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Recently there has been a resurgence of interest in missions to the moon and a major

challenge of such missions is to provide a continuous communication between the Earth

and the Moon’s far side. Orbits around the L2 Earth-Moon Lagrange point have been

a topic of interest in this field due to their potential for constant communication with

both the Earth and the Moon, however the Lagrange point orbits are innately unstable

and so station-keeping control is required to maintain them. Station-keeping problems

are highly nonlinear and a traditional approach to control design is first to linearize the

nonlinear system. However, this first-order approximation introduces errors if there are

large injection errors. This paper demonstrates how a simple Extended State Observer

(ESO) can be used to improve the convergence time of spacecraft to the reference orbit

given with large injection errors. Additionally, solar radiation pressure (SRP) a dominant

disturbance in deep-space, can lead to inefficient station-keeping if it is not taken into

account in the reference orbit design. New reference orbits can be designed that exploit

the SRP perturbation but this assumes that it is known apriori. Here we show how an

ESO could provide an in-orbit measurement of the SRP which could be used to modify

the reference trajectory to a more fuel efficient one. Finally, it is shown how an ESO can

be used to estimate, not only the disturbance, but simultaneously the velocity of the

spacecraft meaning that only the position of the spacecraft is required.

Keywords: station-keeping control, lagrange points, linear quadratic regulator, extended-state observer, active

disturbance rejection control

1. INTRODUCTION

Deep-space station-keeping exploits the natural dynamics of the solar system to design fuel-efficient
reference trajectories [1–5]. Natural orbits, such as Libration Point Orbits (LPOs) in the circular
restricted three body problem (CRTBP) have been used to design reference orbits in real missions
such as ISEE-3, Wind, SOHO, ACE, Genesis, DSCVER and Lisa pathfinder which exploit LPO
in the vicinity of the Earth-Sun Libration point L1, while the spacecraft ARMETIS and Chang′e
5-T1 exploit LPOs in the vicinity of the Earth-Moon Libration point orbits (see [3] and references
therein). More recently LPOs in the vicinity of L2 have been identified as the ideal position for a 12
UCubeSat mission for the purpose of observingmeteroid impact with theMoon [6]. In Shirobokov
et al. [3] it is pointed out that only investigations including precise models of the dynamics of
the spacecraft are of relevance to station-keeping design particularly in the Earth-Moon system.
Moreover, if the reference is designed in a low-fidelity model then the station-keeping cost in a
high-fidelity model will require greater cost. Furthermore, although high-fidelity models such as

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2018.00024
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2018.00024&domain=pdf&date_stamp=2018-06-28
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jamesdouglas.biggs@polimi.it
https://doi.org/10.3389/fams.2018.00024
https://www.frontiersin.org/articles/10.3389/fams.2018.00024/full
http://loop.frontiersin.org/people/555834/overview
http://loop.frontiersin.org/people/533465/overview
http://loop.frontiersin.org/people/447718/overview


Biggs et al. Extended State Observers for Station-Keeping

SPICE [7] are available to design fuel-efficient spacecraft the
precise nature of the SRP acting on the spacecraft in deep space
is uncertain (for example through degradation of a solar sails
reflective surface in the space environment [8, 9]).

Solar Radiation Pressure (SRP) should also be taken into
account in order to design fuel-efficient orbits and it can also be
used to obtain observational advantages [10–15]. However, the
design of these SRP perturbed reference orbits requires that the
force exerted on the solar sail is accurately known. In this paper it
is shown that by using an extended state observer (ESO) the SRP
can be measured on-board from the knowledge of the position
of the spacecraft and therefore adjustments to the reference orbit
could be made during the mission. Indeed, it could be possible
that once an accurate measure of the SRP is obtained on-board
that a differential corrector could be used to refine the reference
orbit to one that requires less station-keeping control. In other
words with a known SRP a natural reference trajectory can be
constructed that incorporates realistic perturbations.

