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In this paper the problem of designing an output-feedback control for the stabilization

of the extinction steady-state in a virus spreading process over a complex network with

quarantine is considered. Sufficient conditions are established for the choice of those

nodes for which sensor information is necessary and those which should be controlled

using notions from constructive control theory. A simple output-feedback control is

proposed which exponentially stabilizes the extinction state. Numerical simulation results

are provided to illustrate the functioning of the proposed control scheme for a scale-free

network of N = 106 nodes.
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1. INTRODUCTION

Studies on the propagation and control of viruses and infectious diseases in human and animal
populations [1–8] have gained a great importance in the last years. Understanding and controlling
spreading processes is a problem of interdisciplinary nature [9–12]. The use of mathematical and
physical inspiredmodels that give account of the dynamics of propagation of infections have gained
acceptance since the London cholera epidemics in September 1853 when John Snow divided a map
of London into sectors (in a way, nowadays, equiparable to a Voronoi diagram) to calculate who
was most likely to use each water pump in the city and in this way, discovered that the 40 Broad
Street pump was the main focus of the cholera infection.

Some decades later, McKendrick [13] and Kermack and McKendrick [14] proposed the SIR
model that divides the population in three different compartments or groups of individuals:
Susceptible, Infective, and Recovered (or Removed) that had the disease and become immune or
died. This pioneering work gave birth to the SIS (Susceptible-Infected-Susceptible) model mainly
because many diseases do not confer any immunity. Extensions such as the SIQ (Susceptible-
Infected-Quarantine) model (see e.g., [15–17]) appeared in order to account for the dynamics of the
spreading of infections when quarantine has been implemented as a means to control the massive
spreading of the infectious disease. Accordingly, a new class of quarantined individuals is included.
These individuals are removed, with some probability from the class of infected individuals.

Although these models were proposed for modeling spreading in populations with no structure,
nowadays the SIS and SIQ models have been extended to model the spreading process in a
population mapped on a complex network.
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In recent years, Markov-chain based models for a Susceptible-
Infected-Susceptible (SIS) dynamics over complex networks have
been used [4–8, 18] to describe spreading processes in networks.
Using these models, it is possible to determine the macroscopic
properties of the system as well as the description of the dynamics
of individual nodes. One interesting result is that the calculated
infection threshold depends on the value of the spectral radius
of the adjacency matrix, thus relating the network structure with
spreading behavior.

In the present work we will study the spreading of diseases
using a Markov-chain based model for a Susceptible-Infected-
Quarentine (SIQ) dynamics over a complex network that has
been used in a simplified version for the determination of stability
tresholds in recent studies by the authors [15, 17]. We will
show that, even when the built-in control strategy of quarantine
is not able to ensure virus extinction, it is always possible to
solve the problem of epidemic spreading extinction. In order
to accomplish this task, we determine sufficient conditions for
stabilizing the extinction state in a complex network of arbitrary
topology. One remarkable point is that, these conditions give a
clue to identify the nodes that do not need any control to reach
the extinction state and distinguish them from the nodes that
need to be controlled. Inspired on the ideas of control theory,
the set of nodes that do not need to be controlled (in order
to reach the extinction state) will be associated with the zero
dynamics of the system [19, 20] . At the same time, the set of
nodes to be monitored and controlled will be identified and a
decentralized feedback control will be applied in order to stabilize
the extinction state. Accordingly, it is proven that the extinction
state is an exponentially stable fixed point for the zero dynamics.

We have performed numerical simulations using a scale-
free complex network with 1 million nodes constructed as
proposed by Barabasi [21] and found a complete agreement of
the numerical results with our theoretical findings.

The paper is organized as follows: section Methods presents
the problem statement for the SIQ model mapped on a complex
network of arbitrary topology and the control problem we want
to solve together with some definitions. In section Results,
sufficient conditions for the stabilization of the extinction state
are derived. Using these conditions we establish a selection
criterion that allows to identify the set of nodes that need to be
controlled in order to reach the extinction state. Afterwards, we
design a simple stabilizing output-feedback control and present
our simulation results. In section Discussion and Conclusions
we summarize our main results and present our main
conclusions.

