑k
i= 1 x

2
i

k
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where k is the number of data points in the waveform.
Root mean square deviation has also been used [83] to

compare each possible pair of waveforms:

Root Mean SquareDeviation =

√

√

√

√

∑k
i= 1

(

xi − yi
)2

∑k
i= 1 (xi)

2

where k is the number of data points in each waveform, x is data
from one trial run waveform, and y is data from another trial run
waveform. After comparing each possible pair of waveforms, the
calculations from each pair are averaged.

Root mean square error [84] has also been used to evaluate
joint angle kinematics:

Root Mean Square Error =

√

1

k

∑k

i= 1
(xi − yi)

2

where k is the number of data points in each waveform, x is data
from one trial run waveform, and y is data from another trial run
waveform. After comparing each possible pair of waveforms, the
calculations from each pair are averaged.

Mean Absolute Error
Picerno et al. [84] calculated waveform similarity of joint angle
kinematics using the mean absolute error of each waveform
compared to the mean of all recorded waveforms:

MeanAbsolute Error =
1

k

∑k

i= 1

∣

∣xi − Xi

∣

∣

where k is the number of data points in each waveform, and X is
the mean of all trial runs. After comparing each waveform to the
mean, the mean absolute error calculations were averaged.

Mean absolute error can also be calculated between each
possible pair of waveforms, in a mean absolute percent error [85]:

MeanAbsolute Percent Error =
1

k

∑k

i= 1

∣

∣

∣

∣

xi − yi

xi

∣

∣

∣

∣

where k is the number of data points in each waveform, x is data
from one trial run waveform, and y is data from another trial run
waveform. After comparing each possible pair of waveforms, the
calculations from each pair are averaged.

Standard Deviation
Bulea et al. [62], as well as Krüger et al. [39], used a non-
corrected standard deviation (σ) to evaluate similarity of joint
angle kinematics, averaging the values over the length of the
waveform:

Mean Standard Deviation =
1

k

∑k

i= 1
σi

where k is the number of data points in each waveform.

Cyclic Spatiotemporal Index
Peladeau-Pigeon and Steele [65] evaluated tongue pressure
variability using the cyclic spatiotemporal index. After
normalizing for pressure duration and pressure amplitude,
standard deviations are calculated over all trial runs for each 2%
window. The 50 standard deviations from each 2% window are
then summed:

Cyclic spatiotemporal index =
∑50

i= 1
σi

A modification of this metric was also used that was not
normalized for pressure duration or pressure amplitude (non-
normalized cyclic spatiotemporal index).

Coefficient of Variation
Many adaptations of coefficient of variation (CV) have been used
to examine waveform variability. Martens et al. [49] used two
CV metrics to describe EMG waveform variability of shoulder
and arm musculature during swimming. One-dimensional CV
averages the standard deviation over all time points of the
waveforms of all trial runs and divides by the grand mean of all
data points:

CV1D =

√

1
k

∑k
i= 1 σ 2

i

1
k

∑k
i=1

∣

∣Xi

∣

∣

where k is the number of data points in the waveform, and σ 2 and
X were calculated over all trial runs. The authors believed that this
calculation would allow for better comparison of a dataset with a
large range of means and standard deviations [49].

Two-dimensional CV, conversely, computes the CV at each
data point over the waveform and then calculates the mean:

CV2D =
1

k

∑k

i= 1

σi

Xi

where k is the number of data points in the waveform, and σ 2 and
X were calculated over all trial runs. The authors posited that this
calculation takes time into perspective as well as waveform shape
[49].

O’Dwyer et al. [80] proposed calculating the CV of the
waveform pattern by transforming the raw data so that the grand
mean is zero:

CVpattern =

√

1
k

∑k
i= 1 σ 2

i

1
k

∑k
i= 1

∣

∣Xi

∣

∣

× 100

where k is the number of data points in the modified waveform,
and σ 2 and X were calculated over all trial runs, and the metric
is multiplied by 100 to express as a percentage. The authors
proposed this metric so the CV would not be biased by factors
related to reference joint angle position and thus would reflect
more of the trial-to-trial repeatability of motor performance [80].
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Variance Ratio
Martens et al. [49] used a variance ratio, proposed by Hershler
andMiller [86], to compare with their one- and two-dimensional
CV:

Variance Ratio =

∑k
i= 1

∑n
j= 1 (xij − Xi)

2
/k(n− 1)

∑k
i= 1

∑n
j= 1 (xij − X)

2
/(kn− 1)

where k is the number of data points in the waveform, n is the
number of trial runs, and X is the grand mean of all data points.

Coefficient of Quartile Variation
Martens et al. [49] additionally calculated the coefficient of
quartile variation to measure variability in two dimensions:

Coefficient of Quartile Variation =
1

k

∑k

i= 1

(Q3i − Q1i)

(Q3i + Q1i)

where k is the number of data points in the waveform, Q1 is the
first quartile over all trial runs, and Q3 is the third quartile over
all trial runs.