The second major aspect of mission planning on LPO is
to design an efficient station-keeping control since these orbits
are inherently unstable. Deep-space station-keeping is made
more complicated by initial orbit injection errors, uncertain
dynamics such as SRP and sensor faults. There are a plethora
of different strategies for station-keeping on LPOs; those
which exploit the underlying dynamics of the CRTBP, mainly
by Floquet theory and those which apply classical control
techniques such as the linear quadratic regulator (LQR)[4,
13–15], nonlinear regulation [16], disturbance accommodating
control [17] and sliding mode control [18] amongst others (see
[3] for a review of current methods). In this paper we focus
on coupling a simple proportional feedback-control with an
ESO and demonstrate the potential benefits to station-keeping
on LPOs. Moreover, it is shown to improve convergence in
the presence of large injection errors, measure the SRP on-
board while simultaneously measuring the spacecraft’s velocity
(only knowledge of the spacecraft position is required). Although
the focus here is on complimenting a simple proportional
controller with an ESO in-the-loop it could potentially
improve a wide range of existing controls [4, 13, 14, 16–
18].

The use of ESOs in station-keeping design was first
demonstrated in Zhu et al. [19] whereby the reference orbit
was designed using a linearization in the vicinity of an LPO in
the CRTBP and then the control to track this was implemented
in a high-fidelity model including eccentricity and SRP. These
perturbations were considered to be unknown and the ESO
was used to measure the entire disturbance which was then
compensated for in the control. It was shown to improve the
tracking error with respect to an LQR controller while maintaing
the 1V requirement. In Narula and Biggs [20] it was shown that
an ESO could be used to estimate the extent of a fault in an
actuator and then the control input adjusted to compensate for
this fault. In this paper we demonstrate how including an ESO
can improve convergence time of a proportional controller and
show that the closed-loop system yields a tunable linear response.
It is also shown that it is possible to perform low-thrust station-
keeping in the Earth-Moon system in the presence of SRP with

only knowledge of the position of the spacecraft making the
control robust to failures of velocity sensors.

The paper is presented as follows: In section 2 the station-
keeping problem is formulated including the equations of motion
in the circular-restricted three-body problem (CR3BP) in the
Earth-Moon- Spacecraft system with SRP and the reference
trajectory. In section 3 we construct a Linear active uncertainty
measurement control that couples a proportional controller with
a linear ESO and then with a nonlinear ESO. This section
demonstrates the use of each control in terms of improving
convergence, SRP and velocity measurements. Simulations are
given to demonstrate the effectiveness of the controller.

2. PROBLEM FORMULATION

From Gómez et al. [5], we consider the CR3BP equations in
the synodic frame, centered at the Earth-Moon barycenter and
rotating with the angular speed of the Moon. We denote by
(x, y, z) the coordinates of the spacecraft in this frame, while we
denote by (X̂, Ŷ , Ẑ) the inertial frame, a Cartesian frame centered
at the Earth with fixed axes. The coordinates used are non-
dimensionalized; i.e., the sum of the masses, the distance between
the primaries, and the gravitational parameter all equal one and
these values are normalized by a three-body parameter µ, which
is defined as the ratio of the smaller primary’s mass to the sum of
the mass of the two primaries,

µ = m2

m1 +m2
(1)

where m1 and m2 are the masses of the Earth and the Moon
respectively. With the distance between the two primaries equal
to one, the distances between the barycenter and the primary
and barycenter and the secondary are equal to −µ and 1 − µ,
respectively where µ = 0.01215. To this CR3BP we add the
control u = [ux, uy, uz]. We also add the solar radiation pressure

(SRP), the disturbance force vector aS = [axS a
y
S azS]

T arising
from the incoming solar photons perpendicular to the surface
of the large spacecraft, in the direction n. Thus the spacecraft
dynamics are given by

ẍ− 2ẏ− x+ (1− µ)(x+ µ)

d3
− µ(x− (1− µ))

r3
= ux + axS

ÿ+ 2ẋ− y+ (1− µ)y

d3
− µy

r3
= uy + a

y
S

(2)

z̈ + (1− µ)z

d3
− µz

r3
= uz + azS

where

d2 = (x+ µ)2 + y2 + z2,

r2 = (x− (1+ µ))2 + y2 + z2 (3)

Assuming that the solar radiation pressure is constant in
magnitude throughout the Earth-Moon system, the SRP aS can
be written as:
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aS = a0(S · n)2n (4)

where S is the vector direction of the Sun-line

S = [cos(�St),− sin(�St), 0]
⊤ (5)

with �S = 0.9252 the angular rate of the Sun line in the
non-dimensional variables, and a0 is the SRP acceleration
in non-dimensional units. The characteristic acceleration is
the acceleration generated by the spacecraft when it faces the
Sun at Earth’s distance. Note that this parameter is difficult to
measure and is not known with certainty. The right-hand side
of (2) possesses a constant of integration known as the Jacobi
Constant Jc.

