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The goal of this paper is to review some of the works on the dynamics of economic

models in which the environmental variable is introduced. In particular, we will focus

on models that in addition to giving some analytical insights into the coevolution of

economic and environmental systems, they can give rise to nonlinear dynamic effects as

the emergence of chaotic dynamics, multistability and (local and global) indeterminacy.

However, several questions on this issue remain open and we hope that our paper may

attract researchers to contribute to this topic.
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1. INTRODUCTION

The literature on economic growth has so far focused on highly stylized models1. More recently, an
increasing attention has been paid to the analysis of models which consider more realistic interplays
among variables and the possible emergence of non-trivial dynamics.

In this paper, several models aimed to explore particular connections between economic activity
and the environment will be examined. In particular, we will focus on the analysis of models
described by dynamic systems able to highlights both the long-term trends of the variables and
the emergence of short or medium-term phenomena arising from their interaction.

To this end, important models of the economic the ory, such as the Solow model, the Ramsey-
Cass-Koopmans model, and the OLG structure are examined when environmental variables are
introduced. In particular, we will analyse how the different approaches may affect the dynamic
properties of the models. Indeed, the choice of considering the environment as productive input
or as consumption good, the different hypotheses on the agents’ rationality (and then the different
allocative problems), and the choice between continuous and discrete time framework have relevant
consequences on the models’ dynamics. For example, depending on alternative assumptions, the
productivity in the private sector could be effective or not in defining the complexity of the system.
Moreover, another decisive axiom is related to the complementarity or substitutability between
environmental and private good. Nevertheless, cyclical dynamics or multistability seem to be likely
results whenever models take into account the interaction between economic and environmental
systems.

The remainder of our paper is organized as follows: In section 2, we will analyse two seminal
models on this issue. In section 3, we will review several models in a discrete time framework. In
section 4, we will present the continuous time seminal model of Antoci et al. [2]. In section 5, we
will discuss models in which a fixed time delay is introduced. Finally, section 6 will conclude.

1See [1] for a survey.
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2. TWO GENERAL FRAMEWORKS

In this section, we review two milestone models in the literature
on interactions between economic and environmental systems.

2.1. The Green Solow Model
One of the first models which highlights the possible existence
of nonmonotonic relationships2 between economic activity and
the environment has been proposed by Brock and Taylor [4].3

Specifically, the authors consider an extended version of the
Solow model in which savings4 and environmental investment
choices are fixed.

In the model, the output Y is generated by a strictly concave
production function F with constant returns to scale and where
the inputs are the effective labor BL, where B is the labor-
augmenting technological progress, and the capital K. Capital
accumulates via savings, sY , with s ∈ (0, 1) and depreciates at
δ > 0. The rate of labor-augmenting technological progress,
gB > 0, determines the growth rate of labor efficiency:

Y = F(K,BL), K̇ = sY − δ K, L̇ = nL, Ḃ = gBB. (1)

The impact of pollution has been modeled assuming that each
unit of economic activity, F, generates� units of pollution. Then,
the amount of pollution differs from the amount generated by
the economic activity only when abatement occurs. Moreover,
abatement is considered as a constant returns to scale activity
and the pollution abated is assumed as an increasing and strictly
concave function of both the total economic activity F and the
economy’s ecological effort, FA. Then, pollution is defined as:

P = � F − �A(F, FA) (2)

whereA is the abatement level. The specification can be rewritten
also as:

P = � Fa(θ) (3)

where a(θ) ≡
[
1 − A

(
1, F

A

F

)]
and θ = FA

F . Combining
environmental assumptions with the Solow model, the output
Y becomes Ỹ = (1 − θ)F and, assuming also an exogenous
technological process in abatement at the rate gA > 0, it is
derived:

ỹ = f (k)[1− θ] (4)

k̇ = sf (k)[1− θ]− [δ + n+ gB]k (5)

p = f (k)� a(θ) (6)

where k = K
BL , ỹ =

Ỹ
BL , p = P

BL and f (k) = F(k, 1).
From a dynamic point of view, the model presents a

differential equation in k from which, by assuming that Inada

2See [3] for a complete review.
3This work has been circulated as a working paper for many years and it was a sort

of milestone for the literature of the 2000s on the relationship between growth and

the environment.
4This assumption is commonly used to simplify the analysis.

conditions5 hold for F and θ fixed, the unique interior fixed point
k∗ attracts every initial condition k(0) > 0.

Moreover, it can be noticed that, as k → k∗, the aggregate
output, consumption and capital approach the same growth rate
gB + n and, consequently, their per capita levels grow at the rate
gB > 0.

At the steady state level k∗, the growth rate of emissions gP is
given by:

gP = gB + n− gA. (7)

In order to describe the dynamic relationship between capital
accumulation and emissions level, the authors introduce a
definition of sustainable growth in these terms: a balanced growth
path6 is sustainable if it is associated to both rising consumption
per capita and an improving environment. In mathematical
terms, it is characterized by the following conditions:

gB > 0, gA > gB + n. (8)

By differentiating the Equation (6) and assuming f (k) = kα , the
dynamics of the model are described by the following system:

{
k̇
k
= skα−1(1− θ)− (δ + n+ gB)

Ṗ
P = gB + n+ α k̇

k
.

(9)

Therefore, the system (9) allows to capture the evolution of
emissions along time, as k → k∗. By assuming sustainable
growth (that is, gP < 0), the value kT (called turning point),

ensuring Ṗ
P = 0, is lower than k∗ and this implies that the time

profile of emissions depends on the position of the initial value k0
related to the turning point. In particular, if the economy starts
with an initial capital stock such that k0 < kT , emissions first rise
and then fall. Hence, an inverted U-shaped profile, recalling the
environmental Kuznets curve, is obtained. Instead, if an initial
capital stock k0 > kT is assumed, emissions monotonically fall as
kmoves toward its steady state value k∗.

Finally, when the sustainable growth is not assumed,
emissions grow for all t even as k approaches the steady state
value.

2.2. The Ramsey-Cass-Koopmans Model
With Environmental Pollution
The model in Xepapadeas [5] represents a natural evolution
of the approach proposed in the previous subsection. In
this context, consumption-investment choices are derived in
a decentralized framework composed by intertemporal utility
maximizing agents and perfectly competitive profit maximizing
firms. The individual utility function depends on the per capita
consumption flow c(t) and the pollution stock P(t).

5In economic literature, the Inada conditions are assumptions introduced in order

to guarantee the stability of an interior equilibrium (see [1]).
6In dynamic modeling, a balanced growth path is a trajectory such that all variables

grow at constant (but potentially different) rates.
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The representative consumer considers the pollution level as
fixed and solves the problem:

max
c(t)

∫ ∞

0
e−ρ tU(c(t), P(t))dt

subject to

∫ ∞

0
e−R(t)c(t)dt = k(0)+

∫ ∞

0
e−R(t)w(t)dt

where ρ is the discount rate in the utility function, k(0) is the

initial capital and R(t) =
∫ t
τ=0 r(τ )dτ , with r(τ ) real interest

rate at time τ and e−R(t) an appropriate discount factor. Under
standard assumptions of concavity on U and imposing that
lim

c→+∞
Uc(c, P) = 0, the solution of the optimization problem,

obtained with the use of the maximum principle, is interior (that
is, c(t) > 0 for every t) and the consumption path is defined by:

ċ

c
=

1

η

[
r − ρ +

UcP

Uc
Ṗ

]
(10)

where η = −Ucc
Uc

c.7 By assuming that (i) the production function
f (k) satisfies the Inada conditions, (ii) markets are competitive

and firms are profit maximizers (which imply f
′
(k) = r + δ), the

economic dynamics is described by the following system:





ċ
c =

1
η

[
f
′
(k)− ρ − δ + UcP

Uc
Ṗ

]

k̇ = f (k)− c− δ k

Ṗ = φ f (k)−mP.