Cosine
Hassanpour et al. [75] described a cosine metric as a way to
compare angles of two waveforms:

Cosine =

∑k
i= 1 (xiyi)

√

((

∑k
i= 1 x

2
i

) (

∑k
i= 1 y

2
i

))

where k is the number of data points in each waveform, x is data
from one trial run waveform, and y is data from another trial run
waveform. After comparing each possible pair of waveforms, the
calculations from each pair are averaged.

Correlation
Correlations are a commonly-used approach in measuring
waveform variability. Some have used a Pearson correlation
coefficient to compare each possible pair of waveforms [74, 75,
87]:

r =

∑k
i= 1 (xi − x)(yi − y)

√

∑k
i= 1 (xi − x)2

√

∑k
i= i (yi − y)2

where k is the number of data points in each waveform, x is data
from one trial run waveform, and y is data from another trial
run waveform. After comparing each possible pair of waveforms,
the calculations from each pair are averaged. The corr function
in Matlab (MathWorks, Natick, MA) was used to perform these
calculations in the present study.

Cross-correlation is similar to the Pearson correlation, and
has been used in kinesiology/biomechanics literature to compare
force generated by knee extensors and flexors [83]:

Cross− Correlation =

∑k
i= 1 (xi − x)(yi − y)

√

∑k
i= 1 (xi − x)2(yi − y)2

where k is the number of data points in each waveform, x is data
from one trial run waveform, and y is data from another trial run
waveform. After comparing each possible pair of waveforms, the
calculations from each pair are averaged.

The coefficient of multiple correlation has been used in analysis
of gait kinematics [88, 89]:

Coefficient of Multiple Correlation =

√

√

√

√

√

√

1 −

[
∑n

j= 1

∑k
i= 1 ( xji − xi )

2
]

k(n−1)

[
∑n

j= 1

∑k
i= 1 ( xji − X )

2
]

(kn−1)

where k is the number of data points in the waveform, n is the
number of trial runs, and X is the grand mean of all data points.

Intraclass correlation evaluating the degree of absolute
agreement among measurements has been used to assess both
somatosensory evoked potentials [90] and gait kinematics [91]:

Intraclass Correlation Coefficient =
s2
b

(

s2
b
+ s2w

)

where s2
b
represents between-cluster variance and s2w represents

within-cluster variance. An ICC function in Matlab was used to
perform these calculations, using the A-1 specification [92].

Distance Metrics
Hassanpour et al. [75] explored a variety of distance metrics
that can be used to measure similarity in time-series biomedical
signals. For each of the following distance metrics, each possible
combination of waveforms was compared, with all calculations
averaged.

EuclideanDistance =

√

∑k

i= 1
(x1 − yi)

2

ChebyshevDistance = maxki= 1

∣

∣xi − yi
∣

∣

BlockDistance =
∑k

i= 1

∣

∣xi − yi
∣

∣

where k is the number of data points in each waveform, x is data
from one trial run waveform, and y is data from another trial run
waveform.

Mechmeche et al. [93] used the Fréchet distance metric to
measure similarity between two curves for evaluating joint
kinematics. Due to the complexity of this algorithm, a Matlab
package [94] was used to compute the Fréchet distances between
each possible pair of waveforms; each measurement was then
averaged.

Dynamic time warping is an algorithm that stretches
two waveforms such that the Euclidean distances between
corresponding points is minimized. This method has been
used to measure similarity between two audio signals [95]. A
Matlab package [96] was used to compute the dynamic time
warping calculation between each possible pair of waveforms;
each measurement was then averaged.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 July 2018 | Volume 4 | Article 23

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Jones et al. Swallowing Pressure Variability

Linear Regression
Several studies have used an ordinary least squares estimation
in a linear regression model to determine similarity between
waveforms [75, 97–99]:

y = β0 + β1 ∗ x + error

where y is data from one trial run waveform, and x is data from
another trial run waveform. Horsak et al. [97] and Krüger et al.
[39] both used the ordinary R2-value as their metric of strength
of relationship between two waveforms, sometimes referred to
as canonical correlation or coefficient of determination. Sarthein
et al. [98] used the t-value of β1/standard error of β1 to describe
the overall magnitude of difference between two waveforms.
The Matlab function fitlm was used to linearly fit each possible
combination of waveforms, and then R2- and t-values from each
comparison were averaged.

Model Waveforms
To assess whether variability metrics are sensitive to known
deviations in waveform amplitude, duration, or shape (i.e., time
at which the waveform hits its peak), sets of 10 model waveforms
were generated with a parabolic shape. A Gaussian random
number generator [100] with a mean of 100 and standard
deviations ranging between 5 and 20 was used to generate
200 sets of permutations (Figures 2A–C). The same 200 sets
of permutations were used to adjust the maximum amplitude,
duration of the waveform, and time at which the waveform peak
occurred. Waveforms were comprised of 100 data points (unless
the duration was manipulated), had a maximum amplitude of
100 (unless the amplitude was manipulated), and had waveform
peak occur at 50% of its duration (unless the time at which the
waveform hit its peak was deviated).

