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Data assimilation, defined as the fusion of data with preexisting knowledge, is particularly

suited to elucidating underlying phenomena from noisy/insufficient observations.

Although this approach has been widely used in diverse fields, only recently have efforts

been directed to problems in neuroscience, using mainly intracranial data and thus

limiting its applicability to invasive measurements involving electrode implants. Here

we intend to apply data assimilation to non-invasive electroencephalography (EEG)

measurements to infer brain states and their characteristics. For this purpose, we use

Kalman filtering to combine synthetic EEG data with a coupled neural-mass model

together with Ary’s model of the head, which projects intracranial signals onto the

scalp. Our results show that using several extracranial electrodes allows to successfully

estimate the state and a specific parameter of the model, whereas one single electrode

provides only a very partial and insufficient view of the system. The superiority of using

multiple extracranial electrodes over using only one, be it intra- or extra-cranial, is

shown in different dynamical behaviours. Our results show potential toward future clinical

applications of the method.

Keywords: Unscented Kalman filter, data assimilation, EEG, neural mass model, parameter estimation

1. INTRODUCTION

After several decades studying its morphology and dynamics [1], the basic mechanisms that
describe the functioning of the brain are still far from being completely understood. There are
different reasons that explain this arduous route toward understanding this organ. First, the
neurons that form the brain are very diverse morphologically [2] and dynamically [3]. Second,
these neurons are connected to each other in extremely large numbers and forming very complex
networks [4], whose structural characteristics are still mostly unknown. And third, brain dynamics
are very irregular and complex [5, 6]. The opposed views of an essentially noisy brain and
a deterministic brain exhibiting chaotic activity have been often contrasted. On the one hand
there is multiple evidence, both theoretical and experimental, that justifies a stochastic view of
the brain [7, 8]. On the other hand, other studies reveal deterministic, or rather reproducible,
dynamical behaviour [9, 10] both at the microscopic scale [11] and at the mesoscale recorded by
electroencephalograms (EEG) or magnetoencephalograms (MEG) [12]. The reality is probably a
combination of the two views. The fact that the brain receives continuous external inputs from the
sensory system also makes its dynamical and experimental interpretation more complex because,
even though experiments are designed to minimise uncontrolled inputs, they cannot completely
rule them out. Another important limitation for studying the brain is that experimental recordings
(such as EEG or fRMI) are almost always indirect reflections of the underlying neural activity [13].
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A way of facing the complexities described above is by
systematically comparing the experimental observations of brain
activity with mathematical models based on specific hypotheses,
which can thereby be validated or disproven. Modelling cerebral
activity has been attempted both with top-down and bottom-
up approaches [14–18]. Many of these theoretical models
are simplifications that capture the basic ingredients of brain
dynamics, while others are detailed accounts of the dynamics
of neurons that necessarily forgo the description of the whole
brain. In that context, a more feasible scale of study is the
mesoscopic scale [19–25]. Many of the modern experimental
techniques record information coming from populations of
neurons working together. Neural mass models describe the
activity of these populations mathematically using reasonably
simple equations [26, 27]. These models can describe both the
intrinsic oscillatory behaviour recorded at the mesoscale or
event-related responses [28, 29] with morphologically plausible
assumptions for their construction.

In all modelling strategies, however, identifying realistic values
for the parameters of the model is a challenging task. One
way to address this problem is by integrating experimental
information into the models using Bayesian inference [30–35].
This strategy has started to be pursued by using Kalman filtering
to integrate experimental data at both the microscopic scale of
neuronal networks [36–38] and the mesoscopic scale of neural
mass models [39–42]. This data assimilation approach aims to
tackle the high level of noise in neuronal activity, and allows
to estimate both the state and the parameters of the theoretical
model using the experimental data available. The method has
been used to estimate, for example, the effective connectivity that
characterises epileptic seizures on a patient-specific basis (see [43]
and references therein). Kalman filtering has also been used to
analyse the suppression of epileptic seizures in coupled neural
mass models [40, 44], and the induction of the anesthetized state
by drugs [45]. But these studies use mainly invasive intracranial
signals, and it would be desirable to extend them to non-invasive
extracranial measurements such as EEG. Intracranial signals can
be translated into EEG signals in a forward manner [46, 47],
and, in the opposite direction, solving the inverse problem allows
to infer intracranial signals from EEG recordings [48–50]. In
this paper we advance the applications of Kalman filtering in
neuroscience by extending the current procedures with a model
of the head, exploring the possibilities of using non-invasive scalp
measurements.