(11)

By analysing the model, a unique steady state (c∗, k∗, P∗) exists
and the dynamics, generated by an optimization process, evolve
on the stable manifold of (c∗, k∗, P∗) and converge to it. As
explained in Xepapadeas [5], by considering that pollution
evolves, it can be noted that the coordinates (c∗, k∗) are generally
not affected by the stationary state value of P∗, although the
approach path to the steady state is affected [due to the presence
of UcP

Uc
Ṗ in the first equation of system (11)].

3. DISCRETE TIME MODELS

If, on the one hand, the aforementioned models are suitable to
describe long run trends, on the other hand they are not able
to capture the occurrence of short or medium run nonlinear
phenomena.

Regarding this point, the work of Day [6] provides an example
of how complex phenomena may emerge from the dynamic
analysis of a simple economic framework.

3.1. The Day’s (1982) Model
In this work, the author considers a neoclassical growth model
à la Solow (1956) in discrete time. Indeed, assuming no capital

7In order to simplify the notation, the subscripts denote partial derivatives.

Therefore, the general equality Vx(x, y) =
∂ V(x,y)

∂ x = Vx henceforth holds.

depreciation, it can be expressed by a first order difference
equation in the capital-labor ratio kt =

Kt
Lt
, that is

kt+1 =
σ f (kt)

1+ λ
(12)

where σ is the saving ratio assumed as constant, f (·) is
the production function and λ is the natural growth rate of
population.

By assuming that productivity is reduced by a so called
pollution effect, Day [6] introduces the following specification for
f :

f (k) = Akβ (m− k)γ (13)

where A > 0 is a productivity parameter, β > 0 is the elasticity of
capital,m > 0 is the state of environment if private production is
not performed and γ > 0 weighs the effects of pollution.

Then, the map that describes the dynamics of the model
becomes:

kt+1 =
σ Ak

β
t (m− kt)

γ

1+ λ
. (14)

The map in (14) is unimodal, C1, and admits a unique maximum

point k =

(
β m
β+γ

)
, from which it can be obtained the maximum

capital-labor ratio km = f (k), that is:

km =
Aσ

1+ λ
ββγ γ

(
m

β + γ

)β+γ

. (15)

In particular, note that the slope of the production function
indefinitely grows as k approaches zero and consequently, for
sufficiently small initial conditions k0 > 0, growth is positive.

For values of A sufficiently small, the stationary state is
monotonically achieved either from above or below. As A
increases, the steady state capital stock increases until verify the

equality km = k = ks, where ks is the steady state capital-
labor ratio. This represents the bifurcation point from which
oscillations in levels of k occur for even higher values of A.

The condition km ≤ m is assumed to prevent negative values
of k. Then, the author derives the following sufficient condition
for the existence of growth cycles, that is:

β

β + γ
m <

Aσ

1+ λ
ββγ γ

(
m

β + γ

)β+γ

≤ m. (16)

Indeed, for a parameterizations satisfying such condition, the
capital-labor ratio exhibits bounded oscillations (perhaps after a
period of growth).

In order to determine if such cycles can be chaotic, Day [6]
shows the existence of a parameter set for the map such that
the theorem in Li and Yorke [7] is satisfied. For example, when
β = γ = m = 1, the map (14) becomes:

kt+1 =
σ A

1+ λ
kt(1− kt) (17)
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from which, following [8], the existence of a parameter set such
that:

3.57 ≤
σ A

1+ λ
≤ 4 (18)

implies that irregular growth cycles appear (see Figure 1).

3.2. The Zhang’s (1999) Model
In this model, the author considers an economy à la [9], in
which at every period t there are two overlapping generations
of individuals. The representative agent of each generation
gets utility from consumption, ct+1, and environmental quality,
Et+1, when old. The utility function U(ct+1,Et+1) is assumed
to be increasing with respect to each argument and strictly
concave. Furthermore, some Inada like conditions are satisfied,
in order to get an optimal bundle with strictly positive values for
c and E.

The individual supplies inelastically a unit of labor only in
the first period, earning a real wage wt , and optimally allocate
wt between private savings st

8 for the old age consumption
and environmental improvement expenditures, mt . In the old
age, the agent earns (1 + rt+1 − δ)st , where r and δ are
the real rate of return and the capital depreciation rate,
respectively. Then, the individual life-cycle budget constraints are
given by:

wt = st +mt; ct+1 = (1+ rt+1 − δ)st . (19)

The environmental quality evolves according to the following
rule, staken from John and Pecchenino [9]:

Et+1 = (1− b)Et − β ct + γ mt (20)

where b ∈ (0, 1) represents the degree of autonomous evolution
of environmental quality, β ct measures the consumption
degradation of the environment, and γ mt measures the
environmental improvement (β and γ are assumed to be
positive). The production function f (kt) : R+ → R+ is assumed
to be C2 and strictly concave with respect to kt (the capital-labor
ratio). Firms maximize profits and then:

wt = f (kt)− ktf
′

(kt), rt = f
′

(kt). (21)

The representative agent maximizes his utility with respect to
(19) and (20). Then, the first order necessary and sufficient
condition for the maximization problem reads as:

(1+ rt+1 − δ)Uc(ct+1,Et+1)− γ UE(ct+1,Et+1) = 0. (22)

Hence, a perfect foresight competitive equilibrium is
characterized by the Equation (21), the condition (22) and
the market clearing condition kt+1 = st .

To simplify the analysis, the author assumes a constant
elasticity of substitution between consumption and environment,
ηE, defined as:

ηE ≡
E

c

UE

Uc
> 0, (23)

8Savings are inelastically supplied to the firms.

and this allows to rewrite equation (22) as

ct+1 =
Et+1[1+ f

′
(kt+1)− δ]

ηEγ
. (24)

From themarket clearing condition, the author gets the following
relationship between capital and environment:

kt+1 =
Et+1

ηEγ
(25)

and then the study of the dynamics can be reduced to the analysis
of the following first-order difference equation:

Et+1 =
ηE

1+ ηE

([
1−b−

β(1− δ)

ηEγ

]
Et+[γ (1−α(kt))−βα(kt)]f (kt)

)

(26)

where α(k) ≡
kf

′
(k)

f (k)
is the capital share of output. In order

to simplify the analysis, α is assumed as constant. Therefore,
by considering f (kt) = Akα

t (where A > 0 represents the
productivity parameter), [10] gets the expression

Et+1 = a0Et +

[
Aη1−α

E [γ (1− α)− βα]

γ α(1+ ηE)

]
(Et)

α ≡ G(Et) (27)

where a0 ≡
(1−b)ηEγ−β(1−δ)

γ (1+ηE)
. It can be noticed that this

parameter is less than 1 and it is independent with respect to α.
About the dynamics of themodel, an interior fixed point exists

if and only if γ (1−α)−βα > 0. In particular, Zhang [10] shows
that, when a0 ≥ 0, the unique stationary equilibrium is given by

E∗ =

[
Aη1−α

E [γ (1− α)− βα]

(1− a0)γ α

] 1
1−α

(28)

and the following proposition holds:

Proposition 1. Suppose γ (1 − α) − βα > 0. Then, if a0 ≥

0, map G is monotonically increasing; for all E0 ∈ (0,+∞),
lim

t→+∞
Gt(E0) = E∗. That is, there exists a unique and

asymptotically stable (attracting) positive steady state.

