
HYPOTHESIS AND THEORY
published: 13 July 2018

doi: 10.3389/fams.2018.00028

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 July 2018 | Volume 4 | Article 28

Edited by:

Xiaogang Wu,

Institute for Systems Biology,

United States

Reviewed by:

Timothy Comar,

Benedictine University, United States

James Peirce,

University of Wisconsin-La Crosse,

United States

*Correspondence:

Füsun Akman

akmanf@ilstu.edu

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 30 March 2018

Accepted: 22 June 2018

Published: 13 July 2018

Citation:

Akman D and Akman F (2018)

Spectral Functional-Digraph Theory,

Stability, and Entropy for Gene

Regulatory Networks.

Front. Appl. Math. Stat. 4:28.

doi: 10.3389/fams.2018.00028

Spectral Functional-Digraph Theory,
Stability, and Entropy for Gene
Regulatory Networks

Devin Akman 1 and Füsun Akman 2*

1Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, United States, 2Department of

Mathematics, Illinois State University, Normal, IL, United States

Spectral graph theory is an indispensable tool in the rich interdisciplinary field of network

science, which includes as objects ordinary abstract graphs as well as directed graphs

such as the Internet, semantic networks, electrical circuits, and gene regulatory networks

(GRN). However, its contributions sometimes get lost in the code, and network theory

occasionally becomes overwhelmed with problems specific to undirected graphs. In this

paper, we will study functional digraphs, calculate the eigenvalues and eigenvectors of

their adjacency matrices, describe how to compute their automorphism groups, and

define a notion of entropy in terms of their symmetries. We will then introduce gene

regulatory networks (GRNs) from scratch, and consider their phase spaces, which are

functional digraphs describing the deterministic progression of the overall state of a GRN.

Finally, we will redefine the stability of a GRN and assert that it is closely related to the

entropy of its phase space.

Keywords: gene regulatory network, functional digraph, spectral digraph theory, digraph automorphism, digraph

entropy

1. INTRODUCTION–SPECTRAL THEORY OF FUNCTIONAL
DIGRAPHS

1.1. Digraphs, Relations, and Functions
We will refer to a finite graph with directed edges, possibly including directed loops and directed
2-cycles, but no parallel edges, as a digraph. A vertex-labeled digraph represents a relation R on the
set of labels, where a directed edge a → b indicates that aR b: hence, the common convention to
include loops and opposite directed edges in the definition. When a labeled digraph has exactly
one outgoing edge per vertex, it represents an ordinary function F; an edge a → b now tells us
that F(a) = b. These are the functional digraphs, also known as maximal directed pseudoforests or
directed 1-forests.

On the left-hand side of Figure 1, we have the digraph of a transitive relation on the set
{a, b, c, d, e, f }. The digraph on the right depicts an endofunction on the same set, where the images
must eventually get trapped in a directed cycle. Endofunctions on a set of n elements are in 1-
1 correspondence with the digraphs on n vertices, labeled by this set, where every component
contains exactly one directed cycle, and every vertex on such a cycle is the root of a directed in-
tree. This is precisely why permutations of a finite set have unique cycle representations. The leaves
of the in-trees correspond to the elements of the set that have no pre-images, which are among the
transient (non-cycle) vertices.

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2018.00028
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2018.00028&domain=pdf&date_stamp=2018-07-13
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:akmanf@ilstu.edu
https://doi.org/10.3389/fams.2018.00028
https://www.frontiersin.org/articles/10.3389/fams.2018.00028/full
http://loop.frontiersin.org/people/583526/overview
http://loop.frontiersin.org/people/9385/overview

Akman and Akman Functional Digraphs and GRNs

FIGURE 1 | Digraphs for a transitive relation and a function.

1.2. Adjacency Matrices
Let S = {s1, . . . , sN} be a finite set, and R ⊆ S × S be a relation
on S. The adjacency matrix, A(G), of a digraph G labeled by S is
the N × N matrix given by A(G)ij = 1 if there exists a directed
edge or loop from si to sj, and 0 otherwise. Although the matrix
depends on the particular ordering of the vertices, its spectral
properties remain unchanged under a simultaneous permutation
of the rows and columns; hence, we may call such a matrix the
adjacency matrix of the unlabeled digraph. The permutation can
be obtained by conjugating A(G) by a permutation matrix. Two
labeled digraphs are isomorphic if and only if their adjacency
matrices are similar via a permutation matrix. A diagonal entry
A(G)ii is nonzero (i.e., equal to 1) if and only if there is a loop
at the vertex si. This fact can be generalized to the following
well-known statement ([1]) by induction:

Lemma 1. Let G be a digraph and A be its adjacency matrix. Then
the number of directed walks from vertex si to vertex sj of length k

is given by the entry (Ak)ij of the matrix power Ak.

Remark 1. Let A be the adjacency matrix of a relation R. Then

1. R is reflexive if and only if every diagonal entry of A is 1.
2. R is symmetric if and only if A is a symmetric matrix.
3. R is transitive if and only if whenever (A2)ij > 0, we have

Aij = 1 1.

Example 1. The adjacency matrices of the digraphs in Figure 1

are

A =

















0 1 1 1 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

















and B =

















0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

















respectively (left to right). We observe that

A2 =

















0 0 1 2 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

















and B2 = B4.

1Contrast with Harary et al. [1], Chapter 5.

Comparing A to A2 helps us affirm transitivity, and we will see
the significance of the equality of two powers of B in Theorems 1
and 2 below.

Some notation: Let 1 denote any column vector with entries
of 1 only. Also, if C is a subset of the N vertices of a functional
digraph, then let 1C be the N × 1 indicator vector with entries
of 1 corresponding to elements of C and 0’s elsewhere. We will
moreover denote by XT the transpose of any matrix or vector X,
and by ei the ith standard basis vector of R

N . We recall that Aej is

the jth column and eTiA is the ith row of A.

Lemma 2. Let A be the adjacency matrix of a digraph on the
vertex set S = {s1, . . . , sN}. Then 1TAej is the in-degree of vertex

sj, and eTiA1 is the out-degree of vertex si. If C ⊆ S, then 1TCAej is
the number of incoming edges to vertex sj from the vertices in C,

and eTiA1C is the number of outgoing edges from vertex si to the
vertices in C.

1.3. Eigenvalues and Eigenvectors of
Functional Digraphs
Every row of the adjacency matrix A of a functional digraph
contains exactly one entry of 1, and columns corresponding to
leaves contain only 0’s. Moreover, the number of directed walks
of every length k ≥ 1 between two given vertices is always 0 or
1, and we reach a unique vertex after following a directed k-path
from any given vertex. Hence, as we continue to take powers of
A, every row will still contain a unique entry of 1, so that at some
kth iteration one of the previous powers of A will be repeated, or
else the matrix Ak will become the identity.