2. METHODS

To obtain a reliable estimation of the state and the dynamics of
the brain, we require a biologically inspired mathematical model
of its dynamics, experimental data (as non-invasive as possible),
and the means of fusing both sources of information together.
In this paper, for the purpose of providing a proof-of-concept of
our proposed data assimilation approach, we use in silico data,
instead of real experimental observations, generated by Jansen
and Rit’s model [26, 51], as a way to represent the dynamical
evolution of the cortical structures. We then use the unscented

Kalman filter as our data assimilation algorithm to estimate the
state and a specific parameter of the model jointly [52–54].

2.1. Mesoscopic Neural Mass Model
Jansen and Rit’s model [26, 51] describes the mesoscopic
activity of a population of neurons [55, 56], providing a good
compromise between physiological realism and computational
simplicity. This model reduces the neuronal diversity of a cortical
column to three interacting populations: pyramidal neurons,
excitatory interneurons, and inhibitory interneurons. The larger
pyramidal population excites both groups of interneurons, which
in turn feed back into the pyramidal cells. In our approximation,
the pyramidal population is also driven by neighbouring columns
and by excitatory noise representing the input from distant areas
of the brain. The model is given by the following set of coupled
second-order differential equations [26, 57]:

ẍi0(t)+ 2aẋi0(t)+ a2xi0(t) = Aa Sigm[xi1(t)− xi2(t)], (1)

ẍi1(t)+ 2aẋi1(t)+ a2xi1(t) = Aa
(

pi(t)+ k

Nd
∑

j=1

K ij Sigm(x
j
1(t − τ ij)

−x
j
2(t − τ ij))+ C2 Sigm[C1x

i
0(t)]

)

, (2)

ẍi2(t)+ 2bẋi2(t)+ b2xi2(t) = Bb
(

C4 Sigm[C3x
i
0(t)]

)

, (3)

where x0 is the average excitatory postsynaptic potential (PSP)
coming to the two interneuron populations, and x1 (x2) is the
average excitatory (inhibitory) PSP which inputs to the pyramidal
population. The superindex i = 1 · · ·Nd runs over all the coupled
cortical columns (dipole sources) of the model. The quantity
x1 − x2 is the net PSP of the pyramidal neurons, which produces
the signal detected by extracranial electrodes, and is therefore
our observable. The sigmoid function Sigm(v) converts the net
average PSP of a population, v, into an average firing rate:

Sigm(v) =
2e0

1+ eγ (v0−v)
, (4)

where e0 is the maximum firing rate of the population, γ controls
the slope of the sigmoid, and v0 is the post-synaptic potential for
which a 50% firing rate is obtained. The resulting firing rate is
then transformed back into an average PSP by the second-order
differential Equations 1–3.

The parameters A and B in the right-hand side of
Equations 1–3 are the amplitudes of the excitatory and
inhibitory post-synaptic potentials, and a and b are the lumped
representations of the sums of the reciprocal of the time constant
of the passive membrane, and all other spatially distributed
delays in the dendritic network. The parameters C1 to C4 are
connectivity constants that govern the interactions between
populations, pi(t) is a stochastic external input that adds dynamic
noise to the system, and the summation term represents the
input from other coupled cortical columns. The strength of the
coupling is modulated by k, with K denoting the adjacency
matrix. When generating the in silico data we consider that
column i receives the signal of column j with a delay τ ij [58].
This is because we want to generate data, in a controlled way,
with a model as complex and rich in dynamics as possible
to mimic real data. However, Kalman filtering, as defined
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TABLE 1 | Description and default values of the parameters for the system of

neural masses.

Param. Description Value

A EPSP amplitude 3.25 mV

B IPSP amplitude 22.00 mV

a Rate constant for the excitatory population* 100 s−1

b Rate constant for the inhibitory population* 50 s−1

C1 Strength of synaptic connections from PC to EI 135

C2 Strength of synaptic connections from II to PC 108

C3 Strength of synaptic connections from PC to II 33.75

C4 Strength of synaptic connections from EI to PC 33.75

e0 Maximum firing rate of the population 2.5 s−1

v0 Mean threshold of the population 6 mV

γ Steepness of the sigmoidal transformation 0.56 mV−1

k Coupling constant 5 or 10

according to

the experiment

K Adjacency matrix Kij = 1, i 6= j

Ki,j = 0, i = j

τ Delay Between 15

and 21ms,

according to

distance [58]

p0 External input 200 s−1

ǫ Intensity of the noise 100 s−1

*Lumped representation of the sum of the reciprocal of the time constant of passive

membrane and all other spatially distributed delays. See the Results section for details

of the configuration of each numerical experiment. Here, PC refers to pyramidal cells, EI

to excitatory interneurons, II to inhibitory interneurons, EPSP to excitatory post-synaptic

potential, and IPSP to inhibitory post-synaptic potential.