When a0 < 0, dynamics may exhibit complexity. By assuming

−α
− α
1−α

1−α
< a0, [10] proves that if a0 ∈ [− 1+α

1−α
, 0), E∗ is

stable. Instead, if a0 decreases in the interval

(
− α

− α
1−α

1−α
,− 1+α

1−α

)
,

the map G exhibits the classical period-doubling sequence,
summarized by the bifurcation diagram in Figure 2. It can be
noticed thatA does not play any role in the dynamic properties of
the model: it only influences the level of E at the stationary state.

3.3. The Naimzada-Sodini (2010) Model
In the case of discrete time unidimensional models with
overlapping generations, a variation of the model proposed
in Zhang [10], with a more general production function, has
been provided by Naimzada and Sodini [11]. Remaining close
to the paradigm introduced by John and Pecchenino [9], the
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FIGURE 1 | Parameter set: σ = 0.5, λ = 0.02,Al = 5,Aint = 6.5,Ah = 7.5. (A) Changes in the shape of the map, as A varies. (B) Convergence to the fixed point for

A = Al (k0 = 0.3). (C) Convergence to a 2-cycle for A = Aint (k0 = 0.21). (D) Chaotic regime for A = Ah (k0 = 0.3).

authors propose a model in which a population of individuals
is characterized by a utility function depending on the stock
of an environmental good, Et , and on the consumption of the
private good, ct . It is also assumed that Et is negatively affected
by the consumption but it is improved by specific environmental
expenditures.

Differently from Zhang [10], Naimzada and Sodini [11]
consider allocations in a decentralized economy. In this case, the
choices of each agent between consumption and environmental
expenditure generate externalities on the others. A consequence
of this assumption is that the environmental maintenance,
because of the environment is considered as a public good, is
characterized by the classic free-riding problem. In particular, the
functional form described by the authors is the following:

Et+1 = (1− b)Et − β

N∑

i=1

cit + γ

N∑

i=1

mi
t + bE (29)

where b ∈ (0, 1) measures the autonomous evolution of
environmental quality, β > 0 measures the consumption
effect on environment, γ > 0 weighs the environmental
expenditures efficiency, N is the number of the agents, and
E > 0 represent the long run value of the environmental
index in absence of anthropic activity. Individual preferences are
described by the utility function U(ct+1,Et+1), with U assumed
as twice continuous and differentiable. Also in this case, Inada
like conditions are also assumed to avoid corner solutions in the
optimization problem.

On the production side, compared with [10], the model
considers a more general specification, that is a CES-technology:

Y = Af (kt) = A
(
α k

−ρ
t + (1− α)

)− 1
ρ (30)

where kt is the physical capital level at t, A > 0 is a scaling
parameter, α ∈ (0, 1) measures the degree of capital intensity of
production, and θ = 1

1+ρ
represents the elasticity of substitution

between labor and capital, with ρ > 0.
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FIGURE 2 | Occurrence of a period-doubling sequence as a0 decreases.

From the optimality conditions, equilibrium expressions of
wage rate wt , and interest rate rt are derived as

wt = A(1− α)
(
α k

−ρ
t + (1− α)

)− 1+ρ
ρ , (31)

rt = Aα k
−(1+ρ)
t

(
α k

−ρ
t + (1− α)

)− 1+ρ
ρ . (32)

By assuming that agents are identical, the problem faced by the
individual born at t is:

max
ct+1 ,mt+1

U(ct+1,E
e
t+1)

in which

Eet+1 = (1− b)Et − β Nct + γ (mi
t + (N − 1)me

t )+ bE (33)

represents the expected environmental quality at time t + 1
(depending on me

t , that is, the expectation of agent i about
strategies of others N − 1 identical agents) and the following
constraints apply:

wt = st +mt , (34)

ct+1 = (1+ rt+1 − δ)st , (35)

where st is the saving and δ represents the depreciation rate of
capital.

By assuming that the young individual at t is able to perfectly
foresee the environmental index Et+1 and recalling the Equations
(31) - (32), the equilibrium conditions for all t become:

− Uct+1 (·, ·)(1+ rt+1 − δ)+ γ UEet+1
(·, ·) = 0, (36)

me
t = m∗

t , (37)

Et+1 = (1− b)Et − β Nc∗t + γ Nm∗
t + bE, (38)

kt+1 = si∗t . (39)

In order to analyse dynamics of the model, the authors, as
in Zhang [10], introduce a constant elasticity of substitution
between consumption and environment, defined as:

ηE ≡
EUE

cUc
> 0. (40)

Hence, they characterize the intertemporal equilibrium
conditions by means of a nonlinear difference equation in Et :

Et+1 =
ηE

N + ηE

[(
(1− b)−

Nβ(1− δ)

γ ηE

)
Et

+NA

[
γ (1− α)− βα

[
Et

γ ηE

]−ρ]

×

[
α

(
Et

γ ηE

)
+ 1− α

]− 1+ρ
ρ

+ bE

]
≡ Z(Et). (41)

Therefore, Naimzada and Sodini [11] describe the dynamics
distinguishing between two possible cases, depending on the sign
of ρ: (i) ρ < 0 and (ii) ρ > 0.

In the case (i), the authors show that the map admits a unique
positive fixed point and highlights that qualitative results similar
to the ones in Zhang [10] are achievable. Then, the unique fixed
point E∗ could be attracting or repelling and, in the latter case,
limit cycles or a chaotic attractor arises. However, differently from
Zhang [10], the scaling parameter A affects the stability of E∗.
Indeed, by starting from the parameterizations α = 0.831,β =

0.55, γ = 1.56, δ = 0.001, ηE = 5, ρ = −0.4,A = 3, b =

0.52,E = 1,N = 2, 000, an increase in A generates a loss of
stability of E∗ through a period-doubling bifurcation. In addition,
for A ≃ 6, the map exhibits chaotic dynamics.

In the case (ii), the map admits an odd number of fixed points
and the ones with even index are unstable. Then, differently from
(i), multiple equilibria may exist. In particular, the authors prove
that, for ρ >> 0, three steady states exist.

An other interesting phenomenon shown by the authors is
the following. By considering a parameter set for which a unique
fixed point E∗1 exists, an increase of A is able to generate, through
a fold bifurcation, two new steady states E∗2 and E∗3 , where E

∗
2 <

E∗3 is repelling and separates the basins of attraction of the two
attracting fixed points E∗1 and E∗3 . Then, a change in A may be
engine of a poverty trap (see [12]).

Considering another configuration of parameters (see the
parameter set in Figure 3), the authors provide another example
in which a different sequence of dynamic phenomena occurs, as
A varies.