2. METHODS

As pointed out in the introduction, the SIQ model belongs
to a class of models that are used to capture possible human
interactions employed to impede the spreading of an infection
process and it is essentially an extension of the SIS model in
which the model and control strategies are co-developed to yield
a kind of closed-loop control model [22]. In order to reveal the
dynamics and essential mechanisms of this model, we proceed to

(i) formulate the SIQ model in a complex network (ii) introduce
the specific control problem.

2.1. The SIQ Model in a Complex Network
Consider a network ofN nodes described by an undirected graph
G(V ,E) of any topology. Let V = {v1, v2, . . . , vN} being the set of
nodes and E = {ei,j} the set of connecting edges. The adjacency
matrix associated to G(V ,E) is given by A = {aij}, where aij = 1
if ei,j ∈ E and zero otherwise. The set of neighbor nodes of a node
vi ∈ V is defined as

Vi = {vj ∈ V | aij = aji = 1} ⊂ V , (1)

and the number of neighbors or degree of a node vi is given by
Ni = |Vi|.

As formulated in Bernal Jaquez et al. [15], the underlying
process for every node is depicted in Figure 1, as a discrete time
Markov process. A node vi can be in state I (Infected) with
probability pi(t), in stateQ (Quarantine) with probability qi(t), or
in state S (Susceptible) with probability si(t) = 1 − pi(t) − qi(t).
At each time step, the probability functions pi(t), si(t) are updated
due to the fact that every node can transit from state S to state I
with probability 1− ζi or from state I to state Q with probability
τi and from state Q to state S with probability µi because nodes
are interacting.

According to the transition diagram shown in Figure 1, we
have the following dynamical system:

pi(t + 1) = (1− τi)pi(t)+ (1− ζi(P(t)))si(t),

qi(t + 1) = (1− µi)qi(t)+ τipi(t), (2)

si(t + 1) = ζi(P(t))si(t)+ µiqi(t).

pi(t)+ qi(t)+ si(t) = 1, vi ∈ V ,

where, for every node vi ∈ V , τi is the internment probability
associated to quarantine, µi is the recovery probability and

FIGURE 1 | State transition diagram for each node vi ∈ V. The states Infected,

Quarantine and Susceptible are represented by I, Q, and S, respectively.
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ζi(P(t)) is the probability of a node vi of not being infected by
any neighbor at time t, which is given by

ζi(P(t)) =

N
∏

j=1

(1− βirijaijpj(t)). (3)

In the above equation, we have defined the vector P(t) =

[p1(t), p2(t), ..., pN(t)]
T ∈ [0, 1]N and βi is the probability of

infection during a single contact, rij is the probability that the
node vi performs at least one contact intent with its neighbor
vj ∈ Vi. The probability rij is also known as the connection
probability and depends on the number of contact intents (or
interaction rate).

Note that in system (2)

0 ≤ µi, τi, rij,βi, ζi(P(t)), pi(t), qi(t), si(t) ≤ 1

From the model (2) we point out that

• Unlike the model proposed in Bernal Jaquez et al. [15] the
system (2) considers non-homogeneous properties given by
µi, τi,βi and rij.

• Quarantine is a control mechanism which is introduced in
order to prevent virus spreading, however it could probably
not be sufficient for achieving the extinction state, depending
on the stability conditions (to be determined below). We
can consider, instead, the objective of this work to design a
controller to stabilize the extinction state, e.g., by adapting
inherent propagation parameters like the propability of
infection βi of some nodes to be specified.

We consider that each node has a manipulable variable ui(t),
which is amenable for control. For the system 2, this manipulable
variable can be βi or rij, i.e., we consider that, for each node vi,
it is possible to improve its health or avoid to perform several
contact attempts with its neighbor nodes, the control will adapt
one of these parameters, that will be selected according to our
mathematical analysis.

FIGURE 2 | Number of nodes with a given degree (black) in a

non-homogenous scale-free network with N = 100 nodes and normally

distributed parameters and number of nodes of the given degree that need to

be controlled (blue).