To assess whether waveform amplitude biased variability
calculation, sets of 10 model waveforms were created with the
same variation about the mean, but with overall mean values
of 100, 75, 50, and 25 (Figure 2D). Two hundred permutations
of each mean amplitude were evaluated. All waveforms were
comprised of 100 data points and had each waveform peak occur
at 50% of its duration.

To assess whether the relationship of the waveform to
zero (all positive values, all negative values, or waveforms
with positive and negative values) biased variability calculation,
sets of 10 model waveforms were created with the same
variation about the mean, but with all values positive, all values
negative, or half-positive/half-negative values (Figure 2E). Upper
esophageal sphincter pressure patterns typically fall in the sub-
atmospheric range (Figure 1B) and often take a shape similar
to the waveforms in the rightmost panel in Figure 2E. Two
hundred permutations of each waveform sign were evaluated.
All waveforms were comprised of 100 data points, had an overall
amplitude difference of 100, and had each waveform peak occur
at 50% of its duration.

Finally, to assess whether overall waveform duration biased
variability calculation, sets of 10 model waveforms were created
with the same variation about the mean, but with overall
durations of 100, 75, 50, and 25 data points (Figure 2F). Two

hundred permutations of each mean amplitude were evaluated.
All waveforms had a mean amplitude around 100 and had each
waveform peak occur at 50% of its duration.

Swallowing Pressure Data
Swallowing pressure data presented here are a secondary
analysis from a normative database of pharyngeal swallowing
pressures [101]. Data were collected from 103 healthy adults
(47 male) between the ages of 21–89 (mean age 52.4 ± 21.3),
without swallowing, gastrointestinal, or neurological disorders.
All participants provided informed consent to participate in a
research protocol approved by the University of Wisconsin—
Madison Health Sciences Institutional Review Board and
conducted under the principles in the Declaration of Helsinki.

All participants underwent a pharyngeal high-resolution
manometry study. This involved placement of a 2.75mm
diameter catheter through the nose and into the pharynx and
esophagus (Figure 1). After resting for approximately 5min,
participants swallowed 10 boluses of 10 cc thin-liquid barium
contrast that was delivered via syringe with the head in a neutral
position and a cue to swallow from the examiner. Simultaneous
videofluoroscopy data were collected, but those data were not
used in the present study. The manometric equipment used for
this study was comprised of solid-state pressure sensors that
recorded pressure circumferentially (ManoScan ESO,Medtronic,
Minneapolis, MN). Pressure sensors were spaced 1 cm apart,
and between 9 and 15 pressure sensors fell within the pharynx,
depending on the size of the individual. The manometric system
records pressure data at 50Hz, ranging between −20 and 300
mmHg, with a resolution of 2 mmHg.

Pressure waveforms were separated into four regions of
interest (Figure 1). The velopharynx is the superior-most region
of pharyngeal swallowing-related pressure as the soft palate
contacts the posterior and lateral portions of the nasal cavity
to valve off this region and prevent liquid from entering. In
this region, pressures rise from baseline prior to pressure in
other pharyngeal regions and often have a bimodal or peak-
plateau shape. The tongue base region is directly caudal to the
velopharynx and reflects positive pressure put on the tail of the
swallowed bolus from the tongue base, as well as the superior
and middle pharyngeal constrictors. These pressure waveforms
are typically unimodal in shape and have similar onsets and offset
times within this region. The hypopharynx is a region between
the tongue base and the UES. Pressure waveforms in this region
consist of a primary pressure wave with an onset after those
in the tongue base, with secondary irregularly-shaped peaks,
likely a consequence of contact of the cartilaginous laryngeal
and epiglottic structures against the pressure catheter. The UES
separates the pharynx from the esophagus. It is closed tightly at
rest and relaxes during swallowing to allow for bolus passage into
the esophagus. Due to swallowing-related movement of multiple
pharyngeal regions, pressures from the UES are captured over
multiple pressure sensors, even those that have low pressure
during baseline resting conditions [102]. All sensors in the
UES region have relatively low, even sub-atmospheric pressures
during bolus passage, which usually occur at a time of high
pressure in the velopharynx, tongue base, and hypopharynx and
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FIGURE 2 | Model waveforms and permutations. Parabolic waveforms were generated with random permutations in amplitude (A), duration (B), and shape (C), or

when in the waveform the maximum pressure occurred. Using the same amplitude permutations as in (A), the overall mean of the waveform was varied to center

around 100, 75, 50, or 25 arbitrary units (D). Using the same amplitude permutations as in (A), waveforms were modified such that all values were positive, all values

were negative, or had a combination of positive and negative values (E), to reflect properties of pharyngeal swallowing pressures. Finally, using the same amplitude

permutations as in (A), the overall duration of the waveform was varied to equal 100, 75, 50, and 25 arbitrary units (F).

are followed by a rapid increase in pressure with a gradual return
to baseline pressure [72]. For a more thorough outline of regional
pharyngeal swallowing pressure patterns, see the descriptions of
McCulloch [72], Rosen [103], Jones [102], and Meyer [104].