in Equations 10–11 below, does not include temporal delays.
Therefore, for simplicity, the model used during the filtering
does not consider delays. Table 1 provides the descriptions and
values of these parameters. The electrical activity detected by the
electrodes on the scalp is originated by the weighted sum of the
averaged membrane potential of the pyramidal cells of all the
cortical columns, xi(t) = xi1(t) − xi2(t) [59], using a head model
as described below.

2.2. Head Model
The main contribution of this paper is the use of multichannel
extracranial data to obtain information about the neuronal
populations inside the brain using data assimilation. To
accomplish this, we use synthetic EEG data generated in silico
using Jansen and Rit’s model and Ary’s head model. To that
end, we transform the output x(t) of the neural masses to EEG
signals z(t) in the electrodes (see Figure 1). This transformation
is mediated by a lead field matrix [47], which builds on the
basic idea of calculating the electric potential caused by a dipole
source [13] on a three-layer isotropic hemisphere of radius
1 [46, 60] that represents the three main tissues that impact brain
activity readings (brain, skull, and scalp). The lead field matrix
also contains information about the geometry of the problem
(e.g., locations of cortical columns and electrodes) and about the

electrophysiology of the head (e.g., conductivities of the different
tissues). The following equations show the potential Ve,i on an

electrode e, located at re
e [61], caused by the dipole qi(t) = xi(t)q̂i

generated by the cortical column i, located at rq
i and oriented as

q̂
i. In these equations, e = 1, . . . ,Ne, whereNe is the total number

of electrodes, and i = 1, . . . ,Nd, where Nd is the total number of
dipoles. Vectors are typeset in bold and modules are in regular
type.

Ve,i(ree; riq, qi) ≅ v1(ree;µ1r
i
q, ρ1q

i)+ v2(ree;µ2r
i
q, ρ2q

i)

+v3(ree;µ3r
i
q, ρ3q

i), (5)

v1(ree; riq, qi) =
(

(ce,i,11 − ce,i,12 (ree · riq))riq+

ce,i,12 (riq)
2ree

)

· qi, (6)

v2(ree; riq, qi) =
(

(ce,i,21 − ce,i,22 (ree · riq))riq

+ce,i,22 (riq)
2ree

)

· qi, (7)

v3(ree; riq, qi) =
(

(ce,i,31 − ce,i,32 (ree · riq))riq

+ce,i,32 (riq)
2ree

)

· qi. (8)

In these expressions,

ce,i,s1 =
1

4πσ s(riq)
2

(

2
de,i · rqi

(de,i)3
+

1

de,i
−

1

ree

)

,

ce,i,s2 =
1

4πσ s(riq)
2

(

2

(de,i)3
+

de,i + ree
reŴ(ree, rqi)

)

, (9)

Ŵ(re
e, rq

i) = de,i
(

reed
e,i + (ree)

2 − (rq
i · ree)

)

.

The tangential conductivity of each layer is represented by σ s [60]
and ρs and µs are the Berg parameters relative to it [62] (see
Table 2). The parameter de,i = re

e − rq
i is the relative position of

the electrode e under consideration with respect to the position
of the dipole i.

2.3. The Unscented Kalman Filter for Data
Assimilation
The Unscented Kalman Filter (UKF) is our algorithm of choice to
bring together the dynamical state of the model and the in silico
data. It is a standard tool in the field of systems and control
engineering, and has been shown to be both computationally
efficient and robust even when dealing with stochastic nonlinear
systems [63]. In our case, the computational burden—O(n3),
where n is the size of the state—is acceptable for a biologically
reasonable number of sources. In order to simultaneously
estimate the state and parameters of the model described by
Equations (1)–(3), we regard it as a discrete-time state-space
dynamical system of the following form:

xk+1 = F (xk) + vk (10)

zk = H (xk) + wk (11)

where x = (x10, x
1
1, x

1
2, x

2
0, . . . , x

Nd

2 , θ1, . . . , θNp ) ∈ R
nx is the state

vector (related to the variables and parameters of themodel), with
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FIGURE 1 | Extracranial data generation and illustration of Ary’s model of the head. The light and dark red arrows indicate dipole sources, and the electrodes are

shown as gray and black rectangles. The elements in the cartoon illustrate how all the signals produced by the cortical columns (represented with the solid red line in

the top left panel) are transformed into an electrode reading (shown in black dots in the top right panel) through the lead field matrix. In this drawing, as in