2.2. Control Problem
Quarantine is an heuristic control mechanism or strategy that
intents to reduce a virus propagation in a population. As stated
in the last subsection, these kind of models probably are not
sufficient to ensure the system to reach the extinction state. This
is due to the fact that no adaptation of the network parameters
is implemented in dependence of the actual system state. Such
a mechanism is proposed in the sequel including decisions on
(i) the subset of nodes VM ⊂ V which should be monitored,
i.e., whose actual state must be known at each time instant,
(ii) the subset of nodes VC ⊂ V which have to be controlled,
i.e., whose interaction parameters (ui = βi or ui = rij)
should be subject to on-line adaptation, and (iii) the specific
control law ui(t) = ϕi(P(t)) which should be used for this
adaptation.

The chosen approach follows the constructive
(i.e., passivity-based) control idea, and consist in two
steps:

a) Assigning the necessary outputs so that the associated zero
dynamics is asymptotically stable.

b) Designing controllers ui(t) = ϕi(Yi(t)) so that for some 0 ≤

γ < 1 it holds that

pi(t) ≤ pioγ
t , pi(t = 0) = pio.

3. RESULTS

In this section the main results are presented. In particular
sufficient conditions for the stabilization of the extinction state
are derived including (i) a selection criterion for the nodes
to be monitored in terms of the connectivity parameters,
the infection probability and the graph topology and (ii) the
design of a simple stabilizing output-feedback control scheme.
Simulation results illustrate the functioning of the proposed
control scheme for a scale-free network with N = 106

nodes.

3.1. Selection of Monitored and Controlled
Nodes
Taking into account that pi(t) + qi(t) + si(t) = 1 for each
vi ∈ V and to be consistent with the control idea, we
consider that ζi(P) = ζi(P,U), where the vector U(t) =

[uc1(t), uc2(t), . . . , ucK(t)]
T , vci ∈ VC represent the manipulable

set of parameters associated with βi or rij. So, we can rewrite
system (2) as follows

pi(t + 1) = (1− τi)pi(t)+ (1− ζi(P(t),U(t)))(1− pi(t)− qi(t)),

qi(t + 1) = (1− µi)qi(t)+ τipi(t), (4)

ζi(P,U) =

N
∏

j=1

(1− βirijaijpj(t)).

The fixed points associated with the dynamics (4) for some
constant U∗ (i.e., βi and rij are set to some constant value)
can be determined by substituting the relations pi(t + 1) =
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pi(t) = p∗i and qi(t + 1) = qi(t) = q∗i . After some algebra it
follows that

p∗i =
1− ζi(P

∗,U∗)

τi +
(

1+ τi
µi

)(

1− ζi(P∗,U∗)
) ,

q∗i =
τi

µi

1− ζi(P
∗,U∗)

τi +
(

1+ τi
µi

)(

1− ζi(P∗,U∗)
) , (5)

s∗i =
τi

τi +
(

1+ τi
µi

)(

1− ζi(P∗,U∗)
) .

Note that the extinction state (p∗i = 0, q∗i = 0, s∗i = 1) in (2),
for vi ∈ V is a fixed point when ζi(0,U

∗) = 1. However, up to
this point, it is not clear if the extinction state or any other fixed
point given by (5) are stable. The extinction state means that no
viruses are propagated over the network and, as we will see in the
following Lemma, knowledge of the conditions under which this
state is reached, will give us a clue of how viruses are propagated.

The approach followed subsequently exploits ideas from
Wang et al. [4], and Bernal Jaquez et al. [15] by establishing a
linear bounding dynamics for (4) that has the origin (P,Q) =

(0, 0) as exponentially stable fixed point.

Lemma 1. Consider the dynamics (4) on a complex network with
graph G(V ,E) and adjacency matrix A. The extinction state
(P,Q) = (0, 0) is globally exponentially stable if the constant vector
U∗ (i.e., for some constant values of βi and rij) is such that

σ (H) < 1, U∗ = [u∗1 , . . . , u
∗
N], (6)

where σ (·) is the spectral radius of the matrixH defined as

H =

[

I− T+ BR 0

T I−M

]

, (7)

where

T = diag(τi), B = diag(βi), R = [rijaij], M = diag(µi).
(8)

and I being the identity matrix.