Theorem 1. Let G be a functional digraph on the vertex set S =
{s1, . . . , sN}, corresponding to a function F : S → S, and A be its
N × N adjacency matrix. Then the following hold:

1. The minimal polynomial of A divides a polynomial of the form
xk − xs = xs(xk−s − 1), where N ≥ k > s ≥ 0.

2. The real eigenvalues of A are 1 and possibly 0 and/or−1.
3. The N × 1 vector 1 is always a 1-eigenvector of A.
4. Zero is an eigenvalue of A if and only if G is not entirely made

up of disjoint cycles. The nullity of A is the number of its zero
columns as well as the number of leaves in G.

Proof: 1. We have argued that Ak = As for some k > s ≥ 0.
2. Theminimal and characteristic polynomials ofA have the same
roots with possibly different algebraic multiplicities.
3. Because there is exactly one 1 in each row ofA, we haveA1 = 1.
4. Apply Gaussian elimination to the matrix 0 ·I−A = −A. Rows
with −1’s that are all in one particular column are identical and
can be reduced to one nonzero row, thus, the number of columns
of −A that contain any −1’s is the rank of the matrix. Therefore,
the nullity of A is exactly the number of zero columns. These are
indexed by the leaves. If G consists of cycles only, then 0 is not an
eigenvalue, and A is invertible.

With a suitable ordering of the vertices, we can write the
adjacency matrix of a functional digraph in upper-triangular
block form, where each triangular block on the diagonal
corresponds to a connected component.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

Example 2. Consider the functional digraph in Figure 1, whose
adjacency matrix B with respect to the alphabetical ordering of
the vertices is given in Example 1. However, when we regroup the
vertices into connected components and write transient vertices
before the cyclic ones, an upper-triangular block form emerges:
for the ordering e, a, b, c, d, and f , the adjacency matrix becomes

B′ =

















1 0 0 0 0 0

0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0 1
0 0 0 0 1 0

















.

The second component is represented by a 5 × 5 matrix with a
3× 3 upper-left block for the transient vertices and a 2× 2 lower-
right block for the cycle vertices, where the latter is a circulant
submatrix. The characteristic polynomial of the first component
is x − 1, and that of the second component is x3 times x2 − 1.
In particular, since there are no directed 3-walks in the transient
subgraph, the cube of the 3× 3 block must be the zero matrix.

Theorem 2. Let G be a functional digraph with ν connected
components, where the ith component has a directed ci-cycle and
ti transient vertices. Also, let A be the adjacency matrix of this
digraph. Then

1. The characteristic polynomial of A is given by

ν
∏

i=1

xti
(

xci − 1
)

.

2. The algebraic multiplicity of 0 is the total number of transient
vertices in G, whereas the geometric multiplicity is the total
number of the leaves (and the number of the zero columns) of A.
If A is not invertible, then the 0-eigenspace has a basis consisting
of one standard basis vector ei = 1si for each leaf si.

3. The algebraic and geometric multiplicities of the eigenvalue
1 are both equal to ν, the number of cycles and connected
components. A basis for the 1-eigenspace is given by

{

1C : C is a connected component of G
}

.

4. The algebraic and geometric multiplicities of the eigenvalue −1
(if any) is the number of even cycles in G.

Proof: Part 1 follows from multiplicativity. The explanation of
Part 2 is in Example 2 and Theorem 1. For Part 3, we check
that the linearly independent indicator vectors 1C are indeed 1-
eigenvectors ofA: we haveA1C = 1C if and only if eTi A1C = eTi 1C
for all i. The left-hand side in the last identity is the number of
outgoing vertices from si into C by Lemma 2, and must be 1 if
F(si) ∈ C (hence, si ∈ C) and 0 otherwise. Since the right-hand
side is the ith entry of 1C, we are done. Finally, note that −1 is a
root of xci − 1 if and only if ci is even.

1.4. The Transition Matrix
We will call the transpose AT of the adjacency matrix A of a
functional digraph the transition matrix of the corresponding
function F on the vertices: AT is clearly the matrix of the linear

transformation F : R
N → R

N , where the vertices of the digraph
form an ordered basis of R

N , and F is uniquely defined by its
values on the basis elements.

Theorem 3. Let A be the adjacency matrix of a functional digraph
on S = {s1, . . . , sN}. Then the following hold:

1. A basis for the 1-eigenspace of AT is given by the indicator
vectors 1C for each directed cycle C of the digraph.

2. Zero is an eigenvalue if and only if the digraph has transient
vertices. When this is the case, a basis for the 0-eigenspace
is found as follows: Let sk be any vertex with in-degree

at least two, say,

F−1({sk}) = {si1 , . . . , sit }, t ≥ 2, i1 < · · · < it .

Then the following are linearly independent 0-eigenvectors of
AT :

ei1 − ei2 , ei1 − ei3 , . . . , ei1 − eit .

The union of these sets of vectors over all sk with in-degree ≥ 2
is a basis for the 0-eigenspace.

Proof: 1. If we show that AT1C = 1C for each cycle C, then we
will have sufficiently many linearly independent indicator vectors
to make up a basis. This is the same as verifying that 1TCA = 1TC ,
or, that 1TCAej = 1TCej for all j. The left-hand side is the number of
incoming edges to vertex sj from the cycle C by Lemma 2. Cycle
vertices cannot map to transient ones in a functional digraph, so
we must have 1TCAej = 1 if sj ∈ C and 0 otherwise. This property

also describes the entries of the indicator vector 1TC .
2. Let us solve ATX = 0 for X =

∑

xiei. We have

AT

(

N
∑

i=1

xiei

)

=

N
∑

i=1

xiA
T1si =

N
∑

i=1

xi1F(si) = 0,

since AT is the transition matrix that sends ei = 1si to 1F(si),
which is some standard basis vector ek = 1sk . We rewrite this
linear equation by combining the coefficients of distinct vectors
1F(si) and utilize linear independence. If si is the only vertex that
goes to F(si), then the vector 1F(si) has coefficient xi, which must
be zero in all solutions X. The only free variables will come from
the coefficients of those 1F(si) = 1sk for which |F−1(sk)| ≥ 2.
Fix one vertex sk, and say F−1({sk}) = {si1 , . . . , sit }, with t ≥ 2
and i1 < · · · < it . Then we can write this sub-system as xi1 =
−xi2 − xi3 − · · · − xit , where all xj not appearing in the equation
must take the value 0. Hence, xi2 , xi3 , . . . , xit are free variables,
and a basis for the solutions of this system is given by

ei1 − ei2 , ei1 − ei3 , . . . , ei1 − eit .