Jc = x2 + y2 + 2
1− µ

r1
+ 2

µ

r2
− (ẋ2 + ẏ2 + ż2)

= 2U − (ẋ2 + ẏ2 + ż2)

where U is the modified potential energy function

U = 1

2
(x2 + y2)+ (1− µ)

d
+ µ

r
(6)

which can be expressed in the simple form [5]





ẍ = ∂U
∂x + 2ẏ+ ux + axS

ÿ = ∂U
∂y − 2ẋ+ uy + a

y
S

z̈ = ∂U
∂z + uz + azS

(7)

which can be expressed in the form

ẋ1 = x2

ẋ2 = f (x1, x2)+ u+ aS
(8)

where the position x1 = [x, y, z] and the velocity x2 = [ẋ, ẏ, ż]
and x = [x, y, z, ẋ, ẏ, ż], aS = [axS, a

y
S, a

z
S] is the uncertain SRP that

is required to be estimated. The initial conditions have been taken
from Gómez et al. [5] and modified to increase the precision
using a differential corrector to yield LPOs when SRP is not
included in the model. We briefly analyze these orbits to choose
the one with the maximum coverage of the lunar surface. The
choice of orbit is based on the percentage time in contact with
Moon and ground station on Earth. Since the Chandrayan-I
mission and LCROSS by NASA has pointed out many important
crater locations on the far side of the moon, the decision is
based on the orbit coverage of the important craters of moon.
By evaluating the percentage time of coverage time for each of
the orbit candidates (shown in Table 1). It can be seen that best
performing orbit is the halo orbit, and so for the purpose of
providing continuous communications to a lunar ground station
as well as continuous connection with stations with Earth, a halo
orbit is chosen as the candidate reference orbit in this paper.

TABLE 1 | Percentage coverage of each orbit.

Zone of coverage Vertical

Lyupanov (%)

Planar Lyupanov (%) Halo orbit (%)

Tsiolkovsky crater 65.75 44.81 75.21

SPA-1 crater 53.34 47.06 90.86

Schrödinger center 27.70 56.78 97.82

Shakaleton crater 23.65 57.35 88.36

It can be seen that best performing orbit is the halo orbit,
and so for the purpose of providing continuous communications
to a lunar ground station as well as continuous connection
with stations with Earth, a halo orbit with the following initial
conditions is chosen as the candidate reference orbit in this paper:




x0
y0
z0
ẋo
ẏ0
ż0




=




1.12424283994529
0

0.187435048916681
0

−0.223784191244108
0




(9)

The general problem is then to design a feedback control such
that the magnitude of the error state converges to zero as t → ∞
in the presence of potentially large injection errors, SRP and only
position measurements.

3. A GENERAL ACTIVE UNCERTAINTY
MEASUREMENT CONTROL (AUMC)

The general AUMC is based on the original idea of the active
disturbance rejection control (ADRC) proposed in Han [21].
ADRC is used to measure the unknown disturbances within the
system and to cancel the estimated disturbance in the control at
each sampling period. In this paper we refer to the coupling of a
proportional controller and an ESO as AUMC as the ESO is used
to measure (depending on its form) the SRP disturbance while
taking into account the higher-order terms in the linearization
and velocity measurement. In this section we introduce a general
AUMC which combines a proportional-type controller coupled
with an ESO of the form:

u = −Kδx− x̂3 (10)

where δx = x − xref , K is a gain matrix that can be tuned
experimentally or computed using LQR [20] by removing the
unknown dynamics from the equation of motion. The current
state of the spacecraft x is assumed to be measurable and x̂3 is the
output of the following ESO:

˙̂x1 = x̂2 + β1(x1 − x̂1)

˙̂x2 = x̂3 + g(x)+ u+ β2(x1 − x̂1)

˙̂x3 = β3(x1 − x̂1)

(11)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 June 2018 | Volume 4 | Article 24