Proof: As it is proved in Wang et al. [4], and Bernal Jaquez et al.
[15], ζi(P,U

∗) can be bounded as follows

1− ζi(P(t),U
∗) ≤

N
∑

j=1

βirijaijpj(t). (9)

Substituting this bound into the first equation in (4) and after
some algebra one obtains

pi(t + 1) ≤ (1− τi)pi(t)+ (1− pi(t)− qi(t))

N
∑

j=1

βirijaijpj(t),

≤ (1− τi)pi(t)+

N
∑

j=1

βirijaijpj(t).

This can be written in matrix form as

[

P(t + 1)
Q(t + 1)

]

≤

[

I− T+ BR 0

T I−M

] [

P(t)
Q(t)

]

,

where P(t) = [p1(t), . . . , pN(t)]
T and Q(t) = [q1(t), . . . , qN(t)]

T ,
and the inequality being interpreted as element-wise. Therefore,
the solutions of pi(t) are bounded by the linear dynamics

xi(t + 1) = (1− τi)xi(t)+

N
∑

j=1

βirijaijxj(t),

wi(t + 1) = τixi(t)+ (1− µi)wi(t), vi ∈ V

(10)

i,e., forall t ≥ 0 it holds that

0 ≤ pi(t) ≤ xi(t), qi(t) = wi(t) (11)

if p(0) = x(0), q(0) = w(0). The linear dynamics can be expressed
in matrix form as

[

X(t + 1)
W(t + 1)

]

=

[

I− T+ BR 0

T I−M

] [

X(t)
W(t)

]

= :H

[

X(t)
W(t)

]

,

(12)

where X(t) = [x1(t), . . . , xN(t)]
T and W(t) =

[w1(t), . . . ,wN(t)]
T . It holds that (XT ,WT)T = (0T , 0T)T

is exponentially stable if and only if the eigenvalues of the
associated matrix H are contained in the open unit circle
C1 = {λ ∈ C | |λ| < 1}. Taking into account (11) it follows that a
necessary and sufficient condition for global exponential stability
of (PT ,QT)T = 0 is given by (6).

The expontial stability condition (6) is very general and does
not provide any idea on how to select nodes to be controlled or
monitored in order to reach the extinction state. However, using
this result as a point of departure, we can get insight into the
condition that every node vi ∈ V has to fulfill in order to ensure
that P(t) converges to P∗ = 0 as shown in the following Lemma.

Lemma 2. For a constant U∗ (i.e., for some constant value for
βi and rij), the state vector (P

T(t),QT(t))T globally exponentially

converges to the extinction state (PT ,QT)T = 0 if for every node
vi ∈ V it holds that

βi <
τi

∑N
j=1 rijaij

. (13)

Proof: In virtue of Lemma 1 it is sufficient to show that if
the condition (13) holds, the matrix H defined in (6) has only
eigenvalues within the open unit circle C1 ⊂ C, or equivalently,
that its spectral radius σ (H) < 1. Note that due to the block-
diagonal structure of the matrix H its eigenvalues are given by
the eigenvalues of the two matrices on its diagonal, i.e., in terms
of the matrix spectra

S(H) = S(I− T+ BR) ∩ S(I−M),
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where S(A) denotes the spectrum of a matrix A, i.e., the union
of all its eigenvalues. The eigenvalues of the matrix I − M are
contained in C1, given that M is diagonal with entries 0 <

µi < 1. Thus ,it remains to show that S(I − T + BR) ⊂

C1. This can be analyzed by applying Gerschgorin’s Theorem
[23], which provides an upper-bound estimate for the spectral
radius of a given matrix. In the following, let λ represent an
arbitrary eigenvalue of the matrix I − T + BR. The application
of this theorem to the matrix I− T+ BR provides the following
inequality

|λ| ≤ |1− τi + βi

∑

rijaij| = 1− τi + βi

∑

rijaij (14a)

i = 1, . . . ,N. Thus, |λ| < 1 is satisfied if

N
∑

j=1

βirijaij < τi, ∀vi ∈ V

or equivalently if (13) holds true. This complete the proof.