For A low, a unique repelling fixed point E1, enclosed in
an attracting limit 2-cycle, exists; by increasing A, the map
undergoes the classic period-doubling sequence until a fold
bifurcation generates two new fixed points, E2 (repelling) and
E3 (attracting) with E3 < E2 < E1. When A further increases,
first E∗3 loses its stability through a flip bifurcation and then
a cascade of flip bifurcations appears. Moreover, there exists a
region of parameters for which coexistence of attractors occurs
(see Figure 3). For larger values of A, the lower attractor dies and
all the feasible trajectories are attracted by the remaining attractor
that lives at the right of the repelling steady state E2.
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Figure 4 shows an interesting global phenomenon analyzed by
the authors, for even higher values of A: the remaining attractor
enlarges and invades the space before occupied by the other
attractor.

Finally, an uncommon phenomenon analyzed in the work is
the following one. By fixing α = 0.07,β = 0.1, ηE = 11, ρ =

12,N = 100, δ = 0.4, γ = 0.04, b = 0.58,E = 22, the
second iterate of the map is characterized by two humps or more
precisely by a maximum and a minimum point. By investigating
the second iterate G2, it can be noticed that an increase of Amay
lead to a fold bifurcation of G2 inducing a stable 2-cycle and an

FIGURE 3 | Parameter set: α = 0.07,β = 0.1, ηE = 11, ρ = 12,N = 100, δ =

0.4, γ = 0.04,b = 0.58,E = 22. The part of the bifurcation diagram depicted

in black is generated starting from E0 = 0.6. The part depicted in red shows

the existence of a second attractor for A ∈ [0.83, 0.88] (the initial condition is

E0 = 0.29).

FIGURE 4 | Merger of the attractors, A = 1.21.

unstable 2-cycle. In this case, the fold bifurcation arises far from
the fixed point that maintains its instability for the whole process
(see Figure 5).

3.4. The Caravaggio-Sodini Model (2017)
Recently, by following some suggestions from empirical
findings9, Caravaggio and Sodini [14] have proposed a model in
which, by assuming an overlapping generation framework and
discrete time, the environmental resource is not an argument in
the agent’s utility but is taken as an input in the production of a
private good. Moreover, differently from John and Pecchenino
[9], the model on the one hand assumes that the economic
activity damages the environment and that agents consider it
only as an externality10; on the other hand, it assumes that the
government imposes a wage taxation with a fixed share devolved
to the maintenance of a natural resource11.

About the economic agent, at time t he supplies inelastically
his time endowment and the earned wage wt is allocated between
the consumption ct and the saving st . Hence, the individual
preferences depend on consumption in the young age, ct ,
consumption in the old age, dt+1 = stRt+1 and on the level of
basic services provided by public sector. Thus, the utility function
is given by:

U(ct , ct , dt+1, dt+1, St) = ln(ct−ρct)+ln(St)+φ ln(dt+1−σdt+1)
(42)

where ρ, σ ∈ (0, 1) represent the intensity of consumption
spillover in young and old age, respectively, φ > 0 determines

the discount factor and ct , dt+1 are consumption externalities.
Moreover, the government levies a tax on labor wage at the tax
rate τ ∈ (0, 1). Saving, remunerated at the real interest factor
Rt+1, is used to consume the final good in the old age. Then, the
agent has to face the following intertemporal budget constraint:

(1− τ )wt =
dt+1

Rt+1
+ ct . (43)

Maximizing the utility function (42) with respect to (43) and

considering the ex post conditions ct = ct , dt+1 = dt+1, the
saving function is obtained as:

st =
φ(1− τ )wt(1− ρ)

1− σ + φ(1− ρ)
. (44)

On the production side, the private good is produced through the
following Cobb-Douglas technology:

Yt = F(kt , kt ,Et) = Akα
t k

β

t E
γ
t , with α,β , γ > 0 and α+β ≤ 1

(45)
where kt represents a production externality, A > 0 is the
productivity scaling parameter and Et is the stock of natural
resource involved in the productive process. In that specification,
authors assume both the possibility of decreasing social returns to

9See for example, [13].
10Agents do not invest in defensive environmental expenditures.
11About the role of government in public expenditure for the environmental

maintenance, see [15].
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FIGURE 5 | Figure reproduced with the permission of the authors. Source:

Naimzada and Sodini [11]. Evolution of the second iterate of G (drawn at the

bifurcation value A = 0.132). For A = 0.10, G2 has no intersections with the

main diagonal (dashed line); for A = 0.132, G2 creates 2 tangent points (solid

line) and for A = 0.16, two fixed points for G2 are born (dotted line).

scale and constant social returns to scale, that is α+β ≤ 1. From
the known optimality conditions, the equilibrium expressions for
wage and interest rate are derived as:

wt = A(1− α)kα
t k

β

t E
γ
t (46)

Rt = Aαkα−1
t k

β

t E
γ
t . (47)

Regarding to the evolution of natural resource, a functional form
similar to the one introduced in Smulders and Gradus [16] is
adopted:

Et+1 =
E+ Gθ

t

1+ Yλ
t

, (48)

where E > 0 represents the natural level of environmental
resource, that is the level when no productive activity exists, and
λ, θ > 0 weigh the environmental impact of production Yt and
the impact of public environmental expenditures Gt = δ · (τwt).

By considering the aggregate consistency condition kt = kt
and the market clearing condition on the capital market kt+1 =

st , the dynamics of themodel are driven by the following dynamic
system:

M :





kt+1 =
φ(1−τ )(1−ρ)(1−α)Ak

α+β
t E

γ
t

1−σ+φ(1−ρ)

Et+1 =
E+
(
δτ (1−α)Ak

α+β
t E

γ
t

)θ

1+(Ak
α+β
t E

γ
t )

λ
.

(49)

Introducing the change of variables:

Yt = Ak
α+β
t E

γ
t , (50)

the dynamics of the model can be studied through the analysis of
the following one-dimensional map:

N :Yt+1 = A
(
kt+1

)α+β
(Et+1)

γ = H(Yt) (51)

where H(Yt) is defined as:

H(Yt) : = A

(
φ(1− τ )(1− ρ)(1− α)Yt

1− σ + φ(1− ρ)

)α+β
(
E+

(
δτ (1− α)Yt

)θ

1+ Yλ
t

)γ

(52)
In order to analyse the dynamics of the system by studying the
dynamic properties of the map N, some relationships between
mapsM and N are provided:

(a) 0 is a fixed point for N if and only if (0,E) is a fixed point for
M;

(b) Y∗ > 0 is a fixed point for N if and only if there exist k∗ and
E∗ such that (k∗,E∗) is a fixed point forM;

(c) an attracting fixed point for N corresponds to an attracting
fixed point forM and vice versa.

For both mathematical and economic reasons, Caravaggio and
Sodini [14] distinguish the two cases (i) α + β < 1 and (ii)
α + β = 1, highlighting how different parameterizations and
different initial conditions may lead the economy on a bounded
growth path, on an unbounded growth path or on a poverty trap
path.

In particular, in the case (i), a unique interior globally stable
fixed point Y∗ or three interior fixed points Y∗

1 < Y∗
2 < Y∗

3
with Y∗

1 and Y∗
3 locally stable and Y∗

2 unstable are admitted.
Therefore, dynamics of N, for initial conditions on the left and
the right of Y∗

2 , are captured by Y∗
1 and Y∗

3 (see Figure 6A).
In addition, investigating further properties of the relationship
betweenM andN, it can be observed that starting from a positive
stationary equilibrium Y∗ for N, an invariant set in the plane

(k,E), defined by E =
(

Y∗

Akα+β

) 1
γ , is identified. Such expression,

for the parameter set considered, describes the stable manifold of
the saddle point (k∗2 ,E

∗
2) that separates the basins of attraction of

(k∗1 ,E
∗
1) and (k∗3 ,E

∗
3), as depicted in Figure 6B.