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Biggs et al. Extended State Observers for Station-Keeping

where x̂1 is the estimate of x1 (or δx1 if the linearization of
f (x1, x2) is used), x̂2 is the estimate of x2 (or δx2 in the linear
case) and x̂3 is the estimate of

h = f (x1, x2)− g(x1, x2)+ aS (12)

where g(x) is a prescribed function that is defined by the control
engineer depending on the control objectives, for example, it can
be set to be the known nonlinear or linearized dynamics or simply
set to zero. To initialize the estimator we set x̂1(0) = x1(0)
and x̂2(0) = x2(0) (or x̂1(0) = δx1(0) and x̂2(0) = δx2(0)
if the linearized dynamics are being used for control design) as
these values are known and assumed to be given by the sensors,
while x̂3(0) = 0 as this is an uncertain quantity. Note that this
control requires the input of both the position and the velocity (or
position and velocity errors in the linear case) of the spacecraft
x1, x2 which will require both reference or optical sensors as well
as an inertial measurement unit. In the case that there is a fault
in the velocity measurement sensor the control law (10) can be
adapted to:

u = −K1δx1 − K2δx̂2 − x̂3 (13)

where δx1 = x1 − x
ref
1 and δx̂2 = x̂2 − x̂

ref
2 where x̂2 and x̂3 are

outputs of the ESO:

˙̂x1 = x̂2 + β1(x1 − x̂1)

˙̂x2 = x̂3 + g(x1, x̂2)+ u+ β2(x1 − x̂1)

˙̂x3 = β3(x1 − x̂1)

(14)

Defining the unknown derivative of h = x3 as ẋ3 = φ and the
error to be ei = xi− x̂i for i = 1, 2 and e3 = h− x̂3 then the error
dynamics of the ESO can be defined as:

ė1 = e2 − β1e1

ė2 = e3 − β2e1

ė3 = φ − β3e1.

(15)

We adopt the general tuning method for second order active
disturbance rejection controls described in Xing et al. [22] where
β1 = 3ω0,β2 = 3ω2

0 ,β3 = ω3
0 where ω0 is denoted as the

observer band-width and k is an additional tuning parameter
reducing the tuning to only one parameter. Then writing
e2/ω0 = f 2 and e3/ω

2
0 = f 3 we have

ė1 = f 2ω0 − 3ω0e1

ḟ 2 = f 3ω0 − 3ω0e1

ḟ 3 = φ/ω2
0 − ω0e1.

(16)

then adapting the proof in Bai et al. [23] to the higher-
dimensional problem here and defining ε = [e1 f 2 f 3]

T we
write

ε̇ = ω0Aε + B φ

ω2
0

A =



−3I3×3 I3×3 03×3

−3I3×3 03×3 I3×3

−I3×3 03×3 03×3


 ,B =



03×3

03×3

I3×3


 (17)

defining ε̃i = [e1i f2i f3i]
T where e1 = [e11 e12 e13]

T ,
f 2 = [f21 f22 f23]

T and f 3 = [f31 f32 f33]
T we can re-write

the expression as

dε̃i
dt

= Ãε̃i + B̃ φi

ω2
0

Ã =



−3ω0 ω0 0
−3ω0 0 ω0

−ω0 0 0


 , B̃ =



0
0
1


 (18)

which has the solution

ε̃i(t) = exp(Ãt)ε̃i(0)+
∫ t

0
exp[Ã(t − τ )]B̃

φi

ω2
0

dτ (19)

it follows that

∥∥ε̃i(t)
∥∥ ≤

∥∥exp(Ãt)ε̃i(0)
∥∥ +

∥∥∥∥
∫ t

0
exp[Ã(t − τ )]B̃

φi

ω2
0

dτ

∥∥∥∥ (20)

where ‖·‖ is the Euclidean Norm then

∥∥ε̃i(t)
∥∥ ≤

∥∥exp(Ãt)ε̃i(0)
∥∥ +

∥∥B̃φi

∥∥
ω2
0

∥∥∥∥
∫ t

0
exp[Ã(t − τ )]dτ

∥∥∥∥
F
(21)

where ‖·‖F is the Frobenius Norm of a matrix then assuming the
disturbance is bounded such that ‖φi‖ < ∂ then