To identify the window of swallowing pressures on which
to calculate variability, swallowing pressure data were imported
into Matlab (Figure 3A), sorted into regions of interest, and
aligned with other swallows in the dataset (see waveform
alignment section below). Swallowing pressures from one
manometric sensor were plotted, and a researcher identified
approximate onsets and offsets. A customized Matlab script
then calculated the precise timing of onsets and offsets. For
pressures in the velopharynx, tongue base, and hypopharynx
regions, onsets were defined as the first swallowing pressure
wave to rise more than 2 mmHg in one interval, and offsets

were defined as the last pressure wave to fall more than
2 mmHg in one interval (Figures 3B–D). For pressures in
the hypopharynx, secondary waves were excluded if they
were temporally separated from the main pressure wave by
0.1 s or more (Figure 3D). In the UES, onsets were defined
as the first pressure wave to fall more than 2 mmHg
in one interval and the offsets were defined as the last
pressure wave to rise more than 2 mmHg before its peak
(Figures 3E,F). The 2 mmHg cutoff was chosen due to the
pressure resolution of theManoScan high-resolution manometry
system.

Swallowing Pressure Waveform Alignment
After variability metric selection, a key unanswered question
was how to best align the swallowing pressure waves. It is of
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FIGURE 3 | Identification of pressure waveform boundaries. Sample swallows from a healthy 32 year-old female, with a representative spatiotemporal plot (A). In

pressure waveforms in the velopharynx, tongue base, and hypopharynx, pressure onset was defined as the first of the set of waves to rise from baseline pressure at a

rate ≥2 mmHg/0.01 s, and pressure offset was defined as the last waveform to fall to baseline a rate equal to or ≥2 mmHg/0.01 s (B,C). Hypopharynx propagation

pressures were separated from non-clearance pressures (D). In the upper esophageal sphincter (UES), the waveform boundary started when the first waveform fell at

a rate ≥2 mmHg/0.01 s and ended when the last waveform rose at a rate ≥2 mmHg/0.01 s (E,F). This rate was determined as the pressure resolution of the

ManoScan ESO system is 2 mmHg and the data output is 100Hz. Pressure waveform boundaries were automatically detected by a customized Matlab script.

importance to have a stable reference time between sensors
in different regions, as the precise coordination of pharyngeal
pressure in different regions is important for a functional swallow
[105–107]. On 50 randomly-selected datasets from the 103
healthy subjects, we evaluated swallowing pressure variability
using the following methods of alignment:

1. Onset of superior-most pressure wave in the velopharynx,
tongue base, hypopharynx, or UES

2. Maximum pressure of the superior-most pressure wave
in the velopharynx, tongue base, hypopharynx, or
UES

3. Time point of half-maximum pressure of the superior-most
pressure wave in the velopharynx, tongue base, hypopharynx,
or UES

4. Time point of peak 1st derivation (maximumpressure change)
of the superior-most pressure wave in the velopharynx, tongue
base, hypopharynx, or UES.

We chose to evaluate the superior-most sensor in each region,
as there is considerable between-subject variability in the total
number of pressure sensors in each region.

Pharyngeal Region
For analysis of swallowing pressure variability differences
between the velopharynx, tongue base, hypopharynx, and
UES, variability was calculated for each pressure wave and
then averaged within region. The full dataset of 103 healthy
participants was used for this analysis.

Number of Swallows Analyzed
Typical clinical and research protocols involve 3–5 swallows
of each bolus type [e.g., [72, 108, 109]]. Using our dataset
of 10 swallows, we calculated pressure variability from subsets
containing 2–10 swallows.We used the swallows in the order they
were collected for the limited datasets (e.g., swallow #1, #2, and #3
for analyzing variability from three swallows). The full dataset of
103 healthy participants was used for this analysis.

Statistical Analysis
To assess whether the variability metric matched with known
model waveform permutations, Pearson product-moment
correlations were calculated for each variability metric output
and the permutation. Metrics with a correlation coefficient of
>0.80 or <−0.80 were judged to be a good fit. Due to the high
number of correlations calculated, p-values were not considered.

A subset of metrics that were highly correlated with
known variability in amplitude, duration, and shape were
further evaluated for bias. To assess whether the metric
performed differently at each amplitude, sign, and duration,
one-way analyses of variance (ANOVAs) were calculated for
each metric to assess effects of mean (100 vs. 75 vs. 50
vs. 25), sign (all positive values, all negative values, or both
positive and negative values), and duration (100 vs. 75 vs.
50 vs. 25). Post-hoc testing was done using Fisher’s Least
Significant Difference. A Bonferroni-corrected α-criterion of
0.05/(27 metrics × 3 ANOVAs) = 0.0006 was used to determine
significance.
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Three variability metrics that performed well on the above
statistical tests were correlated with each other as well as
with the known permutations using Pearson product-moment
correlations. A Bonferroni-corrected α-criterion of 0.05/6
correlations= 0.008 was used to determine significance.