Equations (5–9), rq is the distance from the origin to the cortical column under consideration; re is the distance from the origin to the electrode; and d is the distance

from the cortical column to the electrode. The placement of the arrows here is for illustration purposes only; in our study, the cortical columns are placed on the

surface of the brain, close to the skull.

θp being the parameters to estimate, which obey the equations
θ̇p = 0. (In our joint estimation of the parameters, these are
included in the state vector together with the system variables).
The vector z ∈ R

nz is the measurement vector (our in silico
EEG readings). The vectors v and w are uncertainty terms that
account for process noise and measurement noise, respectively,
with Gaussian distributions p(v)∼ N(0,Q) and p(w)∼ N(0,R),
respectively. The process transition F is obtained with a
numerical implementation of Equations (1)–(3), as described
below. Finally, H relates the state to measurement space, which
is either Ve,i (in the case of simulated EEG), or xi (in the case
of simulated electrocorticography). Interestingly, where EEG is
concerned, this basic part of the Kalman filter is in our case
implemented by the skull, the effect of which is represented by
the lead field matrix, based on Ary’s head model and introduced
above.

The UKF is a recursive predictor-corrector-type algorithm
that aims to minimise the mean square error of the estimated
states and parameters over time. For each time step it calculates
a prediction of the state and parameters of the system, which
is corrected when the information from a measurement is
incorporated. The amount of confidence given to the model
and measurement is quantified by the Kalman gain K , which

TABLE 2 | Values of the Berg parameters for the three layers [60, 62].

Parameter Layer 1 Layer 2 Layer 3

Tangential conductivity σ s 1.0 0.0125 1.0

Berg parameter ρs 0.9901 0.7687 0.4421

Berg parameter µs 0.0659 0.2389 0.3561

is calculated at each time step based on prediction covariances
as well as model and measurement error covariances (Q and
R, respectively). For more details on the implementation of the
filter, the reader is referred to the Appendix and to Kalman [54],
Merwe andWan [52], Julier andUhlmann [53], and Solonen et al.
[64].

2.4. Generation of in silico Datasets
For this paper three different in silico datasets were generated.
We consider both simulated electrocorticography (ECoG,
intracortical) and electroencephalography (EEG, extracranial)
readings (using Ary’s model in the latter case). We chose to
use three sources because this provides a considerable spatial
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FIGURE 2 | The two cortical column motifs used in this paper. Unidirectionally

coupled cortical columns have no backflow (A), and bidirectionally coupled

columns are coupled all-to-all (B). See Table 3.

TABLE 3 | Cartesian coordinates of the dipoles used throughout the study.

x y z

dipole 1 0.1688 0.2242 0.2597

dipole 2 0.3766 –0.8520 0.2597

dipole 3 0.6622 –0.2242 –0.1948

The origin of coordinates is the centre of the perimeter of the head.

and temporal richness in the resulting signals, while keeping the
system reasonably simple and still biologically plausible [65, 66].

The presence of additional dipoles in the brain, and its
influence on the sources of study, is accounted for in the
stochastic external input to the sources (p(t), see Equation 2):

p(t) = p0 + ξ (t), (12)

where p0 = 200 s−1 and ξ (t) is Gaussian white noise [67] of
zero mean and correlation 〈ξ (t)ξ (t′)〉 = 2ǫδ(t − t′) [68]. At
the extracranial level, the other sources also affect the final EEG
signal, as well as the different tissues (brain, skull, scalp, and even
hair). This is modelled by adding Gaussian noise with zero mean
and standard deviation 100 mV (unless otherwise stated) to the
simulated EEG.