∥∥ε̃i(t)
∥∥ ≤

∥∥exp(Ãt)ε̃i(0)
∥∥ + ∂

ω2
0

∥∥−Ã−1[I − exp(Ãt)]
∥∥
F

(22)

Then noting that the eigenvalues of Ã are λ = −ω0,−ω0,−ω0

then exp(Ãt) → 03×3 as t → ∞ such that in the limit

∥∥ε̃i(t)
∥∥ ≤ ∂

ω2
0

∥∥−Ã−1
∥∥
F

(23)

then

∥∥ε̃i(t)
∥∥ ≤

√
21∂

ω3
0

(24)

This implies that x̂3 → h as t → ∞ to within some small
bounded error which can be decreased with an increase in the
gain ω0. Furthermore, as x̂2 → x2 then g(x1, x̂2) → g(x).
Therefore given the position (and velocity if it is available)as an
input then the estimated output of the ESO x̂2 converges to the
velocity vector x2 within an error bound defined by

∥∥x̂2 − x2
∥∥ ≤√

21∂
ω2
0

and x̂3 converges to the uncertain dynamics x3 = h within

an error bound defined by
∥∥x̂3 − x3

∥∥ ≤
√
21∂
ω2
0
. Therefore, for a

high-gain (ω0 → ∞) we can assume that the error of the ESO is
negligible.

3.1. Linear AUMC for Improved
Convergence With Orbit Injection-Errors
Low-thrust propulsion station-keeping often linearizes the
nonlinear equations about the reference trajectory, in this case
a halo orbit, and applies linear control theory such as an optimal
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Linear control as LQR. Defining the error state δx = x − xref ,

where x(t) = [x, y, z, ẋ, ẏ, ż]T and xref is the reference halo we can
write (7) in the form:

d(δx)

dt
= A(t)δx+ u+ as +O(δx22) (25)

where where A(t) is given by

A(t) =
[
03X3 I3X3
U ij 2Ω

]
(26)

for

Ω =




0 0 1
−1 0 0
0 0 0


 (27)

and U ij is the Jacobian of U, where each term is defined as

Uxx = 1− 1− µ

d3
− µ

r3
+ 3

(1− µ)(x+ µ)2

d5
+ 3

µ(x− 1+ µ)2

r5

Uyy = 1− 1− µ

d3
− µ

r3
+ 3

(1− µ)y2

d5
+ 3

µy2

r5

Uzz =
1− µ

d3
− µ

r3
+ 3

(1− µ)z2

d5
+ 3

µz2

r5

Uxy = 3
(1− µ)(x+ µ)y

d5
+ 3

µ(x− 1+ µ)y

r5
= Uyx (28)

Uxz = 3
(1− µ)(x+ µ)z

d5
+ 3

µ(x− 1+ µ)z

r5
= Uzx

Uyz = 3
(1− µ)yz

d5
+ 3

µyz

r5
= Uzy

which can be expressed in terms of the position and velocity,
writing x1 = [δx, δy, δz], x2 = [δẋ, δẏ, δż], where

ẋ1 = x2

ẋ2 = C(t)δx+O(δx22)+ u+ as
(29)

where C(t) is the 6 × 3 matrix C(t) =
[
U ij 2Ω

]
. Note that

using the ESO (14) with δx from (25) as the input and setting

f (x1, x2) = g(x1, x2) = C(t)δx then x̂3 → h as t → ∞ where
h = O(δx22)+ as, with the linear control taking the form

u = −Kδx− x̂3 (30)

where x̂3 is the output of the following Linear ESO:

˙̂x1 = x̂2 + β1(x1 − x̂1)

˙̂x2 = x̂3 + C(t)δx+ u+ β2(x1 − x̂1)

˙̂x3 = β3(x1 − x̂1)

(31)

as t → ∞ the closed-loop dynamics of (25) become:

ẋ1 = x2

ẋ2 ≈ (C(t)− K)δx
(32)

which can be expressed as δẋ ≈ A(K, t)δx then the gain matrix
K can be chosen such that A(K, t) is point-wise negative definite
and the convergence of the system has a linear response even
in the presence of unknown higher-order nonlinear terms and
SRP. Typically for large injection errors without an ESO a simple
proportional controller would render the closed-loop dynamics
nonlinear. Thus, using an ESO to compliment a linear controller
can provide the guarantee of a global linear response. The
performance of the linear AUMC which yields a linear response
is compared to the nonlinear closed-loop response of the LQR in
the following subsection.