To evaluate the impact of different swallowing pressure
alignment on pressure variability, we used a 4 × 4 repeated
measures ANOVA with effects of alignment type (pressure onset,
pressure peak, time of half-maximum pressure, and time of
peak 1st derivation) and region (velopharynx, tongue base,
hypopharynx, UES). A Greenhouse-Geisser correction was used
for sphericity, and post-hoc testing was done using Fisher’s Least
Significant Difference. An alpha criterion of 0.05 was used to
determine significance.

To evaluate the effect of pharyngeal region on swallowing
pressure variability, we used a 1-way repeated measures ANOVA
with a main effect of region (velopharynx vs. tongue base vs.
hypopharynx vs. UES). A Greenhouse-Geisser correction was
used for sphericity, and post-hoc testing was done using Fisher’s
Least Significant Difference. An alpha criterion of 0.05 was used
to determine significance. A randomly-selected 20% of the 103
datasets were analyzed for swallowing pressure variability by a
separate examiner, and intraclass correlation coefficient was used
to calculate inter-rater reliability.

To evaluate the effect of number of swallows evaluated on
pressure variability, 1-way repeated measures ANOVAs were
calculated with a main effect of number of swallows (2–10)
for pressure variability summed from all regions of interest.
A Greenhouse-Geisser corrections was used for sphericity,
and post-hoc testing was done using Fisher’s Least Significant
Difference. An α-criterion of 0.05 was used to determine
significance.

RESULTS

Model Waveforms
Most variability metrics had strong linear correlations between
known deviations in waveform amplitude, duration, and shape
(Figure 4). Metrics insensitive (r < 0.8) to deviation in waveform
amplitude included root mean square, cyclic spatiotemporal
index, cosine, Pearson correlation, cross correlation, coefficient
of multiple correlation, linear regression t-shape, and linear
regression R2. Those insensitive to different waveform durations
included cyclic spatiotemporal index, cross correlation, coefficient
of multiple correlation, and linear regression t-shape. Fewer
metrics were insensitive to different waveform shapes:
coefficient of multiple correlation and linear regression t-
shape. Interestingly, signal-to-noise ratio was strongly negatively
correlated with perturbations in waveform amplitude and
duration, while also strongly positively correlating with
perturbations in waveform shape. When correlating all three
permutations together (amplitude, duration, and shape),
those metrics that had the highest overall correlations with
known deviations (r > 0.8) were Chebyshev distance and
CVpattern.

Of the 18 metrics sensitive to amplitude, duration, and
shape permutations, nine were substantially biased by differences

in mean amplitude (Table 1, Figure S1). Root mean square
error, mean absolute error, standard deviation, non-normalized
cyclic spatiotemporal index, and all of the distance metrics
resulted in significantly different calculations between waveforms
of different amplitudes (p < 0.0001). As mean amplitude
decreased, measured variability decreased for root mean square
error, mean absolute error, standard deviation, non-normalized
cyclic spatiotemporal index, and all of the distance metrics.
Alternatively, signal-to-noise ratio, percent root mean square
deviation, CV1D, CV2D, CVpattern, variance ratio, coefficient of
quartile variation, and intraclass correlation resulted in similar
variability calculations between waveform sets with different
amplitudes.

Of the 18 metrics sensitive to amplitude, duration, and
shape permutations, six were considerably biased by differences
in waveform sign (Table 1, Figure S2). When the waveform
has positive and negative values, the relationship between
measured and known variability disappears for signal-to-noise
ratio, mean absolute percent error, and coefficient of quartile
variation (p < 0.0001). Measured variability is significantly
increased for waveforms with positive and negative values
using the percent root mean square deviation and CV1D

metrics (p < 0.0001). The direction of the correlation
between measured and known variability flips when the
waveform has negative values when using the CV2D metric
(p < 0.0001). Metrics unbiased by neither waveform sets
with different amplitudes nor waveform sets with different
signs included CVpattern, variance ratio, and intraclass
correlation.

Of the 18metrics that are sensitive to amplitude, duration, and
shape permutations, five were markedly biased by differences in
waveform duration (Table 1, Figure S3). Variability significantly
decreased as overall waveform duration decreased for signal-to-
noise ratio, Euclidean distance, block distance, Fréchet distance,
and dynamic time warping (p < 0.0001). Post-hoc pairwise
comparisons for the distance metrics were all significant, and
all pairwise comparisons besides 100 and 75 data points were
significant for the signal-to-noise ratio (p < 0.0001). Metrics
unbiased by waveform sets of different amplitudes, signs,
and durations included CVpattern, variance ratio, and intraclass
correlation.

CVpattern, variance ratio, and intraclass correlation were
the only metrics not significantly biased by amplitude, sign,
or duration (Table 1). Known variability permutations were
correlated with measured variability from CVpattern, variance
ratio, and intraclass correlation metrics over all manipulations
of model waveforms (11 manipulations × 200 waveform sets).
All metrics had very strong correlations (Table 2) with known
variability. CVpattern had the strongest correlation by a slight
amount, and it is the only parameter that appears to follow
a linear pattern with increases in known variability (Figure 5).
CVpattern, variance ratio, and intraclass correlation are also very
highly correlated with each other. Given this high agreement
and the pervasive use of CV as a metric describing movement
variability in motor control literature, we decided to use CVpattern

as our primary variability metric to evaluate swallowing pressure
variability.
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FIGURE 4 | Variability metric correlations between known and measured variability with permutations in amplitude (red), duration (blue), and waveform shape (green).