All datasets used the same locations for the cortical
columns [66]. The electrodes were placed using a subset of
the equidistant layout, a standard layout for EEG [69] (roughly
illustrated in Figures 6–8). The strength of the coupling was set
at a medium value so that the cortical columns have a visible
effect on one another without fully synchronising behaviours
and locking their dynamics (between k = 5 and k = 10), and
the configurations of the couplings are as shown in Figure 2.
Table 1 shows representative values for the parameters used in
all analyses unless otherwise specified. In this paper we focus on
estimating the amplitudes A of the EPSPs of the different cortical
columns, and therefore we choose values for these amplitudes
that produce signals that reflect various dynamic regimes that we

wish to explore. (The rest of the parameters were fixed to their
standard values [26, 51], as described in Table 1).

The numerical solver used to generate the in silico time series
was the Heun algorithm [70] with a time step of 1t = 1 ms. The
length of the data is 100 s in all cases. Using the Heun algorithm
together with Equations 1– 3 to update the state variables and the
lead field matrix (in order to get the potential in the electrodes
of the scalp in Equations 5– 9), we generate the required map
to apply Kalman filtering in Equations 10 and 11. The following
equations implement the stochastic Heun algorithm used to
update xk:

xk+1 = xk +
1

2

(

F (xk) + F
(

x̃k
))

1t

+
1

2

∑

(

g (xk) + g
(

x̃k
))

X, (13)

x̃k = xk + F (xk) 1t + g (xk)X. (14)

Where g(...), together with Equation 12, introduces the noise
term in Equation 2 and is zero for Equations 1 and 3. In X =√
2ǫ1tγ , γ are gaussianly distributed random numbers with

zero mean and unit variance. At different instants of time, these
random numbers are independent from one another.

2.4.1. Three Unidirectionally Coupled Cortical

Columns
For the first study the cortical columns were coupled
unidirectionally (Figure 2A), as described in Liu and Gao [71].
The parameters were set to standard values [26] for the three
cortical columns (see Table 1), except for the first column,
in which A1 was set to 3.58 mV to make it hyperexcitable.
Additionally, the three cortical columns had p0 = 90 s−1 and
ǫ = 2 s−1. This first hyperexcitable column causes a spiking
cascade in the other two columns. With this experiment, we
aimed to compare how extra- and intra-cranial electrodes
perform in the case of a behaviour being induced by an
input from another column, and not by the column’s own
parameter configuration. The resulting data can be found in
the Data Sheets 1, 2 in Supplementary Material. Please, see the
README file (Data Sheet 6) for more information.

2.4.2. Three Bidirectionally Coupled Cortical

Columns: Coarse Parameter Estimation
The three cortical columns are located as in the previous
section, but coupled bidirectionally (Figure 2B). Additionally,
the maximum amplitudes of the excitatory PSPs were set to A1

= 4.25 mV, A2 = 10.00 mV, and A3 = 3.25 mV. These values
were chosen to cause the three cortical columns to be in very
different dynamical regimes: cortical column 1 operates in a
spiking regime; cortical column 2 oscillates with alpha frequency
but with an amplitude similar to that of the spikes; and cortical
column 3 oscillates in a more standard regime, as described
in [26]. Also, the external input p(t) for each of the three cortical
columns was set using p0 = 200 s−1 and ǫ = 100 s−1. Our aim
here was to study how the filter performs in an extreme situation,
in which the dynamics of the columns are widely different from
one another. We intended to explore the outcome of estimating
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FIGURE 3 | Intracranial and extracranial fittings with propagated excitation along unidirectionally coupled cortical columns. The upper panels show the estimation of

parameter A, and the lower panels show the estimations of the observed states. The lines show the averages of the 50 realisations of the estimation, and the

shadowed areas indicate the standard deviation. The actual values of the A parameters are A1 = 3.58 mV, A2 = 3.25 mV, and A3 = 3.25 mV, the other parameters

being set to standard values (Table 1). All three cortical columns received an external input, p(t), with p0 = 90 s−1 and ǫ = 2 s−1. The coupling constant was set to

k = 10. The measurements were corrupted with Gaussian noise of mean 0 and standard deviation 100 mV for extracranial measurements and standard deviation

5 mV for intracortical measurements. Except for cortical column 1, with intracortical data the filter converges to a much higher value than the target, whereas with

extracranial data the filter converges to a value which is accurate. In the lower panels it is shown that extracranial estimations of the state are also accurate, whereas

intracortical estimations fail to reproduce the spikes correctly.

with single extracranial electrodes as well as the complete set, and
to compare with intracranial estimation (Data Sheets 3, 4).