3.1.1. Simulations

The velocity increments 1V and the position errors of the
spacecraft are important performance metrics to assess the
station-keeping strategies. However, when comparing these
performance metrics between LQR and AUMC there is only a
small improvement when using an ESO. However, simulations
show that there is an improvement in the convergence time when
considering large injection-errors to within a bounded region of
the reference orbit of 20 km and 0.05 m/s . In the simulations this
is demonstrated for an initial injection error of δX = 100 Km, δV
= 1 m/s. The observer is tuned with ω0 = 100. In this simulation

FIGURE 1 | Errors in the position and velocity: LQR.
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we assume the SRP is negligible. Recall that in the case of a Linear
ESO the inputs are δx

Figure 1 highlights the results of halo orbits position and
velocity errors encountered due to the presence of injection error
of 100 Km for the LQR control. Similar results can be seen for the
control AUMC in Figure 2.

It takes around 17.027 days to converge to a steady state error
within 20 km compared to 27.117 days for LQR which is about
of 37.2% decrease in convergence time while the error is just
decreased by 4.2%.

It can be seen from Figure 3 that the control effort over time
for the AUMC and the LQR is similar in magnitude and nature
and therefore the 1V is approximately the same.

Note that an additional possibility for the design of a linear
ESO is to set g(x1, x2) = 0. In this case h = C(t)x + aS and
therefore as t → ∞ the output of ESO x̂3 → C(t)x+ aS. Then as
t → ∞ the closed-loop linear system becomes:

ẋ1 = x2

ẋ2 = −Kδx
(33)

Therefore, K can be chosen such that the system is asymptotically
stable. In this case the closed-loop system exhibits a linear
response independently. This type of control is also useful as it
requires only the position of the spacecraft with respect to the
reference trajectory and does not require the dynamics of the
problem to be stored on-board.

3.2. Nonlinear AUMC for Velocity and SRP
Estimation
In this section we consider using the control with an ESO where
g(x1, x2) = f (x1, x̂2) is described by the full-nonlinear function.
In contrast to the linear ESO whose input is δx the input to the
nonlinear ESO is the absolute position of the spacecraft x1. In
this case h = aS and therefore as t → ∞ the output of ESO
x̂3 → aS. Therefore, while stabilizing the spacecraft on a Halo
orbit it is possible to measure the SRP aS and given that the Sun-
direction can be obtained from a Sun sensor and the position of
the spacecraft is known then the uncertain coefficient a0 can be

obtained. As x̂2 → x2 as t → ∞ then f (x1, x̂2) → f (x1, x2). In
this case as t → ∞ the closed-loop dynamics are:

ẋ1 = x2

ẋ2 = f (x1, x2)− K1δx1 − K2δx2
(34)

although the closed-loop dynamics is independent of the SRP a
linear response can only be guaranteed if f (x1, x2) ≈ C(t)δx.
For the nonlinear stability to be guaranteed we can augment the
control (35) to include a sliding-mode component and setting
K1 = kK2 with kK1xi = K2xi = k1xi where k1 is a scalar
then

u = −k1S− x̂3 − k3sgnS (35)

where S defines the sliding surface S = kδx1 + δx2 that this
is assuming that the estimator accurately measures the velocity.

FIGURE 3 | Control effort of LQR and AUMC.

FIGURE 2 | Errors in the position and velocity: AUMC.
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Then considering the Lyapunov function:

V = 1

2
STS (36)

differentiating this with respect to time and substituting in (35)
yields

V̇ = ST Ṡ = ST(kδẋ1 + δẋ2)

= ST(kδx2 + C(t)δx+O(δx22)− k1S− k3sgnS)

= −k1S
TS− k3S

TsgnS+ ST(kδx2 + C(t)δx+O(δx22))

≤ −k1S
TS− k3 |S| + |S|

∣∣kδx2 + C(t)δx+O(δx22)
∣∣

(37)

Therefore, we have asymptotic stability if k3 >∣∣kδx2 + C(t)δx+O(δx22)
∣∣.