Note that, as stated in the proof the convergence to zero of X
(and thus P) is independent of the behavior ofW (or accordingly
Q). This resides in the fact that the dynamics represent a
cascade structure. Accordingly, for the purpose of stabilizing
the extinction state it is sufficient to ensure that less nodes
get infected than pass into quarantine. This intuitively clear
condition is exactly what is formally stated in Lemma 2.

The condition (13) gives a criterion on how to choose the
nodes to be monitored. If condition (13) does not hold for some
set of nodes, then it is appropriate to consider this collection as
the set of nodes to be monitored VM . Additionally, according to
(13), the set of controlling nodes can be set as VC = VM . That
is, we can consider that all controlled nodes are monitored. In
this way, we can select βi (or rij) as the parameter amenable for
control purposes for those nodes that do not satisfy (13).

Further note that in case that the network parameters are
homogenous, i.e., all nodes have the same parameter values
µ,β , τ , rij = r, the selection criterion for a node to be controlled

is directly related to its degree Ni =
∑N

i=1 aij (i.e., here simply
the number of neighboring nodes) and can be expressed as

vi ∈ VC ∀ i : Ni >
τ

rβ
.

Nevertheless, when the parameter distribution is non-
homogenous, it is possible that nodes with high degree do
not have to be controlled and nodes with small degree have
to be, given the particular constellation between τi,βi and rij
according to condition (13). This is illustrated in Figure 2 for a
scale-free network with N = 100 nodes and normally distributed
parameters.

Note that in the notion of constructive control theory (see
e.g., [19, 24]), the dynamics of the nodes that are not controlled
establishes the zero dynamics (i.e., the dynamics resulting from
the restriction that pi = 0 for all i such that vi ∈ Vc)
and by construction this dynamics is asymptotically stable.
Therefore, the zero dynamics correspond to a spreading process
over a reduced network, from which the monitored (and thus
controlled) nodes have been withdrawn, given that for pi(t) ≡ 0
the node vi does no longer interact with its neighbors.

3.2. Feedback Control Design
The question addressed in this section is how to design the
feedback control for the nodes vj ∈ VC so that limt→∞ |pj(t) −
p∗j | = 0. Up to this point, we have not considered the dependency

of ζ (P,U) on U, given that U was considered as a set of constant
parameters. This dependency will permit to explicitly determine
a control law ui(t) = βi(t) that steers the nodes vj ∈ VC to their
desired values p∗j = 0. With this idea, the following theorem is

established

Theorem 1. Consider the dynamics given by (4) and consider the
nodes that do not satisfy (13) as the set VC of nodes to be controlled.
Let VM = VC, that is, all controlled nodes are monitored. If the
controls ui(t) satisfy

0 ≤ ui(t) < β̄i =
τi

∑N
j=1 rijaij

, (15)

then (PT ,QT)T = 0 is exponentially stable.

Proof: The Theorem can be easily proven as follows. Let β̄i be
given as in (15). It follows that

0 ≤ ui(t) < β̄i,

⇔ 0 ≤ ui(t)rijaij < β̄irijaij,

FIGURE 3 | Behavior of ρ(t) for several initial conditions without control.
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⇔ 0 ≤

N
∑

j=1

ui(t)rijaij <

N
∑

j=1

β̄irijaij.

Given that for βi ≤ β̄i inequality (13) is satisfied, one obtains

0 ≤

N
∑

j=1

ui(t)rijaij <

N
∑

j=1

β̄irijaij < τi,

or equivalently

N
∑

j=1

ui(t)rijaij < τi

implying that inequality (13) is satisfied. In consequence, the
exponential stability of (PT ,QT)T = 0 follows.

Note that following a similar reasoning, a control law can
be established for the case that ui(t) = rij(t). Nevertheless, this
approach will not be explicitely elaborated at this place.