2.4.3. Three Bidirectionally Coupled Cortical

Columns: Fine Parameter Estimation
In the previous section, the value of A of one of the cortical
columns was much larger than the other two. We now consider
the same coupling motif, but with values of the A parameter that
are much closer together in value: A1 = 3.58 mV, A2 = 3.25 mV,
and A3 = 3.10 mV. (The values defining the external input p(t)
remain the same as in the previous experiment). Our goal was to
check if the filter can discriminate between the values when they
are closer together (Data Sheet 5).

2.5. Filtering
For each of the experiments we conducted 50 realisations of each
estimation for the complete state vector, with different initial
conditions; all the figures show averages of the 50 estimations,
unless otherwise specified. The initial conditions for state and
parameter estimations were randomly generated with a normal
distribution of zero mean and unit variance; the parameters,
however, were constrained to deviate no more than 90% of their
actual value as an initial assumption.

The noise covariances Q and R were chosen according to the
best knowledge of the system and of the noise corrupting the
data. Therefore, Q was set to contemplate the incoming noise to
each dipole, i.e., it was set to a null matrix except for the term
corresponding to the equation that contains the input p(t) (see
Equation 2 and [68]). The matrix R was set to 1000I mV2. (In
practice, in most applications of the Kalman filter, the matrix
R is fairly easy to set with the knowledge of the measurement
precision as a starting point, but Q is often set by trial and error).

2.6. Ethics Statement
All data used in this manuscript come from numerical
simulations of a mathematical model. No human or animal data
have therefore been used, and ethics approval was not necessary.

3. RESULTS

In order to compare the performance of the extra- and intra-
cranial approaches to Kalman filtering, we have analysed three
different cortical column configurations, each using one of the
two motifs shown in Figure 2. Where relevant, two different
types of estimations have been used: intracranial and extracranial.
Intracranial estimation uses simulated data that would have
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FIGURE 4 | Intracranial and extracranial fittings for coarse parameter estimation in the case of bidirectional coupling. As in the previous figure, the upper panels show

the estimation of A for each cortical column and the lower show the estimations of the observed states. The results are shown here without averaging. The actual

values of the amplitudes of the EPSPs are A1 = 4.25 mV, A2 = 10.00 mV, and A3 = 3.25 mV; the rest of the parameters were set to standard values (Table 1). The

external input p(t) for the three cortical columns had p0 = 200 s−1 and ǫ = 100 s−1. The coupling constant was set to k = 5. The intracortical measurements were

corrupted with Gaussian noise of mean 0 and standard deviation 5 mV, while the noise in the extracranial measurements has standard deviation 100 mV. Extracranial

estimations of the parameters are both faster and more accurate than intracortical estimations; this applies also to the state, whose dynamics are more faithfully

reproduced using multi-electrode extracranial estimation (as shown in the lower panels).

hypothetically been obtained from electrocorticography, that is,
using a single intracortical electrode, and is estimated with the
data provided by a single location—in other words, the direct
output of Jansen and Rit’s model. Extracranial estimation, on
the other hand, employs simulated data originated from EEG
recordings, using several electrodes placed on the skull, and
is implemented here with the projection on the head of the
model output. We now discuss the results for the three different
situations that we have considered.

3.1. Three Unidirectionally Coupled
Cortical Columns
In this case, information flows unidirectionally because of the
way the cortical columns are coupled [71]. As can be seen in the
lower panels of Figure 3, the first cortical column has a random
spiking activity, due to the increased value of A and the presence
of noise [20]. Due to the architecture of the coupling, cortical
column 1 causes cortical columns 2 and 3 to spike also, when
otherwise they would have simply fluctuated around their resting
level.

The upper panels of Figure 3 show the intracortical and
extracranial estimations of A for the three cortical columns. The

estimation for A1 of the first column converges to its correct
value, with both the intra- and extracortical approaches. This was
to be expected, since the first cortical column receives no inputs
from other elements of the system. In contrast, the intracortical
estimations for cortical columns 2 and 3 converge to values
significantly higher than their actual value of 3.25 mV. We
conjecture that this is caused by the spiking of these two cortical

columns, which as mentioned above is due to the influence of
cortical column 1. Multi-channel extracranial information, in
contrast, allows to see the complete picture of the coupled cortical

columns and treat them as a single composed system, contrary
to the partial picture obtained from the information provided by