Authors also highlight the particular role played by the scaling
parameter A. Indeed, it can be noted that a decrease in A may
cause the disappearance of the fixed points Y∗

2 and Y∗
3 . Then

Y∗
1 becomes the unique attractor of the system and a successive

recovery of A at its original value may not allow the restoration
of the previous path. Figures 7A,B provide a numerical example
of this occurrence in terms of k and E.

In the case (ii), Caravaggio and Sodini [14] underline two
interesting results: (1) the noninvertibility and unimodality of the
map may induce the birth of nonconnected basins of attraction
(see Figure 8);

(2) For λ < θ , it is possible that trajectories, after a long
transient, positively diverge. On the contrary, for λ > θ

trajectories, after the transient phase, may converge to the unique
attractor 0, that represents a nonproductive state for the economy
(see Figures 9A,B, respectively).
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FIGURE 6 | Figure reproduced with the permission of the publisher. Source: Caravaggio and Sodini [14]. Parameter set:

α = 0.32,β = 0.6, γ = 0.4, δ = 0.7, θ = 3, λ = 2.87, ρ = 0.25, σ = 0.7, τ = 0.2,φ = 0.6,E = 0.0007,A = 48.6. (A) Time series of Y converging to Y *
1 or to Y *

3 for

different initial conditions; (B) Dashed lines describe iso-product curves in the plane (k,E) associated with stable fixed points of N, Y *
1 and Y *

3. The iso-product curve

related to the unstable Y *
2 (solid line) is the stable manifold of the saddle (k*2,E

*
2) and separates the basin of attraction for (k*1,E

*
1) (green region) and (k*3,E

*
3) (yellow

region), respectively.

FIGURE 7 | Figure reproduced with the permission of the publisher. Source: Caravaggio and Sodini [14]. Parameter set:

α = 0.32,β = 0.6, γ = 0.4, δ = 0.7, θ = 3, λ = 2.87, ρ = 0.25, σ = 0.7, τ = 0.2,φ = 0.6,E = 0.0007,Ah = 48.6,Al = 48.3. (A) Evolution of capital accumulation

over time when a shock in A occurs; (B) Evolution of the stock of environmental resources over time when a shock in A occurs. The red pointed vertical line represents

the temporary (exactly 10 iterations) time series generated by Al .

3.5. The Antoci-Gori-Sodini Model (2016)
Continuing with the literature on the discrete time OLG models,
several works in which a different allocation problem for the
agents is taken into account have been proposed, as in Antoci
and Sodini [17] and in Antoci et al. [18]. In this context,
differently from John and Pecchenino [9], where the investment
in environmental defensive expenditures is internalized by agents
in the allocation problem, economic agents are assumed to be
unable of interven for the environmental maintenance. These

models therefore consider an environmental quality that is
deteriorated by economic activity and individuals who defend
themselves from such worsening by simply increasing the
consumption of the private good, perceived as a substitute of the
environmental one. As shown in Antoci and Sodini [17], since
the production has a negative impact on the environment, self-
protection choices induce further environmental degradation.
Then, a self-enforcing mechanism may be observed according
to which environmental depletion leads to an increase in the
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consumption of private good, which in turn generates further
environmental degradation and so on.

These works show also that such self-reinforcing substitution
mechanism may fuel undesirable growth paths according to
which an increase in consumption of the private good is
associated with a reduction in the individual well-being.
Moreover, this mechanism may lead to the occurrence of several
global phenomena and the individuals’ expectations about the

FIGURE 8 | Figure reproduced with the permission of the publisher. Source:

Caravaggio and Sodini [14]. Parameter set:

α = 0.6,β = 0.4, γ = 0.4, δ = 0.1, θ = 1.12, λ = 8.92, ρ = 0.1, σ = 0.2, τ =

0.21,φ = 0.19,E = 0.000001,Ah = 5, 000,Aint = 250,Al = 150. For

A = Aint, the map admits three stationary equilibria: 0 (stable), Y⋆
1 = 0.444

(unstable) and Y⋆
2 = 1.057 (stable). The basin of 0 is nonconnected and

consists of two parts: the immediate basin in (0,Y *
1) and the other part

(Yp,+∞), where Yp is the preimage of Y *
1. On the contrary, the basin of Y *

2 is

connected being a single interval (Y *
1,Yp).

future evolution of the environmental quality can induce local
and global indeterminacy.12

Before introducing the main features of the model in Antoci
et al. [18], it can be useful to recall the definition of indeterminacy
(local and global). Indeed, indeterminacy occurs if, for a given
initial condition on the state variables, different values for the
control variable can be chosen. In particular, if such values
lead to the same �-limit set, then local indeterminacy occurs,
otherwise if the different initial values of the control variable lead
to different �-limit sets, then global indeterminacy arises. On
the contrary, a steady state is said to be (a) locally determinate
if, for an initial condition on the state variables close to the
steady state, there exists, in a neighborhood of the steady state,
only one feasible choice for the control variables and (b) globally
determinate if, for a given initial condition on the state variables,
there exists only one value of the control variables that can be
chosen.

Moving on the model, the authors consider an OLG economy
composed of identical and perfectly rational individuals who live
for two periods, youth and old age. Each young agent allocates
his time endowment between labor lt ∈ (0, 2), remunerated at the
wage rate wt , and leisure 2− lt . Then, the representative member
of generation t earns a labor wage wt lt which is entirely saved at
time t, that is st = wt lt . The saving st is invested in productive
capital (Kt+1 = st), that the individual rents to the representative
firm at the interest factor Rt+1. The revenue Rt+1st is used at the
second period of life to buy and consume the quantity Ct+1, so
that Ct+1 = Rt+1st . Therefore, the lifetime budget constraint of
the individual of generation t is given by:

Ct+1 = Rt+1wt lt . (53)

12With regard to local indeterminacy in OLGmodels where environmental quality

is considered, see also [19]. In this work, the authors show the existence of a unique

stationary state and a condition for which it is locally indeterminate. In addition,

differently from Zhang [10], the work underlines that the possible emergence of

endogenous fluctuations does not require high levels of pollution emission rate.

FIGURE 9 | Figure reproduced with the permission of the publisher. Source: Caravaggio and Sodini [14]. (A) Positive divergence when λ < θ ; (B) convergence to a

nonproductive state when λ > θ .
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Individual preferences depend on leisure when individuals are
young and consumption when individuals are old. In addition,
the authors assume that the utility function is affected by the
environmental quality, Et+1. Then, the lifetime utility index is
represented by a constant inter-temporal elasticity of substitution
(CIES) function, that is:

Ut(lt ,Ct+1,Et+1) =
(2− lt)

1−γ

1− γ
+

(Ct+1E
τ
t+1)

1−σ

1− σ
(54)

where σ > 0 (σ 6= 1) and γ > 0 (γ 6= 1) determine the elasticity
of utility with respect to consumption and leisure, respectively,
and τ is a positive parameter reflecting the relative influence
of environmental quality in defining the individual utility.
Moreover, if σ ∈ (0, 1) (resp. σ > 1) then consumption and
environment are complements (resp. substitutes). In particular,
for σ ∈ (0, 1) (resp. σ > 1) the following derivative holds:

∂2Ut(lt ,Ct+1,Et+1)