1.5. An Algorithm for Identifying Cycles and
In-Trees
Let A be the adjacency matrix of a functional digraph, G, where
the corresponding function F is defined on vertices s1, . . . , sN . In

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

Algorithm 1 Identify cycles and in-trees for function F

1: procedure CAPTURE COMPONENT STRUCTURES

2: identify cycles C1, . . . ,Cν and cycle vertices using
Theorem 3

3: initialize an empty array AR of pre-image sets
4: for 1 ≤ j ≤ N do

5: AR[F(sj)]← AR[F(sj)] ∪ {sj}

6: for 1 ≤ k ≤ ν do

7: for 1 ≤ r ≤ tk do ⊲ say there are tk cycle vertices in
Ck

8: Tr ← rth cycle vertex in Ck

9: children of Tr ← AR[Tr] \ {(r −
1)st cycle vertex in Ck}

10: call BUILD TREE

11: return component structures.

12: procedure BUILD TREE

13: inputs: tree Tr and pre-image array AR
14: for all leaves l of Tr do

15: children of l← AR[l]

16: if vertices were added then
17: call BUILD TREE with enlarged tree Tr and array AR

sections 1.3 and 1.4, we found that the task of breaking up G
into its components, cycles, and in-trees can be carried out by
finding suitable bases for the 0- and 1-eigenspaces of A and AT –
any software will likely produce eigenvectors in the desired form–
and putting the results together. Our final algorithm ([2]) uses a
hybrid method for computing cycles and their in-trees as data
structures. Given a function F and its adjacency matrix, we apply
Algorithm 1 above, where the array value AR[v] is the pre-image
set F−1(v) for any vertex v, and Tr is one of the in-trees rooted
on a cycle Ck. This method is more general than one given in
1994 by Wuensche [3] (in that it does not depend on where the
function comes from, namely, a GRN) and uses the eigenspace
computations described in Theorem 3. The “children” of a vertex
are those that are at the beginning of incoming edges.

1.6. The Trace
Here is yet another way to determine the number and lengths
of cycles in a functional digraph G with adjacency matrix A,
using Lemma 1 and simple matrix operations, with no need for
eigenvector calculations. The number of 1-cycles in G is tr(A).
Suppose that si and sj form a 2-cycle. Then the number of directed
2-walks from si (resp., sj) to itself is 1. We may also embark on
a directed 2-walk from a fixed point of the function to itself by
going around its loop twice, which is possible because 1 divides
2. Otherwise, if a vertex is transient, or on a larger cycle, then
advancing two vertices under the function will never get us
back to the same vertex. Therefore, the number of 2-cycles in
G is [tr(A2) − tr(A)]/2, division by two assuring us that we are
counting 2-cycles and not vertices in 2-cycles. Let us generalize,
using the notation i|k to mean “i divides k.”

Theorem 4. Let G be a functional digraph on N vertices and A
be its adjacency matrix. The number nk of k-cycles in G is given

recursively by

n1 = tr(A), and nk =
1

k



tr(Ak)−
∑

i|k, i<k

i ni



 for 1 < k ≤ N.

Consequently, the number of connected components of G is equal
to

ν =

N
∑

k=1

nk.

2. AUTOMORPHISMS AND ENTROPY OF
FUNCTIONAL DIGRAPHS

2.1. Digraph Automorphisms
The automorphism group Aut(G) of a labeled digraph G is the set
of permutations of its vertices that preserve directed edges, and
is naturally a subgroup of the full symmetric group on all vertices
of G under composition. Let Sn denote the symmetric group on
n letters and Hn denote the direct product of n copies of a group
H. Recall that the wreath product H ≀ Sn ofH by Sn is a semidirect
product ofHn by Sn, where Sn acts onHn via permutations of the
factors ([4]). The following is an adaptation of the well-known
result for undirected graphs ([5]).

Theorem 5. Suppose that a labeled digraph G consists of nj copies
of a connected component Gj for 1 ≤ j ≤ ν, where the Gj are
mutually non-isomorphic. Then the automorphism group of G is
isomorphic to the following Cartesian product:

Aut(G) ≃ [Aut(G1) ≀ Sn1]× · · · × [Aut(Gν) ≀ Snν
].

Hence, the order of Aut(G) is

|Aut(G)| =

ν
∏

j=1

|Aut(Gj)|
nj nj! .

Lemma 3. Let Aut(G) denote the automorphism group of a
digraph G whose vertices are labeled by a set S = {s1, . . . , sN}.
Then the number of distinct relations on S that are represented by
the unlabeled digraph is equal to the index of Aut(G) in the full
permutation group SN of S, namely,

[SN :Aut(G)] =
N!

|Aut(G)|
.

2.2. Identifying Similar Structures in
Functional Digraphs
To define automorphism groups correctly, we need to determine
whether two in-trees, or two connected components, are
isomorphic.

2.2.1. In-Trees
Read [6] describes a 1-1 correspondence of rooted trees with a
canonical list of binary codes. Two rooted trees are isomorphic
if and only if they have the same code. We imagine the root of

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

a given rooted in-tree placed at the top of a diagram. A vertex
that is immediately below another one is referred to as the “child”
of the latter, whereas the upper one is the “parent.” Hence, the
arrows point upward, as this is the actual structure of the digraph.
An algorithm for assigning a code (Algorithm 2) and an example
(Figure 2) are given below.

Algorithm 2 Code a rooted tree

1: procedure CODE AN IN-TREE
2: ⊲ “root” refers to the root vertex of the input tree
3: AR← [] ⊲ empty array
4: for all children c of root do
5: call CODE AN IN-TREE on tree with root c
6: append return value to AR

7: sort AR
8: ST ← ǫ ⊲ empty string
9: for 1 ≤ i ≤ length(AR) do
10: ST ← ST + AR[i] ⊲ we use+ as the string append

operator

11: return 1+ ST + 0

2.2.2. Cyclic Lists
Let ℓ = ABC . . . be a finite ordered list of r symbols, with
r ≥ 1. The cyclic group Zr acts transitively on the set M of
all cyclic permutations of ℓ, with the generator advancing each
symbol one place forward, and moving the last one to the front.
There is a unique stabilizer of any list inM, isomorphic to Zs for
some s such that s|r. Now, every cyclic list of order r has a prime
(smallest) repeating block of length k; for the cyclic list ABCD, it is
the whole list, and for ABABABAB, it is AB (and not ABAB, etc.)
Then s = r/k, the number of blocks of ℓ.

A simple way to check whether two lists of length r are
cyclically equivalent is to double one and search for the other
as a string inside. For large lists, we use a modified Knuth-
Morris-Pratt (KMP) string-searching algorithm [7] to find the
length of each prime block [2]. A faster alternative would be
the algorithm described in a paper by Shiolach [8], but it is
more complex and error-prone to implement. Once a prime
block is identified, we apply the so-called Lyndon factorization
[9] to find the lexicographically minimal version [2]. Then
two cyclic lists of the same length are equivalent if and only if
their lexicographically minimal rotations are equal. A connected

FIGURE 2 | How to code a rooted tree.