CV, coefficient of variability.

Swallowing Pressure Waveform Alignment
To compare alignment of swallowing pressure data, we summed
variability in the different regions: Total CV = velopharynx CV

+ tongue base CV + hypopharynx CV + UES CV. Repeated
measures ANOVA comparing time-alignment at different time
points in the pressure wave and at different regions in the
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TABLE 1 | ANOVA results comparing effect of waveform amplitude, waveform sign, and waveform duration on the subset of variability metrics that are sensitive to

amplitude, duration, and shape permutations.

Metric Amplitude effect Sign effect Duration effect

Signal-to-noise ratio F (3, 796) = 0 F (2, 597) = 11563.41 F (3, 796) = 31.60

p = 1.0 p < 0.00001 p < 0.00001

Percent root mean square deviation F (3, 796) = 0 F (2, 597) = 42.18 F (3, 796) = 0

p = 1.0 p < 0.00001 p = 1.0

Root mean square error F (3, 796) = 88.11 F (2, 597) = 0 F (3, 796) = 0.004

p < 0.00001 p = 1.0 p = 1.0

Mean absolute error F (3, 796) = 88.35 F (2, 597) = 0 F (3, 796) = 0.041

p < 0.00001 p = 1.0 p = 0.989

Mean absolute percent error F (3, 796) = 0 F (2, 597) = 42.58 F (3, 796) = 0

p = 1.0 p < 0.00001 p = 1.0

Standard deviation F (3, 796) = 88.93 F (2, 597) = 0 F (3, 796) = 0.041

p < 0.00001 p = 1.0 p = 0.989

Non-normalized cyclic spatiotemporal index F (3, 796) = 97.03 F (2, 597) = 0 F (3, 796) = 0.034

p < 0.00001 p = 1.0 p = 0.992

CV1D F (3, 796) = 0.001 F (2, 597) = 107.96 F (3, 796) = 0.022

p = 1.0 p < 0.00001 p = 0.995

CV2D F (3, 796) = 0.001 F (2, 597) = 433.13 F (3, 796) = 0

p = 1.0 p < 0.00001 p = 1.0

CVpattern F (3, 796) = 0.001 F (2, 597) = 0 F (3, 796) = 0.42

p = 1.0 p = 1.0 p = 0.74

Variance ratio F (3, 796) = 0 F (2, 597) = 0 F (3, 796) = 0.47

p = 1.0 p = 1.0 p = 0.70

Coefficient of quartile variation F (3, 796) = 0.001 F (2, 597) = 12.99 F (3, 796) = 0

p = 1.0 p < 0.00001 p = 1.0

Intraclass correlation F (3, 796) = 0 F (2, 597) = 0 F (3, 796) = 0.63

p = 1.0 p = 1.0 p = 0.59

Euclidean distance F (3, 796) = 88.14 F (2, 597) = 0 F (3, 796) = 29.81

p < 0.00001 p = 1.0 p < 0.00001

Chebyshev distance F (3, 796) = 88.11 F (2, 597) = 0 F (3, 796) = 0

p < 0.00001 p = 1.0 p = 1.0

Block distance F (3, 796) = 88.11 F (2, 597) = 0 F (3, 796) = 89.81

p < 0.00001 p = 1.0 p < 0.00001

Fréchet distance F (3, 796) = 88.11 F (2, 597) = 0 F (3, 796) = 29.80

p < 0.00001 p = 1.0 p < 0.00001

Dynamic time warping F (3, 796) = 88.11 F (2, 597) = 0 F (3, 796) = 29.80

p < 0.00001 p = 1.0 p < 0.00001

Bold values indicate statistically significant effects. CV, coefficient of variability.

TABLE 2 | Pearson correlation coefficients comparing known variability

permutations, and CVpattern, variance ratio, and intraclass correlation outputs.

CVpattern Variance ratio Intraclass correlation

Known variability r = 0.933 r = 0.917 r = −0.918

CVpattern r = 0.989 r = −0.990

Variance ratio r = −1.0

All p-values are <0.0001. CV, coefficient of variability.

pharynx revealed drastically different measures of variability
using the CVpattern metric (Figure 6, Figures S4A–D). There
was a significant interaction between alignment type and
region [F(4.8,237.5) = 5.5; p < 0.0001; pairwise comparisons
in Supplementary Table 1]. When aligning by pressures in

the velopharynx, variability was lowest when aligning at the
time of peak pressure (p ≤ 0.04). However, when aligning by
pressures in the tongue base, hypopharynx, or UES, variability
was least when aligning at the time when pressure surpassed
half of maximum pressure (p ≤ 0.01). Within pressures aligned
at half of maximum pressure, variability was lowest when
aligned by pressures in the UES and hypopharynx (p ≤

0.002). As there was no statistical difference between pressure
variability in the UES and hypopharynx when pressure waves
were aligned at half-maximum height, we decided to pursue
further testing when swallowing pressure waves reached half-
maximum height on the UES. One additional reason for
this decision was the relative ease at which to automatically
detect this time point without user input or correction
(Figure 6).
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FIGURE 5 | Correlations between CVpattern, variance ratio, and intraclass correlation on all model waveform permutations. CV, coefficient of variability.