∂ Ct+1∂ Et+1
> 0 (resp. < 0).13 (55)

The representative individual of generation t chooses labor
supply lt in order to maximize the value of utility function
(54), subject to the intertemporal budget constraint (53) and
the condition lt ∈ (0, 2). Then, in order to get an interior
solution, the necessary and sufficient first order condition for the
maximization is:

− (2− lt)
−γ +

(Rt+1wt ltE
τ
t+1)

1−σ

lt
= 0. (56)

On the production side, the authors assume that the firm
produces output Yt through a constant returns to scale Cobb-
Douglas technology, that is:

Yt = AF(Kt , lt) = AKα
t l

1−α
t (57)

where A > 0 is a scaling parameter and α ∈ (0, 1) represents
the elasticity of the production function with respect to capital.
By assuming that the capital stock Kt fully depreciates at the end
of every period, the profit maximization implies that productive
factors are remunerated at their marginal products, that is:

Rt = α AKα−1
t l1−α

t , (58)

wt = (1− α)AKα
t l

−α
t . (59)

With regard to the environmental resource, the authors define
the environmental quality index as a function that negatively
depends on the economy-wide average production at time t, that
is:

Et+1 =
E

1+ Y
ρ

t

, (60)

13The increase in Ut due to an increase in Ct+1 is positively related to the value of

the index of environmental quality Et+1 if σ ∈ (0, 1), viceversa if σ > 1.

where E is a positive parameter symbolizing the natural value
of the environmental quality, and ρ > 0 measures the
environmental impact of production. It can be noticed that
this specification eliminates the accumulation of environmental
damages provoked by the production and, from a mathematical
point of view, allows the authors to investigate the dynamical
system in the plane (Kt , lt).

By imposing the market clearing condition Kt+1 = st =

wt lt , assuming that individuals have perfect foresight and that
the economy-wide average output coincides, ex post, with the
output of the representative firm, equilibrium conditions can be
described by the following map:

M :





Kt+1 = V(Kt , lt)

= (1− α)AKα
t l

1−α
t

lt+1 = Z(Kt , lt)

= K
− α2

1−α

t

(
l
1−α(1−α)(1−σ )
t

(2−lt)γ

) 1
(1−α)(1−σ )

(
[1+(AKα

t l
1−α
t )ρ ]τ

α(1−α)αA1+αE
τ

) 1
1−α

(61)

where M is defined in the set D : = {(K0, l0) ∈ R
2
:Kt > 0, 0 <

lt < 2,∀ t > 0}.
Regarding to existence, multiplicity and stability of fixed

points, the map admits always at least one fixed point in the set
D. In particular, if 0 < σ < 1, the map admits a unique fixed
point, while if σ > 1, the map admits one or three fixed points,
according to the natural value of the environmental quality, E.
Furthermore, the authors prove that for 0 < σ < 1 the fixed
point is a saddle (globally determined), independently of the
parameterizations; on the contrary, for σ > 1 two cases arise:
(i) there exists a unique fixed point that can be a sink or a saddle
independently of the parameterizations, or (ii) there exist three
fixed points which have not any dynamic properties independent
of the applied parameterizations. In the case (ii), given the three
fixed points (K∗

1 , l
∗
1), (K

∗
2 , l

∗
2) and (K

∗
3 , l

∗
3), (K

∗
1 , l

∗
1) and (K

∗
3 , l

∗
3) can

be sink or saddle whereas (K∗
2 , l

∗
2) can be source or saddle.

An important result shown by the authors is that, due to
the absence of externalities on the production and the inclusion
of the environmental variable only in the agents’ utility, the
map describing the dynamics of the model is invertible. This
implies that, differently from Caravaggio and Sodini [14], basins
of attraction are connected sets. Furthermore, the inverse map
allows to numerically approximate the stable manifold of saddles,
that is the trajectories converging to a determinate equilibrium.

The main issue investigated in the work is the possible rise of
local and global indeterminacy. By recalling that in the model lt
is the control variable (that is, the initial value l0 is fixed after the
optimization process), while Kt is the state variable, a stationary
equilibrium (Kt , lt) is locally indetermined if it is an attractor
from a dynamic point of view (in other words, it holds that for
every eigenvalue λi, |λi| < 1). On the contrary, (K∗, l∗) is locally
determined if it is a saddle, that is one of the two eigenvalues
(in modulus) is larger than 1 and the other (in modulus) is
smaller than one. The economic dynamics are said to be globally
indetermined if there is coexistence of attractors and/or saddles.

The main configurations of the dynamics can be summarized
through four examples. In the example 1, the parameter set is
A = 1.25,E = 12.2,α = 0.2, γ = 1.12, σ = 3, τ = 1. In this
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case, for 0 < ρ < 1 there exists a unique fixed point (K∗
1 , l

∗
1)

and it is a saddle (then locally determined). For ρ ≃ 1, (K∗
1 , l

∗
1)

becomes stable and it implies local indeterminacy. This means
that, given an initial value K0 sufficiently close to K∗

1 , there exists
a continuum of initial conditions l0 such that trajectories starting
from (K0, l0) converge to (K

∗
1 , l

∗
1) (see Figures 10A,B).

A further increase in ρ generates a saddle-node bifurcation
from which (K∗

1 , l
∗
1) and (K∗

3 , l
∗
3) (attracting) and (K∗

2 , l
∗
2) (saddle)

are obtained. Therefore, global indeterminacy arises and then
there exists initial values K0 from which it is possible to reach
all coexisting fixed points by opportunely choosing the initial
value l0, as shown in Figure 11. By further increasing the value
of ρ, simultaneously (K∗

1 , l
∗
1) approaches the saddle (K

∗
2 , l

∗
2) and

(K∗
3 , l

∗
3) loses its stability in favor of 2-cycle via a supercritical

flip bifurcation. After the collision between (K∗
1 , l

∗
1) and (K∗

2 , l
∗
2)

almost all trajectories belonging to D are captured by the 2-
cycle arisen from (K∗

3 , l
∗
3). Furthermore, the authors show that,

in this case, (i) by starting from K0 sufficiently far from K3∗ ,
there exist several l0 such that trajectories converge to the locally
determined (K∗

3 , l
∗
3) and (ii) given K0, there exist other values

of l0 for which trajectories converge to the 2-cycle. In the latter
case, global indeterminacy occurs in a context in which a unique
locally determined fixed point exists, as shown also in Coury and
Wen [20].

In the example 2, considering the same parameter set of the
example 1 but setting σ = 3.274, if ρ increases over the value
3.1, the system undergoes a sequence of flip bifurcations around
(K∗

3 , l
∗
3) (see Figure 12A). Figure 12B shows, when ρ = 3.2465,

the coexistence of (K∗
1 , l

∗
1) with a four-piece chaotic attractor.

Because of the structure of the basins of attraction, predicting
the long term behavior of the economy starting in the North-East
portion of the state plane becomes rather difficult.14

14Small changes in K0 or l0 may generate a change in the �-limit set approached

by the economy.

Finally, In examples 3 and 4, the authors show the occurrence
of quasi-periodic dynamics generated via Neimark-Sacker
bifurcations, further phases of coexistence and the possible rise
of the phenomenon of hysteresis.

4. CONTINUOUS TIME MODELS

The models discussed in the previous section have been sketched
the main strands of literature on discrete time dynamic modeling

FIGURE 11 | Figure reproduced with the permission of the publisher. Source:

[18]. Global indeterminacy (ρ = 3.2): two attracting fixed points, (K*
1, l

*
1) and

(K*
3, l

*
3), coexist with the saddle (K*

2, l
*
2).