Algorithm 3 Compute the automorphism group of a rooted tree

1: procedure AUTOMORPHISM GROUP

2: ⊲ “root” refers to the root of the input tree
3: if root is a leaf then
4: return S1
5: else

6: group subtrees rooted at children into isomorphism
classes using labels

7: for 1 ≤ i ≤ m do ⊲m is the number of classes
8: call AUTOMORPHISM GROUP on the ith class

9: return
(

H1 ≀ Sn1
)

× · · · ×
(

Hm ≀ Snm
)

⊲ the ith
isomorphism class has ni members and automorphism group
Hi

component of a functional digraph is a cyclic list where equal
symbols denote isomorphic in-trees, and the trees are cyclically
ordered by their roots on the directed cycle.

2.3. Algorithm for the Automorphism Group
of a Functional Digraph
2.3.1. Automorphism Group of a Rooted Tree
Given a rooted and coded tree, we proceed from the leaves to
the root as we did in section 2.2.1. We provide Algorithm 3
for computing the automorphism group of a rooted tree above;
Figure 3 shows the computation for the tree in Figure 2. We
deduce that the automorphism group of a rooted tree can be
built up from symmetric groups via direct products and wreath
products. Indeed, Jordan [5] proved in 1869 that undirected
tree automorphisms form a class that contains the identity
automorphism, and is closed under taking direct products, as well
as wreath products with symmetric groups.

2.3.2. Automorphism Group of a Connected

Component
Any connected component can be represented by a cyclic list of
the in-trees of its directed cycle. For example, if there is a three-
cycle in that component, with three different types of trees (say
A, B, and C) attached to the cycle vertices in that order, then our
cyclic list is ℓ = ABC = BCA = CAB. An in-tree consisting of a
root • only will be denoted by E.

Theorem 6. If ℓ consists of ai copies of a tree Ti for 1 ≤ i ≤ k and
represents a connected component, where the prime block of ℓ is

FIGURE 3 | Computing the automorphism group of rooted tree

111010011000.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

repeated s times, then the automorphism group of the component
is

Zs ×

k
∏

i=1

ai
∏

j=1

Aut(Ti), with order s

k
∏

i=1

|Aut(Ti)|
ai .

The justification is based on the facts that prime blocks can only
move cyclically, and that isomorphic but distinct trees within a
block cannot be mapped to one another (roots in a block have to
be mapped to roots in some block in the same order, with their
in-trees attached).

Example 3. (a) A pure 3-cycle is given by the cyclic list EEE, with
stabilizer Z3 (r = s = 3). The automorphism group of each in-
tree is the trivial group S1, and the automorphism group of the
directed 3-cycle is

Z3 × S1 × S1 × S1 ≃ Z3.

(b) Let A be the in-tree • → •, and AEE be the list describing a
component. Then the stabilizer of AEE is Z1, and Aut(A) = S1,
giving us the automorphism group

Z1 × S1 × S1 × S1 ≃ Z1.

(c) Let B be the in-tree • → • ← •. We have Aut(B) = S2.
Consider the component BEBE, with stabilizer Z2 for the list.
Then the automorphism group of the component is

Z2 × S2 × S1 × S2 × S1 ≃ Z2 × Z2 × Z2.

2.3.3. Automorphism Group of a Functional Digraph
Given the adjacency matrix of a functional digraph, we identify
its connected components, directed cycles, and in-trees using
Algorithm 1. Algorithm 2 codes the trees, which helps us sort
them out. Algorithm 3 computes the automorphism groups
of the distinct trees, and the algorithm described briefly
in section 2.2.2 shows which cyclic lists corresponding to
components are identical. Then we find the automorphism group
of each distinct component using Theorem 6, and compute the
overall group by Theorem 5.

2.4. The Entropy of a Functional Digraph
Defining a notion of entropy for any kind of “system” that has
“states” is occasionally useful. The entropy of the directed graph
of the states of a finite cellular automaton was considered by
Wolfram [10]. He pointed out that entropy should be a measure
of irreversibility –in case of a function, non-invertibility– and
disorganization. For reasons to be discussed in section 6, we have
chosen to define the entropy of a functional digraph G as the
nonpositive and non-additive quantity

S(G) = − ln |Aut(G)|

for any labeling of the vertices. The definition can be extended
to any digraph. This way, S(G) has a maximum value of zero
when G has maximum asymmetry: there are no authorized

permutations of the vertices that leave the digraph invariant, and
the automorphism group consists of the identity permutation.

Let Gj (1 ≤ j ≤ ν) denote the non-isomorphic connected
components of a functional digraph G, nj be the number of

components of type Gj, Cj be the directed cycle in Gj, T
(j)
i (1 ≤

i ≤ k(j)) be the distinct in-trees attached to the cycle Cj, a
(j)
i be the

number of in-trees of type T
(j)
i , and s(j) be the number of prime

blocks in the cyclic list representing Gj. Hence, by Theorems 5
and 6, we have

S(G) = −

ν
∑

j=1

nj



ln s(j) +

k(j)
∑

i=1

a
(j)
i ln |Aut(T

(j)
i)|



−

ν
∑

j=1

ln(nj!)

= −

ν
∑

j=1

nj ln s
(j) −

ν
∑

j=1

k(j)
∑

i=1

nja
(j)
i ln |Aut(T

(j)
i)| −

ν
∑

j=1

ln(nj!).

To summarize, the entropy of a functional digraph is the sum of
the entropies of all constituent in-trees, plus correction factors for
the rotational symmetries of prime blocks in cycles, and for the
swapping of identical components of the digraph.

2.5. Algorithm for Functional Digraph
Entropy
We may now compute the entropy of large functional digraphs
without computing the automorphism group; the logarithms
grow very slowly. Figure 4 shows the simultaneous coding
and entropy computations for one rooted tree. The combined
algorithm was implemented in Lua, which can run on many
platforms without changes [2].

3. INTRODUCTION –GENE REGULATORY
NETWORKS

3.1. Systems Biology, Modularity, and Gene
Regulatory Networks
The idea of modularity in evo-devo, namely, that organisms
are simply hierarchically arranged “quasi-independent parts that
are tightly integrated within themselves” ([11]), is relatively
new. Modern practitioners of biology by and large accept this
dogma and deal in systems biology ([12, 13]), where “complex
behaviors of biological systems emerge from the properties of

FIGURE 4 | Computing (c,S), code and entropy of a rooted tree,

simultaneously.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

the components and interactions in the systems” ([14]). We will
introduce the systems-biological model of Boolean networks, in
the particular case of GRNs, below. Two kinds of digraphs, wiring
diagrams and phase spaces, are involved in the compositions of
GRNs. Their adjacency matrices and spectra play an important
role in describing the physical structure of the networks, which is
the first direct link of linear algebra to biology. The second link
is behavioral and involves the stability and adaptability of GRNs
in terms of the symmetries (automorphism group) of their phase
spaces, which, in turn, may be predicted by the entropy of these
digraphs.