FIGURE 6 | Impacts of swallowing pressure alignment on total coefficient of

variability (CV) values. UES, upper esophageal sphincter; error bars indicate

standard error of the mean.

Pharyngeal Region
Using the CVpattern metric on swallowing pressure waves aligned
at half-maximum height on the superior-most sensor in the UES,
ICC between two raters was between 0.92 and 0.99, reflecting
an excellent level of agreement. We then evaluated pressure
variability differences between regions in the pharynx (Figure 7).
One-way repeated-measures ANOVA revealed a significant effect
of region [F(2.3,226.7) = 33.4; p < 0.0001]. Pressures in the tongue
base were less variable than all other regions (p < 0.0001).
Pressure variability in the velopharynx approximated that of the
UES (p= 0.29), and both were less than pressure variability in the
hypopharynx (p ≤ 0.001).

Number of Swallows Analyzed
Finally, we evaluated the impact on number of swallows analyzed
on variability. To do this, we calculatedCVpattern on subsets of the
original data in groups of 2–10 consecutive swallows (Figure 8).
Repeated measures ANOVA revealed a significant main effect
of number of swallows evaluated on Total CV [F(2.7,71.8) = 2.8,
p = 0.047]. When two swallows were evaluated, variability was
significantly lower than for all other number of swallows (p ≤

0.03). There were no other differences between combinations of
other numbers of swallows (p ≥ 0.26).

FIGURE 7 | Swallowing pressure variability by region. Swallowing pressures

were significantly less variable in the tongue base than all other regions

(*p < 0.0001). Pressure variability in the hypopharynx was greater than all other

regions (*p ≤ 0.001). An illustration of swallowing pressure variability by region

is in Figure 3. CV, coefficient of variability; UES, upper esophageal sphincter.

DISCUSSION

There are a substantial number of metrics used to measure
waveform variability in biological systems. These metrics
perform quite differently from one another depending on which
aspect of the waveform is varied (Figure 4). For pharyngeal
swallowing pressures, we believe waveform amplitude, duration,
and shape variations to be physiologically relevant to the
safety and efficiency of swallowing. Systematic appraisal of
published variability metrics revealed CVpattern, variance ratio,
and intraclass correlation as ideal for measuring pharyngeal
swallowing pressure variability due to high sensitivity and low
bias to waveform amplitude, duration, and shape. CVpattern was
chosen to analyze pharyngeal swallowing pressures, due to its
potential for direct comparison with other reports of motor
variability which often use CV as ametric. This metric may not be
ideal for all applications; we therefore recommend consideration
of specific waveform permutations that are applicable to each
research question prior to choosing a variability metric.

The ideal time-alignment for pharyngeal swallowing pressures
was determined to be at the time when the superior-most
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FIGURE 8 | Impacts of number of swallows evaluated on total coefficient of

variability (CV). Pressures were significantly less variable when evaluating sets

of 2 swallows compared to any other number (*p ≤ 0.03). There were no

pairwise differences between 3 and 10 swallows (p ≥ 0.26). Error bars

represent standard error of the mean.

UES sensor reaches half of its maximum pressure. Pressures
in the tongue base region are least variable and pressures in
the hypopharynx region are most variable. Number of swallows
analyzed had no impact on pressure variability measures, except
when groups of two swallows were analyzed. Not only will these
results will be useful in future studies of swallowing pressure
variability, they will give insights on swallowing motor control.

Precise control of oral, pharyngeal, and laryngeal kinematics
and pressures is necessary for a safe and efficient swallow. Thus,
the magnitude of pressure variability difference was surprising
when the same swallowing pressures were aligned at different
points in the waveform and in different pharyngeal regions
(Figure 6). Pressures in the velopharynx are valving pressures,
thus a main purpose during swallowing is to close off the
nasal cavity so that the bolus travels from the mouth into the
oropharynx [16]. Additionally, the soft palate raises to close off
airflow to the nasal cavity during the production of many speech
sounds [110]. As such, the soft palate is under more voluntary
control and may not have as rigid of timing requirements
for pharyngeal swallowing motor patterns, resulting in higher
variability calculations when all pressure waves are aligned
by pressures in the velopharynx. However, when swallowing
pressures are aligned by themaximum pressure in this region, the
variability pattern resembles that of other regions in the pharynx.
Conversely, pressures in the hypopharynx are erratic and have
high variability compared to other regions in the pharynx [103]
(Figure 7). Consequently, aligning by this region minimized the
overall pressure variability throughout the pharynx.