FIGURE 10 | Figure reproduced with the permission of the publisher. Source: Antoci et al. [18]. (A) Stable manifold of the locally determined fixed point (K*
1, l

*
1),

obtained for ρ = 0.2. (B) Basin of attraction (in gray) of the locally indeterminate fixed point (K*
1, l

*
1) for ρ = 1.
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FIGURE 12 | Figure reproduced with the permission of the publisher. Source: Antoci et al. [18]. (A) Bifurcation diagram for ρ. Due to the rise of attractors with rather

tangled basins of attraction, the initial conditions were opportunely adapted to the change in ρ in order to follow the evolution of each attractor. (B) Basins of attraction

when the attracting fixed point (K*
1, l

*
1) coexists with a four-piece chaotic attractor ( ρ = 3.2465).

with environment. In parallel, the literature has been enriched by
several contributions developed in a continuous time framework.

For example, the existence of growth dynamics affected
by the substitutability between environmental depletion and
consumption of a private good, highlighted in Antoci et al. [18],
have been previously analyzed in Antoci [21] in a continuous
time model. In this work, the author describes growth dynamics
in an economy in which the individual well-being depends on
leisure, an environmental resource and a private good that can be
consumed as a substitute for the environmental one. Moreover, it
is assumed that the production and consumption of the substitute
good impose negative externalities through the environmental
deterioration. The author shows that the ratio between the
technical progress and the environmental quality plays a crucial
role. In particular, different dynamic systems rule the equilibrium
dynamics of the model depending on such ratio and this can
provoke the birth of a bistable regime. Furthermore, the work
anticipates the results provided in Antoci et al. [18], in which the
substitutabilitymechanism is engine of undesirable growth paths.

In the same way, the dynamic effects induced by the inclusion
of the environmental input in the production function, analyzed
in Caravaggio and Sodini [14], have been discussed through a
continuous time model in Antoci et al. [2]. The results of this last
contribution are described in more detail in the next subsection.

4.1. The Antoci-Russu-Galeotti Model
(2011)
In this work, the authors define a growth model in which
negative environmental externalities are considered and where
the environment is also assumed as a productive input.

The economy is assumed to be composed by a continuum of
identical agents and the representative individual produces an

output Y(t) through the following Cobb-Douglas technology:

Y(t) = [K(t)]α[L(t)]β [E(t)]γ , with α,β , γ > 0 and α + β < 1

(62)
where K(t) is the stock of physical capital accumulated, L(t) is
the agent’s labor input and E(t) is the stock of a natural resource
employed as productive input.

It is assumed an additively nonseparable utility function, as in
Bennett and Farmer [22], which depends on leisure 1 − L(t) and
consumption of the produced good, C(t):

U[C(t), L(t)] =
[C(t)(1− L(t))ǫ]1−η − 1

1− η
(63)

where η denotes the inverse of the intertemporal elasticity of
substitution in consumption and ǫ, η > 0 with η 6= 1. Moreover,
the function is assumed to be concave with respect to C and 1−L,
and then the condition η > ǫ

1+ǫ
holds.

The evolution of K(t) is represented by the differential
equation:

K̇ = KαLβEγ − C (64)

and the dynamics of the environmental resource are modeled
with the well-known logistic equation augmented by the negative
impact of production process:

Ė = E(E− E)− δY (65)

in which E > 0 is the carrying capacity of the natural resource, Y
represents the economy-wide average output and the parameter
δ > 0 measures the negative impact of production on E.

The authors assume that the representative agent chooses C(t)
and L(t) in order to solve the problem

max
C,L

∫ ∞

0

[C(1− L)ǫ]1−η − 1

1− η
e−θ tdt

subject to K̇ = KαLβEγ − C; Ė = E(E− E)− δY
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where K(0) and L(0) are fixed, K(t), L(t),C(t) ≥ 0, L(t) ∈ [0, 1]
and θ > 0 is the discount factor.

Since agents are identical, the ex post condition Y = Y holds.
This implies that trajectories generated by the model are not
socially optimal but Nash equilibria.

Starting from the Hamiltonian function associated to the
optimization problem:

H =
[C(1− L)ǫ]1−η − 1

1− η
+ �(KαLβEγ − C) (66)

in which� is the co-state variable associated toK, and solving the
optimization problem, the authors derive the following dynamic
system:





K̇ = 1
ǫ
KαLβ−1Eγ [(β + ǫ)L− β]

Ė = E(E− E)− δ KαLβEγ

L̇ =
f (L)

f
′
(L)

[
α
ǫ
Kα−1Lβ−1Eγ [(β + ǫ)L− β]

+γ (E− E− δ KαLβEγ−1)++ 1
η
(θ − α Kα−1LβEγ )

]

(67)

where f (L) = ǫ
β
(1− L)

ǫ−η(1+ǫ)
η L1−β = KαEγ �

1
η .

Regarding to the existence of stationary states, the authors
show that the system admits (i) zero, one or two stationary states
if α + γ < 1, (ii) one or zero stationary states if α + γ = 1, (iii)
one stationary state if α + γ > 1.

In the case (i), the authors focus on the instance in which two
stationary states P∗1 and P∗2 exist (with E∗1 < E∗2 and K∗

1 < K∗
2 ).

This configuration is characterized by the assumption:

E > EA := g (̃E) =
2− 2α − γ

1− α − γ
Ẽ (68)

where Ẽ is the unique positive value satisfying the condition
g′ (̃E) = 0.

Analysing the Jacobian matrix J at P∗1 and P∗2 and using
the Routh-Hurwitz criterion [23] to establish the number of
eigenvalues with positive (or negative) real part, configurations
of parameters for which P∗1 is a sink, whereas P∗2 is a saddle with
a two-dimensional stable manifold are obtained.

By taking E as the bifurcation parameter, as E increases, P∗2
does not change its nature, while P∗1 can undergo one, two or no
Hopf bifurcations.

These results show how there exist sufficient conditions to get
local indeterminacy, and they are affected by the value of η,15

high enough values of δ and low enough values of θ (see the
numerical example in Figure 13 where, given two initial values
for the state variables (K0,E0) sufficiently close to their stationary
values in P∗1 , there exists a continuum of initial values l0 such that
the trajectories are attracted by the limit cycle around to P∗1).

In the case (iii), where P∗ is the unique stationary state, the
trace of the Jacobian matrix J∗ is negative for some values of E,
and P∗ is a saddle with a two-dimensional stable manifold. By
increasing the value of E (taken as bifurcation parameter) three

15Indeed, a further condition is given by η ≥ ǫ
ǫ+αβ

.

FIGURE 13 | Parameter set:

α = 0.1,β = 0.8, γ = 0.58, δ = 0.05, ǫ = 1, η = 1.5, θ = 0.001,E = 0.21.

Locally attracting limit cycle around the unstable stationary point P*1 depicted

in red, arisen via Hopf bifurcation.

chances can be obtained: (a) P∗ remains a saddle with a two-
dimensional stable manifold and no Hopf bifurcations occur; (b)
P∗ remains a saddle with a two-dimensional stable manifold but
two Hopf bifurcations occur; (c) P∗ becomes a source and only
one Hopf bifurcation occurs.