There are many directions of gene regulation in which a
mathematician, biologist, or programmer may invest their efforts
([12, 13]), but we choose to study a generic, fully-known GRN
and emphasize the usefulness of the universe of all possible
deterministic successions of its collective states, a.k.a. the phase
space. Although exponentially larger than the wiring diagram—a
digraph showing which genes affect which, a structural simplicity
makes the former more desirable over the latter, in our opinion,
when computational complexity is taken out of the picture. A
phase space is nothing but a digraph representation of a function
on a finite set, and its sparse adjacency matrix as well as its
computable entropy can reveal troves of information about real-
life systems.

This fertile area of systems biology arguably originated in a
1969 article [15] by Stuart A. Kauffman, who was responsible for
crystallizing notions such as (1) consistent cell types (phenotypes)
are due to stable cycles in the phase space of GRNs, whereas
cellular differentiation (adaptability) is the result of slight
instability of same; (2) stability and adaptability of organisms
may depend strongly on the connectivity of these networks as
well as the rules of interaction between the components; and
(3) biological evolution may well be the result of the interaction
of self-organization with natural selection [15–17]. Kauffman
experimentally studied the stability properties of large ensembles
of random GRNs with selected parameters, and came to an
interesting conclusion: regardless of the number n of genes, the
average number k of incoming degrees for the wiring diagram
was the decisive factor for whether the system was going to be
stable, chaotic, or in between. In particular, k < 2 indicated
stability, meaning mostly the states staying in the same small
basin of attraction under a stochastic perturbation; k > 2
indicated chaotic behavior, e.g., having large, practically infinite,
cycles; and k = 2 was just right, in that such systems exhibited
a good balance between stability and adaptability, with some
medium-size cycles. Without this balance, the existence and
diversity of life would not have been possible. Kauffman [15, 16]
convincingly argues via simulations and real-life observations
that it is more plausible for nature to have initiated random
connections in “metabolic nets” than not, and those that were
successful had low connectivity and hence a delicate balance
between stability and adaptability.

3.2. Structure and Examples of GRNs
Gene Regulatory Networks (GRNs) form a flexible modeling
scheme for synthesizing and analyzing the interactions of clusters
of up to thousands of factors such as functional genes, enzymes,

and other proteins in a cell (all loosely called genes) that affect
one another’s function in a particular biological process, such as
the successfully deciphered lac operon in Escherichia coli [18–20].
A GRN consists of a wiring diagram, which is a labeled digraph
on n vertices (genes), where a directed edge indicates an influence
of the gene at the initial vertex on the one at the terminal vertex.
The nature of the combined influence of k genes on a fixed one is
described by an update function of k variables for the target gene.
The simplest GRNmodels make the fewest assumptions, namely,
only ON/OFF states for the genes and synchronous deterministic
updating of the states by Boolean update functions. Then the
phase (state) space of the GRN –a functional digraph depicting
all possible collective states and the deterministic transition rules
of all genes– is neatly divided into connected components, each
being the basin of attraction of a single dynamic attractor, or
directed cycle. We contend that the adjacency matrices of phase
spaces, which have been largely ignored in the GRN literature
(with few exceptions), provide a rich source of information on
the structure and properties of the whole system. For example,
according toWuensche [21], “[i]n the context of randomBoolean
networks of genetic regulatory networks, basins of attraction
represent a kind of modular functionality, in that they allow
alternative patterns of gene expression in the same genome,
providing a mechanism for cell differentiation, stability, and
adaptability.”

Example 4 (Wang et al. [14], Figure 1). Figure 5 shows a small
wiring diagram of three genes, v1, v2, and v3, where directed
edges show nontrivial influences of the genes on one another.
The update rule for gene vi is given by the Boolean function
fi, where a variable xj may take on the value 1 or 0 according
to the active/inactive state of gene vj, and the phase/state space
shows the deterministic flow of the combined states of the genes.
There are three basins of attraction, meaning that applying the
rules to any combined initial state of the genes (possibly in the
form of low/high concentrations of certain chemicals) causes the
dynamics to be caught forever in one of the three directed cycles
shown; two of them are loops and one is a two-cycle. The top
(the wiring diagram and the Boolean update functions) and the
bottom (the phase space) of Figure 5 are completely equivalent.

A Boolean function written in terms of logic operators can be
converted into a polynomial over F2 via the redundant dictionary
x∧y = xy (AND), x∨y = x+y+xy (OR), x′ = 1+x (NOT), and
x⊕y = x+y (XOR).When these functions are written in simplest
form, they contain no fictitious variables. The update functions fi
collectively determine a global update function F = (f1, . . . , fn)
from F

n
2 to F

n
2 .

Certain kinds of Boolean functions have emerged to play
an important role in GRN theory via parallel works of
biologists, mathematicians, and electrical engineers over decades,
as summarized by He et al. [22] (also see [16]). A canalizing
Boolean function is one that is non-constant and contains a
dominant, canalizing variable xi such that when xi takes on a
particular value, the function takes on a particular value. For
example, f (x, y) = x ∧ y and f (x, y) = x ∨ y are both canalizing
functions, each of which have x and y as canalizing variables. A

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

FIGURE 5 | Two equivalent pictures of a gene regulatory network (GRN).

nested canalizing function (NCF), called a unate cascade function
by electrical engineers, is of the form

f (x1, . . . , xn) = y1 ⋄1 (y2 ⋄2 (· · · (yn−1 ⋄n−1 yn)) · · ·),

where each yi is either xi or x
′
i, and each operation ⋄i is either

∧ or ∨. Apart from a certain economy of calculation (they
have the shortest “average path lengths” for their binary decision
diagrams among all other Boolean functions in the same number
of variables; see [22]), or perhaps because of it, they are thought
to be some of the best candidates for update functions in GRNs.
Indeed, there are many known examples of NCFs in systems
biology. Kauffman [15] showed that NCFs with average incoming
degree k = 2 were best candidates for deterministic GRNs to
become successful models. Note that the GRN in Example 4 and
Figure 5 exhibits NCFs.

3.3. Computing the Matrix of the Phase
Space
The N = 2n states in the phase space of a GRN on n genes are
the vertices of a functional digraph. We can simply choose to
convert the binary representations of the states (with n digits) to
nonnegative integers, and add 1 to simplify the indexing of the
adjacency matrix. Thus, 000 is 1, 001 is 2, 111 is 8, etc. That is,
“row x1 · · · xn” has a 1 in “column F(x1 · · · xn).”

Example 5. We consider again the phase space of the three-gene
GRN in Example 4 and Figure 5. Once we make the conversion
from the binary labels of the vertices to decimal (plus one), we
form the adjacency matrix

A =

























0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

























.