3.2.1. Simulations

In the following simulations we assume that a single side of
the spacecraft and its solar panels (or a solar sail surface) is
controlled to point continuously toward the Sun such that is
S = n in (4). In addition for the purpose of demonstration
we choose a large value for the SRP acceleration in non-
dimensional units to be a0 = 0.0798 or 0.215mms−2 which
is a typical value considered for the characteristic acceleration
of the Sunjammer Solar sail [11]. However, we consider here
that this value is uncertain and must be accurately estimated
on-board. The nonlinear ESO is able to accurately measure
the characteristic acceleration using only inputs of the position
of the spacecraft. Figure 4 shows that the estimator converges
to the correct value of a0 after approximately 0.6 days. The
simulation is carried out with an initial position error magnitude
of 120 km. Recall that this simulation includes injection errors,
large characteristic acceleration due to SRP and only position
knowledge. The demonstrated simulations here only include the
disturbance rejection and proportional part of the controller so
that they are more readily comparable to the linear case.

Figure 5 illustrates the estimated velocity in the x-direction
which shows good tracking performance after an initial transient

of approximately 2 days while an additional improvement in the
estimation error can be seen after around 10 days.

Figure 6 shows the tracking error over time and Figure 7

shows the corresponding control. The tracking error is within
the range of 50 km although this can be improved by increasing
the magnitude of the gain matrix K but at the expense of an
increase in the control magnitude. The important point here
is that station-keeping is achieved without knowledge of the
velocity. It is not possible to obtain good tracking performance
without velocity measurements or an estimate of the velocity
provided by ESO.

The simulations demonstrate that a nonlinear ESO can
be useful for estimating the uncertain disturbances such as
SRP in deep-space. Such information would be useful to
modify the reference orbit to obtain more fuel-efficient station-
keeping. Moreover, although high-fidelity solar system models
are available SRP is still uncertain and an ESO provides a simple
mechanism for estimating it. Furthermore, the ESO provides
robustness to velocity sensor failure. In particular, without
velocity information a proportional controller will perform very
poorly and the tracking error can be unacceptably large. Using an
ESO the tracking performance and corresponding control effort
is improved significantly.

4. CONCLUSION

The dynamics of a spacecraft in a Lagrange point orbit are
highly nonlinear and are affected by uncertain forces of solar
radiation pressure. In this paper, we construct active uncertainty
measurement controls for station-keeping that can guarantee
asymptotic stability in the presence of orbit injection errors
and SRP. The SRP acceleration parameter is estimated by the
observer while station-keeping. This could be useful as accurate
measures of the disturbances would allow a more accurate
dynamical model of the spacecraft’s orbit and the reference
trajectory could be updated to a more efficient one during
the mission. In addition, it is shown that station-keeping and

FIGURE 4 | Plot of the output estimation of the ESO of the characteristic acceleration a0 related to the SRP disturbance.
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FIGURE 5 | The ESO estimation of the velocity in the x-direction: The real velocity is in gray and the dashed line is the estimated velocity.

FIGURE 6 | Tracking position error over time.

FIGURE 7 | Control signal over time.
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disturbance measurements can be undertaken simultaneously
using only the position knowledge of the spacecraft. This
could be useful in the event that velocity sensors experience
failure. This paper has demonstrated the potential uses of
coupling a simple ESO with a proportional control to form an
AUMC. However, there is scope for potential improvement in
performance by replacing the proportional controller with other
higher-performance controllers, such as slidingmode controllers,
while replacing the simple ESO with nonlinear observers with
the potential for greater accuracy and faster convergence. Future
work could also include coupling the ESO that measures the
solar radiation pressure with an on-board differential corrector
so that when an accurate measure of the disturbance is obtained
the reference orbit can be updated to a more natural one of
the true dynamical model. In addition while we show here that
the ESO can be used to measure the SRP with only knowledge
of the position of the spacecraft it could be possible to use an

extension of this approach to estimate highly-inhomogeneous
gravity fields when orbiting asteroids orMoons. Furthermore, the
mathematical demonstration of stability and the linear response

of the closed-loop system in this paper relies on the assumption
that the estimation error of the ESO is negligible. Future work
could develop stability proofs and control laws that do not
include this assumption.
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