From Theorem 1, we have that in order to stabilize the
extinction state for the dynamics (4) it is sufficient to design
feedback controls ui(t) for all nodes vi ∈ VC, which take values
below the upper-bound β̄i defined in (15). For example, a simple
linear feedback control given by

ui(t) = βi(t) = γ β̄i(1− pi(t)), γ ∈ (0, 1) (16)

does satisfy this condition. Note that the advantage of using a
time varying control law βi(t) consists in actively adapting the
infection probability on the actual needs, i.e., the actual network
state. In comparison with imposing a constant value for βi this
possibly enables to optimize the control effort over time, because
according to (16) βi → γ β̄i with pi → 0. The performance
using this simple output-feedback control is illustrated in the
subsequent section.

3.3. Simulations
In order to verify our results, we perform several simulations of
the dynamical system (4), for different initial conditions, with the
following considerations

• We used a scale-free network of N = 106 described
by G(V ,E), that incorporates preferential attachment
according to Barabási and Albert [21]. We started with
a small number mo = 9 of vertices, linked randomly,
and at every step we add a new node or vertex with
m = 3 edges until we reach N = 106. We emphasize
that our results are independent of the network’s
topology.

• To facilitate our simulations, we consider that rij = rji.
• The constant values for the recovery probability µi, the

probability of infection βi, the internment probability
τi, and the contact probability ri were distributed
uniformly over the nodes with values in the interval
[0.2, 0.7].

FIGURE 4 | Behavior of the zero dynamics.

FIGURE 5 | Closed-loop network behavior with the linear feedback control given by (18).
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• To show and corroborate our results, we calculated the average
probability ρ(t) given by

ρ(t) =
1

N

N
∑

i=1

pi(t). (17)

• The sets VC and VM are chosen according to Lemma 2 as the
sets of nodes that do not satisfy (13). For the case considered
here 424569 nodes out of N = 106 (i.e., about 42.5%) have to
monitored and controlled.

Simulation studies have been performed considering the
following scenarios:

I. Absence of control: All parameters of the system (4) have
constant values which not necessarily satisfy condition (13).

II. Zero dynamics: The output was constrained to Y(t) = 0 by
setting βj = 0 and pj(0) = 0 for all vj ∈ VM = VC.

III. Linear feedback control: The linear feedback control given
by (16) has been implemented for all vi ∈ VM = VC.

I. Absence of Control
In the absence of control the network reaches an endemic
attractor state where about a 20% of the nodes are probably
infected after about 20 time units as can be seen in Figure 3.

II. Zero Dynamics
To corroborate that the zero dynamics are exponentially stable,
we set Y(t) = 0 for those nodes that do not satisfy (13). This is
achieved by setting βi = 0 for vi ∈ VM .

Figure 4 shows the behavior of the nodes associated with the
zero dynamics. Note that the extinction state is reached after 18
time steps.

III. Linear Feedback Control
To show the performance of the proposed simple output-
feedback control scheme (16), it has been implemented for all
monitored and controlled nodes with the gain γ = 0.9 and
the upper bound β̄i calculated according to (15). This yields the
output-feedback controller.

βi(t) =
γ τi(1− pi(t))

∑N
j=1 rjaij

, for γ = 0.9 and ∀vi ∈ VC = VM .

(18)

Note that the control (18), depends on the state of the node

i given by pi(t), and the properties of its neighbors given
by β̄i. Figure 5 shows the result of the simulation with the
applied control (18). As predicted in Theorem 1 the extinction
state is a close-loop attractor, and is reached in about 40 time
steps.

4. DISCUSSIONS AND CONCLUSIONS

The problem of deciding which nodes in a complex network
with quarantine should be controlled and how to control
them in order to achieve that in the closed-loop system the
extinction state becomes a (global) attractor has been studied.
Sufficient conditions for virus extinction have been derived using
a constructive control approach by suitably identifying the zero
dynamics according to a threshold condition for the stability
of the extinction state. The associated node selection criterion
does depend on the transmission probability between the nodes
and their neighbors, the degree of each node and its probability
to pass into quarantine. It has been shown that in spite of
the strongly nonlinear dynamics of the spreading process the
extinction state can be efficiently stabilized using a simple linear
bounded output-feedback control if the nodes to be controlled
are selected according to the proposed scheme. The performance
and behavior of the spreading process without and with control
has been illustrated for a scale-free network with N = 106

nodes.
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