3.4. The Inverse Problem
Conversely, every 2n × 2n matrix with exactly one 1 in every row
and 0’s elsewhere corresponds to a Boolean function F : F

n
2 →

F
n
2 when we identify the rows and column indices with binary

representations of 0 through 2n−1: every functional digraph with
2n consecutively labeled vertices is the phase space of some GRN
with update function F. Wemake a 2n×2n table by filling out the
left half with the digits of these binary numbers that correspond
to the rows of A, and the right half with the digits of the binary
numbers that correspond to the column for which that row has a
1 in A. For example, if n = 3 and the first row of the matrix has a
1 in the 5th column (↔ 100) as in Example 5, then the first row
of the table will read

x1 x2 x3 f1(x1, x2, x3) f2(x1, x2, x3) f3(x1, x2, x3)

0 0 0 1 0 0
.

In short, this is the truth table of all n Boolean functions that act
on the n labeled genes v1, . . . , vn.

4. STABILITY OF GRNS

4.1. Old and New Definitions of Stability
We shall study the stability of the phase space of a GRN under
stochastic perturbations, which are chance flips of bits (the on-off
states) in the overall state of the wiring diagram. The definition
of stability varies somewhat in the literature, but has about the
same effect on the structure of the phase space. Kauffman [15]
originally defined the stability of any one attractor (cycle) as
the system’s tendency to stay in the same basin after a minimal
perturbation, that is, a chance flip of the state of any one of the
genes. He also envisioned a series of such flips, which form a
Markov process. In many other studies, stability is “characterized
by whether small errors, or random external perturbations, tend
to die out or propagate throughout the network” ([22]). The
latter approach deals directly with the wiring diagram, and
measures the spread of fluctuations, but not a prioriwhether such
fluctuations result in an overall phase change from one basin
to another. Following and expanding Kauffman, stability for us
will mean a high probability of the GRN staying in the same
basin of attraction of the phase space after any number of possible
flips of individual gene-states in one time step, whereas instability
will be indicated by a high probability of switching to another
basin. Using our new tools, we will also define and compute the
entropy of a GRN in terms of the group of automorphisms (in
other words, the symmetry) of its phase space, showing strong

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

Algorithm 4 Stability of given connected component

1: procedure COMPUTING STABILITY OF COMPONENT WITH

m STATES

2: T1 ← 0, . . . ,Tn ← 0
3: while 1 ≤ i ≤ m− 1 do
4: while i+ 1 ≤ j ≤ m do

5: k← HammingWeight
(

sui ⊕ suj
)

⊲ the Hamming
distance between two states is the Hamming weight of their
XOR

6: Tk ← Tk + 2

7: while 1 ≤ k ≤ n do

8: pk ← Tk/
[

m
(n
k

)]

9: return p1, . . . , pn.

correlations with stability: after all, the physical and information-
theoretic definitions of entropy are measures of the disorder of
the underlying micro-states of a system. Fast algorithms that
compute the graph structure as well as the stability and entropy of
a generic phase space from its adjacency matrix will be provided.

4.2. Computing Stability
Given a connected component with m states {su1 , . . . , sum} in the
phase space of an n-gene GRN, we define the kth-order stability
of the component to be the probability pk that randomly flipping
k bits in one randomly chosen state will produce another state in
the same component, where 0 ≤ k ≤ n (clearly, p0 = 1). This
probability is equal to the number Tk of distinct ordered pairs
(sui , suj) where flipping k bits of sui in arbitrary positions produces
the state suj , divided by the number of all possible k-flips of all

states, which is m
(n
k

)

(note that T0 = 0). We can compute all
stabilities simultaneously by starting with the component’s states
by Algorithm 4, once the components have been characterized by
Algorithm 1.

Alternatively, since a GRN is expected to spend most of its
time in cycle states, we may assume that only one of the cycle
states will be affected. Let a and b be the numbers of cycle and
transient states in the given component of m states respectively
(a + b = m). We initialize all Ti to zero as before, and add 2 to
Tk if the Hamming distance between two distinct cycle states is
k and add 1 if the distance between a cycle state and a transient
state is k. There are

(a
2

)

unordered cycle pairs and abmixed state
pairs. After we compute the Tk, the k-stability for the component
becomes pk = Tk/

[

a
(n
k

)]

(where T0 = a).

Example 6. Consider the phase space for the three-gene GRN
in Example 4. We find the six unordered Hamming distances
between the four states of the largest connected component, C:

state 1 state 2 digit-wise sum Hamming dist. T1 T2 T3

000 001 001 1 2 0 0

000 011 011 2 0 2 0

000 100 100 1 2 0 0

001 011 010 1 2 0 0

001 100 101 2 0 2 0

011 100 111 3 0 0 2

We have T1 = 6, T2 = 4, and T3 = 2 (these are the numbers of
ordered pairs of states in C that differ by one, two, and three flips
respectively.) Finally, we compute

p1 =
T1

|C|
(n
1

) =
1

2
, p2 =

T2

|C|
(n
2

) =
1

3
, and p3 =

T3

|C|
(n
3

) =
1

2
.

These are the probabilities that the component C will be mapped
to itself after a flip of one, two, or three bits of a randomly chosen
state respectively.

Hence, we may now construct the transition matrix P(1) of
Kauffman [15], which gives us the probability that state si goes
to state sj after one flip of any one state in the whole phase

space: P
(1)
ij = P(si 7→ sj|one flip). There will be exactly n (1/n)’s

in each row/column, and the rest of the N − n entries will be
zero. This is a symmetric matrix since flipping is described as the
addition of 1 = −1 to one digit in F2. The matrix represents the
linear transformation that sends each state to a weighted linear
combination of its 1-neighbors in terms of Hamming distance.
We can similarly construct matrices P(k) for 1 ≤ k ≤ n, where
k out of n bits in a state will be flipped: each row/column will
contain

(n
k

)

nonzero elements, all equal to 1/
(n
k

)

. We define P(0) =
I; if no flips occur, then all states go to themselves with probability
1.

Let us fix a connected component C of the phase space. The
jth column of P(k), P(k)ej, multiplied by 1/|C|, represents the
probability distribution for the k-flipped state sj. We multiply

the result on the left by 1TC . The final operation adds up the
probabilities that the state sj will end up in component C. If we
sum these numbers over all j for which sj ∈ C, then we obtain the

probability pC
k
that a k-flip will result in C being mapped back to

C:

pCk =
1

|C|

∑

sj∈C

1TCP
(k)ej =

1

|C|
1TCP

(k)
∑

sj∈C

ej =
1

|C|
1TCP

(k)1C.

If we want to switch to just starting with the cycle states, say
C′ ⊆ C, then the vector 1C on the right can be replaced by
1C′ . Using this formalism, we can apply flips with any probability
distribution we like in a simulation.