Regarding to the global analysis, the main result shown by the
authors is the emergence of global indeterminacy. As a matter
of fact, in the case (i) with P∗1 sink and P∗2 saddle, there exists a
neighborhood N of P∗1 such that, for every (E0,K0, L0) ∈ N, the
half-line {E = E0,K = K0, L < L0} intersects the stable manifold
of P∗2 . This means that, for every initial couple (E0,K0) sufficiently
close to (E∗1 ,K

∗
1 ), there exists a continuum of initial values L10

for which the trajectory starting from (E0,K0, L
1
0) converges to

P∗1 and a locally unique L20 such that the trajectory starting from
(E0,K0, L

2
0) converges to P∗2 (see Figure 14). Therefore, in this

case global indeterminacy occurs.

5. DELAYED DYNAMICS

The interplay between economic activity and environmental
quality can be finally analyzed through dynamic models where,
although the time is assumed to be continuous, a time delay
is introduced to underline the delayed effect of a variable on
the others. Specifically, in a context in which the environmental
quality is assumed, this approach turns out to be useful in
showing both the noninstantaneous environmental effect of
economic activity and the impact of the environmental evolution
on the economy.

A seminal contribution on this issue is represented by the
model described in Matsumoto and Szidarovszky [24], in which
a fixed time delay is introduced in the productive sector (that
is, a time to built technology is considered) and a negative
environmental impact of production is assumed. The authors
show that, in an extension of Day [6], chaotic dynamics may

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 June 2018 | Volume 4 | Article 26

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Caravaggio and Sodini Coevolution of Economic and Environmental Systems

FIGURE 14 | Parameter set:

α = 0.1,β = 0.8, γ = 0.58, δ = 0.05, ǫ = 1, η = 1.5, θ = 0.001,E = 0.17.

Global indeterminacy in the space (E,K, L). The trajectory in green approaches

the sink P*1 (depicted in blue) starting from the point

(E*1,K
*
1, L

1
0 = 0.3745910588598), while the trajectory in black, approaching

the saddle P*2 (depicted in red), starts from the point

(E*1,K
*
1, L

2
0 = 0.345910588598).

arise if a sufficiently large time delay is assumed. In particular,
dynamics are described by the following equation:

ẋ(t) = −α x(t)+ h(x(t − T)) (69)

where x is the capital per labor, α > 0 represents the depreciation
ratio of capital and h defines the production function in which
the fixed delay T > 0 is included.

Another significant contribution is given by Ferrara et al. [25].
In this work, the authors analyse a simplified version of the Green
Solow model [4] in which the production negatively affects the
environmental evolution but the environmental quality does not
generate consequences on the production side. The model is
defined by the following dynamic system

{
k̇ = skα

d
− δ kd

ṗ = φ kα
d
−mp

(70)

where kd = kt−τ is the individual’s capital stock considering
the introduction of a time lag τ > 0, p represents the stock
of pollution and α ∈ (0, 1) is the capital’s share. Moreover,
in the first equation, s and δ > 0 denote the saving ratio
and the capital depreciation rate, respectively, whereas in the
second equation φ is the amount of emissions per unit of output
and m > 0 describes the pollution decay. In the analysis, the
authors provide conditions under which cyclical dynamics in the
economic sector may occur and investigate how these ones may
affect the environmental dynamics.

In Ferrara et al. [26], following the spirit of models provided in
Wirl [27] and Antoci et al. [2], the authors consider an economy
composed by agents that are not able to internalize the effect
of their choices on the environmental dynamics (although they

consider the environmental depletion in the utility function) but
that perfectly foresee the evolution of economic variables. The
novelty of the model is that the dynamics of the environmental
good is assumed to be negatively affected by the economic activity
that took place in an earlier date (t − τ ).

More in depth, the model assumes that the representative
agent produces an output Y(t) through the Cobb-Douglas
technology:

Y(t) = K(t)α (71)

where α ∈ (0, 1) and K(t) represents the stock of physical capital
employed in the production process (for simplicity, L(t) = 1 is
assumed). From the environmental point of view, the following
linear specification is assumed:

Ė = β(E− E(t))− γY(t − τ ) (72)

where Y(t− τ ) is the economy-wide average output at time t− τ ,
E > 0 represents the carrying capacity of the natural resource,
β > 0 measures the speed of convergence of the environmental
quality toward its carrying capacity in absence of production and
γ > 0 weighs the negative environmental impact of production.

The utility function U(C(t),E(t)) is dependent on the
consumption of a private good and the environmental quality.
Then, the following constant intertemporal elasticity of
substitution (CIES) formulation is considered:

U(C(t),E(t)) =
[C(t)E(t)]1−σ

1− σ
(73)

where σ > 0 (σ 6= 1) represents the inverse of intertemporal
elasticity of substitution in consumption. Such specification
allows to capture both cases of complementarity (σ < 1) and
substitutability (σ > 1) between consumption of the private good
and environmental degradation.

By assuming no depreciation of capital, the dynamics of K(t)
is given by the differential equation

K̇ = Y(t)− C(t). (74)

Therefore, the representative agent faces the following
intertemporal maximization problem:

max
C

∫ ∞

0
e−rt (CE)

1−σ

1− σ
dt

subject to K̇ = Kα − C; Ė = β(E− E)− γYd

where r > 0 is the intertemporal discount rate andYd = Y(t−τ ).
By solving the maximization problem through the use of

maximum principle and imposing, ex post, the equilibrium
condition Y

α

d = Y
α
, the equilibrium dynamics are described by

the following system of three nonadvanced differential equations
with fixed delay, that is:





K̇ = Kα − C

Ė = β(E− E)− γ Kα
d

Ċ = C
σ
{(1− σ )

[β(E−E)−γ Kα
d

E

]
− (r − α Kα−1)}.

(75)
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On the one hand, in absence of time delays (τ = 0),
the model is saddlepath stable if private consumption
and the environmental good are complements and
cyclical behaviors appear only assuming substitutability,
in line with [18]. On the other hand, with a positive
time delay, in contrast with previous results, cyclical
dynamics arise also in the case of complementarity between
consumption of the private good and the environmental
one.

6. CONCLUSIONS

In this work we have reviewed the literature highlighting
the nonlinear interactions between economic activity and
environmental dynamics. We have shown that, regardless of
the time setting, the dynamic systems governing the evolution
of both economic and environmental variables are able to
exhibit the occurrence of cyclical dynamics, multistability or
indeterminacy. In addition, we have analyzed the role of some
decisive parameters in defining the dynamics of the model. This
set of results points out that the analysis of the global properties
of dynamic systems, i.e., the structure of both basins of attraction
and �-limit sets, represents an essential instrument to deepen
these issues.

In this field, the heterogeneity in the modeling of
environmental resources has not been studied yet. These
heterogeneities may concern (i) the introduction of
environmental variables affecting the system both as a production

input and a consumption good, or (ii) the inclusion of a
multiplicity of environmental resources both in the utility and
production functions. The effects of this kind of heterogeneities
on the dynamic properties in models focusing on the coevolution
of economic and environmental variables still represent open
questions on which a scholar’s agenda may concentrate upon.

Finally, a fruitful research question may concern the
introduction of strategic interactions between agents. In
particular, it could be relevant to analyse the dynamics driven
by the recognition and the achievement of environmental
targets, at the international level. Indeed, as described in
Biancardi and Villani [28], the decision process related
international environmental agreements may generate complex
relationships (multistage games) which deserves further
investigations.
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