Aligning pressures at time points when the pressure wave
hit half of its maximum height generally resulted in lower
variability values than other alignments (Figure 6, Supplemental
Table 1, Figures S4A–D). Precise timing of pressure onsets
may be influenced by small pressure traces imparted by the
bolus itself [111, 112]. Measures of peak pressure and pressure

change (1st derivative) might differ on a swallow-by-swallow
basis based on the circumferential-averaging nature of the high-
resolution manometry pressure sensors [103, 104]. That is,
with the ManoScan ESO system used in this study, pressures
are measured circumferentially around each sensor within the
pharynx and averaged prior to being captured by the manometric
software program. Although not directly tested in the present
study, the half-maximum time point may be a more stable
measure of pressure timing than a maximum or pressure change
metric in the asymmetric pharynx.

Different magnitudes of variability in different pharyngeal
regions may reflect the complexity of pressure contribution in a
specific region. Closure of the velopharynx is achieved through
contraction of the levator veli palatini, palatopharyngeus,
musculus uvulae, and superior pharyngeal constrictor
musculature [16]. Tongue base to posterior pharyngeal
wall contact is generated by the palatoglossus, hyoglossus,
and superior and middle pharyngeal constrictor muscles [16].
Pressures in the hypopharynx are generated through contraction
of the middle and inferior constrictor muscles but also have
non-muscular pressures with inversion of the epiglottis and
contact with other cartilaginous structures of the larynx
[103, 113]. Finally, UES pressures are comprised of muscular
activity from the inferior constrictor, cricopharyngeus, and the
circular skeletal muscles in the cervical esophagus [114–117].
The bolus also exerts a measurable pressure during passage
through the UES [118–120], and there are additional pressure
components from positioning of the larynx and other regional
pharyngeal structures [114, 121]. Additionally, the high-pressure
zone of the UES rises in the pharynx due to hyolaryngeal
elevation and pharyngeal shortening [102, 120, 122, 123],
and subtle differences in these muscular activations has the
potential to influence the extent and timing of UES pressure
activity on different manometric sensors. Of all pharyngeal
regions measured using high-resolution manometry, pressures
in the tongue base have a relatively simple pressure profile
with fewer degrees of freedom than other regions. Thus,
this relative simplicity may lead to pressures that are less
variable.

Our hypothesis that a subset including more swallows would
be more variable was not supported by the results. In fact,
there was no statistical difference between swallowing pressure
variability in sets of 3–10 swallows. Fortunately, it is not
common for research or clinical swallowing protocols to be
completed in sets of two swallows. Additionally, it is reasonable
to compare swallowing pressure variability data from different
studies without needing to correct for number of swallows
analyzed. This finding gives support for future study design:
it may be more feasible, especially in patients with dysphagia,
to perform the least number of swallow trials to give an
accurate picture of swallowing pressure variability. Capturing
fewer swallowing trials may also spare exposure to radiation
in studies that use a videofluoroscopic approach to swallowing
evaluation [70].

There are some limitations associated with this study.
We did not perform an exhaustive, systematic review of
the literature on variability metrics. However, we evaluated
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a number of variability metrics and were able to identify
three that satisfied our criteria of being sensitive and unbiased
toward waveform amplitude, duration, and shape. We also
investigated swallowing pressures with a small liquid bolus.
Using the CVpattern metric, future work should address task
differences on swallowing pressure variability. Additionally,
the process of identifying and distinguishing pressures in
pharyngeal regions is subjective in nature and may be more
difficult when evaluating swallowing pressures in individuals
with dysphagia. Nonetheless, our research team has had success
in obtaining reliability in evaluating swallowing pressures, both
with clinicians knowledgeable about swallowing function and in
undergraduate research assistants without prior clinical training
[124].

CONCLUSIONS

Deliberate analysis of variability metrics and alignment
procedures on swallowing pressure variability culminated in
an ideal metric of CV calculated over pressure waves that have
been aligned such that the grand mean is 0, where all swallowing
pressures are aligned to the time when the most superior sensor
showing UES pressures reaches half its maximum pressure.
This alignment and variability calculation technique has a
high reliability and is stable on swallowing datasets between
3 and 10 swallows. Pharyngeal region has a significant effect
on swallowing pressure variability; this should be taken into
consideration in future work.

FUTURE RECOMMENDATIONS

This work highlights the importance of testing the construct
validity of variability metrics specific to the system in question.
Future work in separate motor systems can use these findings
when selecting metrics to use, depending on the specifics of
the waveform that is important (e.g., differences in waveform
duration, amplitude, or shape) and the nature of the movement
(e.g., rhythmic movements such as gait vs. ballistic movements
required for swallowing).

Further work is needed to quantify swallowing pressure
variability as a result of different bolus characteristics (e.g.,
volume, consistency), voluntary swallowingmaneuvers (e.g., chin
tuck, effortful swallowing), and in patients with dysphagia. If we

assume (1) that measuring swallowing pressure variability will
help to understand impairments in motor control that lead to
dysphagia; and (2) that a better understanding of swallowing
motor control can improve treatment decisions; then continuing
this line of research has the potential to impact the care of
millions of people with dysphagia.
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