Example 7. Let us repeat the computations in Example 6 with
the matrix formulas. Once again, let C be the largest connected
component of our phase space. The transition matrices for the
whole phase space are

P(1) =

























0 1/3 1/3 0 1/3 0 0 0
1/3 0 0 1/3 0 1/3 0 0
1/3 0 0 1/3 0 0 1/3 0
0 1/3 1/3 0 0 0 0 1/3
1/3 0 0 0 0 1/3 1/3 0
0 1/3 0 0 1/3 0 0 1/3
0 0 1/3 0 1/3 0 0 1/3
0 0 0 1/3 0 1/3 1/3 0

























,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

P(2) =

























0 0 0 1/3 0 1/3 1/3 0
0 0 1/3 0 1/3 0 0 1/3
0 1/3 0 0 1/3 0 0 1/3
1/3 0 0 0 0 1/3 1/3 0
0 1/3 1/3 0 0 0 0 1/3
1/3 0 0 1/3 0 0 1/3 0
1/3 0 0 1/3 0 1/3 0 0
0 1/3 1/3 0 1/3 0 0 0

























,

and

P(3) =

























0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

























.

The indicator vector of the component is 1C =

(1, 1, 0, 1, 1, 0, 0, 0)T , and the k-stabilities of C for
k = 1, 2, 3 are given by

p1 =
1

4
1TCP

(1)1C =
1

2
, p2 =

1

4
1TCP

(2)1C =
1

3
, p3 =

1

4
1TCP

(3)1C

=
1

2
.

Next, we would like to define and compute the overall stability,
p, of the connected component. Naturally, p is the probability that a
randomly chosen state (alternatively, a cycle state) will stay in the
component after a set of randomly chosen bits of it are flipped.
We will assume here that each bit is flipped independently of the
others with probability ǫ. This leads to the binomial distribution
B(n, ǫ). Any other distribution on the number of bits can be
similarly accommodated. This may be necessary as the “genes”
are expected to be structurally and behaviorally different, unlike
the statistical-mechanics situation with identical particles of gas.
Given any state, the probability that k bits of it will be flipped is
(n
k

)

ǫk(1− ǫ)k. Then we have

p =

n
∑

k=0

(

n

k

)

ǫk(1− ǫ)kpk =

n
∑

k=0

(

n

k

)

ǫk(1− ǫ)k
Tk

m
(n
k

)

=
1

m

n
∑

k=0

ǫk(1− ǫ)n−kTk

if all states are targeted for flips, and

p =
1

a

n
∑

k=0

ǫk(1− ǫ)n−kTk

if only cycle states are targeted. Assume that there are ν connected
components, with m(1), . . . ,m(ν) states each, and a(1), . . . , a(ν)

corresponding cycle states respectively. Let p(i) denote the
stability of the ith component computed as above. The individual
stabilities will be weighted by the probability that a randomly

chosen state will belong to that component, or alternatively, be
a cycle state of that component. In the first case, we compute the
stability of the phase space as

P =

ν
∑

i=1

m(i)

2n
p(i) =

1

2n

ν
∑

i=1

m(i)p(i) =
1

2n

n
∑

k=0

ǫk(1−ǫ)n−k
ν
∑

i=1

T
(i)
k
,

and in the second case, as

P =

ν
∑

i=1

a(i)

ν
∑

j=1

a(j)
p(i) =

ν
∑

i=1

a(i)p(i)

ν
∑

j=1

a(j)
.

5. ENTROPY OF GRNS: A COMPARISON
WITH STABILITY

5.1. Simulation
We fixN = 2n, the number of states in the phase space. There are
aN unlabeled non-isomorphic phase spaces, or different-shaped
functions, given by the OEIS sequence A001372 [23]. Call these
unlabeled digraphs D1, . . . ,DaN . Let {P(i)}

aN
i=1 be an arbitrary

probability mass function. Define the entropy expectation of P to
be

H(P) =

aN
∑

i=1

P(i)S(Di),

where S(Di) is the entropy defined above. The neutral entropy
expectation is defined to be

N!

NN

aN
∑

i=1

S(Di)e
S(Di).

This is equivalent to the expectation for the probability mass
function p(i) = [N!/|Aut(Di)|]/N

N (see Lemma 3). For n =
2, 3, 4, 5, and using generic vs. nested canalizing Boolean update
functions (section 3.2) with k = 2, we ran 100,000 simulations
and averaged the stability and entropy values, as defined in this
paper. The mean stability values were slightly higher with special
update functions, in line with Kauffman’s ideas [15, 16]. However,
the mean entropy calculations were more interesting: for n =
3, 4, 5, we had a markedly lower value for entropy (hence, more
order and symmetry) for special update functions, correlating
with the higher stability. The difference got more prominent as
n increased. Only the case n = 2, which is too small to be
meaningful, was anomalous.

No. of genes Measured Generic function Special function

n = 2, ǫ = 1/2 Stability 0.80 0.81

n = 2, ǫ = 1/2 Entropy −0.39 −0.17

n = 3, ǫ = 1/3 Stability 0.80 0.85

n = 3, ǫ = 1/3 Entropy −0.53 −0.95

n = 4, ǫ = 1/4 Stability 0.80 0.87

n = 4, ǫ = 1/4 Entropy −0.93 −3.90

n = 5, ǫ = 1/5 Stability 0.81 0.88

n = 5, ǫ = 1/5 Entropy −6.14 −13.3

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 July 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

The Lua code created by the first author can be accessed at [2].
We hope that our modest results will lead to more ambitious
simulations, start new theoretical discussions, and open new
possibilities in experimental designs.

6. CONCLUDING REMARKS

There is a theoretical chasm in the current literature between the
definition and practice of GRNs. As fewer vertices are needed,
simulations of the wiring diagrams rather than the phase spaces
is the norm, but the mathematical framework is somewhat
incomplete. In contrast, a phase space gives us both the wiring
diagram and the update function, and is much more tractable. In
the words of Wuensche [21], when we look at the phase space,

High convergence implies order [high symmetry, low entropy]

in space-time patterns: short, bushy, highly branching transient

trees, with many leaves and small attractor periods. Conversely,

low convergence implies chaos [low symmetry, high entropy] in

space-time patterns: long, sparsely branching transient trees, with

few leaves and long attractor periods.

Hence, we are justified in considering the digraph symmetries
of the phase space as a measure of convergence and stability.

It may eventually be possible to bridge the theory gap
between definitions and simulation results for biological phase
spaces, and analytically demonstrate the relationships among the
connectivity of the wiring space, and the stability, symmetry, and

entropy of the phase space. Systems biology and evolutionary
theory would benefit from such a solid foundation.

Moreover, mathematicians should appreciate functional
digraphs and their automorphism groups and entropies in
their own right, with a concrete algorithm to compute the
latter objects. It would also be worthwhile to shift the
focus of algebraic graph theory from undirected graphs to
digraphs, from static configurations to dynamic ones, and
from the spectral properties of Laplacians (usually associated
with undirected graphs) to those of the adjacency matrices of
digraphs: although tournament scheduling will never go out
of fashion, dynamical and directed networks such as GRNs
and the Internet are increasingly more important in real-world
problems.

7. AUTHOR CONTRIBUTIONS

FA is the author who initiated the study, made spectral
computations, did most of the writing and editing, and
researched existing literature on GRNs. Contributions from
both authors were substantial and collaborative. DA is an
undergraduate computer science and mathematics major at
UIUC, with prior experience in publishing and presenting
academic work. His contributions have been theoretical as
well as computational. DA was the one who suggested the
new definitions of entropy and stability, as well as methods
of computing automorphism groups, and has done all the
coding.

REFERENCES

1. Harary F, Norman RZ, Cartwright D. Structural Models: An

Introduction to the Theory of Directed Graphs. New York, NY: Wiley

(1965).

2. Akman D. Available online at: https://github.com/GeneRegulatoryNetworks/

Algorithms

3. Wuensche A. The ghost in the machine: basins of attraction of random

Boolean networks. In: Langton CG, editor. Artificial Life III. Santa Fe Institute

Studies in the Sciences of Complexity; Reading, MA: Addison-Wesley (1994).

p. 465–501.

4. Rotman JJ. An Introduction to the Theory of Groups, Graduate Texts in

Mathematics. 4th ed. New York, NY: Springer (1994).

5. Jordan C. Sur les assemblages de lignes. J Reine Angew Math. (1869) 70:185–

90.

6. Read RC. The coding of various kinds of unlabeled trees. In: Read RC, editor.

Graph Theory and Computing. New York, NY: Academic Press (1972). p.

153–82.

7. Knuth D, Morris JH, Pratt V. Fast pattern matching in

strings. SIAM J Comput. (1977) 6:323–350. doi: 10.1137/02

06024

8. Shiolach Y. Fast canonization of circular strings. J Algorithms (1981) 2:107–

121.

9. Chen KT, Fox RH, Lyndon RC. Free differential calculus IV: the

quotient groups of the lower central series. Ann Math. (1958)

68:81–95.

10. Wolfram S. Statistical mechanics of cellular automata. Rev Modern Phys.

(1983) 55:601–44.

11. Schlosser G, Wagner GP. Chapter 1: Introduction: the modularity

concept in developmental and evolutionary biology. In:

Schlosser G, Wagner GP, editors. Modularity in Development

and Evolution. Chicago, IL: Chicago University Press (2004).

p. 1–11.

12. Breitling R. What is systems biology? Front Physiol. (2010) 1:9.

doi: 10.3389/fphys.2010.00009

13. Ideker T, Galitski T, Hood L. A new approach to decoding life:

systems biology. Annu Rev Genomics Hum Genet. (2001) 2:343–72.

doi: 10.1146/annurev.genom.2.1.343

14. Wang RS, Saadatpour A, Albert R. Boolean modeling in systems biology:

an overview of methodology and applications. Phys Biol. (2012) 9:055001.

doi: 10.1088/1478-3975/9/5/055001

15. Kauffman SA. Metabolic stability and epigenesis in

randomly constructed genetic nets. J Theor Biol. (1969)

22:437–67.

16. Kauffman SA. The Origins of Order: Self-Organization and Selection in

Evolution. New York, NY: Oxford University Press (1993).

17. Kauffman SA. Antichaos and adaptation. Sci Am. (1991) 265:78–84.

18. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins.

J Mol Biol. (1961) 3:318–56.

19. Laubenbacher R, Sturmfels B. Computer algebra in systems biology. Amer

Math Monthly (2009) 116:882–891. doi: 10.4169/000298909X477005

20. Robeva R, Kirkwood B, Davies R. Chapter 1: Mechanisms of gene regulation:

Boolean network models of the lactose operon in Escherichia coli. In:

Robeva R, Hodge T. editors. Mathematical Concepts and Methods in Modern

Biology: Using Modern Discrete Models. Amsterdam: Academic Press (2013).

p. 1–35.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 July 2018 | Volume 4 | Article 28

https://github.com/GeneRegulatoryNetworks/Algorithms
https://github.com/GeneRegulatoryNetworks/Algorithms
https://doi.org/10.1137/0206024
https://doi.org/10.3389/fphys.2010.00009
https://doi.org/10.1146/annurev.genom.2.1.343
https://doi.org/10.1088/1478-3975/9/5/055001
https://doi.org/10.4169/000298909X477005
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Akman and Akman Functional Digraphs and GRNs

21. Wuensche A. Chapter 13: Basins of attraction in network dynamics:

a conceptual framework for biomolecular networks. In: Schlosser G,

Wagner GP, editors. Modularity in Development and Evolution. Chicago, IL:

Chicago University Press (2004). 288–311.

22. He Q, Macauley M, Davies R. Chapter 5: Dynamics of complex boolean

networks: canalization, stability, and criticality. In: Robeva R, editor.Algebraic

andDiscreteMethods forModern Biology.Amsterdam: Academic Press (2015).

p. 93–119.

23. The Online Encyclopedia of Integer Sequences. Available online at: https://

oeis.org

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Akman and Akman. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 July 2018 | Volume 4 | Article 28

https://oeis.org
https://oeis.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Spectral Functional-Digraph Theory, Stability, and Entropy for Gene Regulatory Networks
	1. Introduction–Spectral Theory of Functional Digraphs
	1.1. Digraphs, Relations, and Functions
	1.2. Adjacency Matrices
	1.3. Eigenvalues and Eigenvectors of Functional Digraphs
	1.4. The Transition Matrix
	1.5. An Algorithm for Identifying Cycles and In-Trees
	1.6. The Trace

	2. Automorphisms and Entropy of Functional Digraphs
	2.1. Digraph Automorphisms
	2.2. Identifying Similar Structures in Functional Digraphs
	2.2.1. In-Trees
	2.2.2. Cyclic Lists

	2.3. Algorithm for the Automorphism Group of a Functional Digraph
	2.3.1. Automorphism Group of a Rooted Tree
	2.3.2. Automorphism Group of a Connected Component
	2.3.3. Automorphism Group of a Functional Digraph

	2.4. The Entropy of a Functional Digraph
	2.5. Algorithm for Functional Digraph Entropy

	3. Introduction –Gene Regulatory Networks
	3.1. Systems Biology, Modularity, and Gene Regulatory Networks
	3.2. Structure and Examples of GRNs
	3.3. Computing the Matrix of the Phase Space
	3.4. The Inverse Problem

	4. Stability of GRNs
	4.1. Old and New Definitions of Stability
	4.2. Computing Stability

	5. Entropy of GRNs: A Comparison With Stability
	5.1. Simulation

	6. Concluding Remarks
	7. Author Contributions
	References