the single intracranial recordings. Therefore, estimation is better
when using extracranial information with several electrodes, as
shown in the upper panels of the figure. The lower panels of
Figure 3 show the estimation of the state. The UKF shows great

efficacy when the estimation is extracranial, but performs poorly
in the case of intracortical estimation (with the exception of

cortical column 1, because it has no input from other cortical
columns). This highlights the value of extracranial estimation,

in which it is possible to take the whole brain into account in a

non-invasive manner.
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FIGURE 5 | Intracranial and extracranial fittings for coarse parameter estimation, with a higher amount of intracortical measurement noise. The upper panels show

the estimation of the EPSPs for each cortical column and the lower panels show the estimations of the observed states. The results are shown here without

averaging. The actual values of the amplitudes of the EPSPs are A1 = 4.25 mV, A2 = 10.00 mV, and A3 = 3.25 mV; the rest of the parameters were set to standard

values (Table 1). The external input p(t) for the three cortical columns had p0 = 200 s−1 and ǫ = 100 s−1. The coupling constant was set to k = 5. The intracortical

measurements were corrupted with Gaussian noise of mean 0 and standard deviation 100 mV—about an order of magnitude higher than the noise in the previous

graph—, while the noise in the extracranial measurements has standard deviation 100 mV. Extracranial estimations of the parameters are also faster and more

accurate than intracortical estimations, more markedly so in this case; as to the state, in this more extreme case, the intracortical estimation does not mimic the

evolution of the system in any way.

3.2. Three Bidirectionally Coupled Cortical
Columns: Coarse Parameter Estimation
The second experiment aims to explore the possibilities of the
filter in more extreme situations, as the parameters were chosen
to reflect more diverse dynamical regimes. The following sections
describe the results of single- and multichannel estimations.

3.2.1. Moderate Intracortical Measurement Noise
Figure 4 shows again the performance obtained using the
simulated data from a set of extracranial electrodes compared to
using individual intracortical electrodes for each cortical column.
In this case we show the 50 realisations of each filtering, without
showing the average. The extracranial data for this experiment
were corrupted with a measurement Gaussian noise of zero
mean and standard deviation 100 mV; the intracortical data were
corrupted with a measurement noise of standard deviation 5 mV
in order to maintain similar levels of signal-to-noise ratio.

As shown in Figure 4, the intracortical parameter estimations
do not approximate the target value very well. In particular, the
estimations of A for cortical column 2 converge to three different
values depending on the initial conditions. The state estimation

follows the actual state of the system closely only for cortical
column 1. The situation is very different when with extracranial
electrodes, where all 50 realisations of the estimations converge
with much more precision to the correct values for both state
and parameters (with the exception of A2, which still tends to
lower values in a very small quantity of the realisations). Again,
extracranial performance is better, in general, to intracortical.

3.2.2. High Intracortical Measurement Noise
The difference between intracranial and extracranial estimation
is even larger for higher measurement noise (Figure 5). In this
case, the amount of noise in the intracortical data was set to the
same value as the noise in the extracranial data. The value of R
was tuned to reflect the increase in measurement noise, but the
intracortical estimations failed to obtain the correct values for the
parameters and reproduce the state.

3.2.3. Using One Single Extracranial Electrode
Using the same dataset, we aimed to investigate the outcome of
using each extracranial electrode individually [43], as opposed to
using the complete subset as until now. Therefore, we used each
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FIGURE 6 | Distribution of 50 realisations of A estimations from a single

electrode for cortical column 1 (solid red circle). The histograms are placed at

the location of the corresponding measuring electrode, and the location of the

three cortical columns generating the activity are shown with coloured circles

(with the full circle corresponding to the column whose value of A is being

estimated in this figure). Vertical lines with the same colours as the circles mark

the corresponding actual A values. The distributions tend to be narrowest in

the vicinities of cortical column 1. Nevertheless, they do not group around the

target value of A1 = 4.25 mV (vertical red line), as they should, but around that

of A3 = 3.25 mV (vertical blue line).

electrode separately to estimate the state and parameters of the
complete system, with 50 realisations of the estimation for each
electrode. By doing so, we show that the quality of the estimations
is strongly dependent on the relative positions of sources and
electrodes.

In Figures 6–8 we present the results for the estimation of
parameter A of each of the three cortical columns separately. The
histograms show the distribution of the 50 estimations of A using
each electrode, placed in the respective position of the electrode
in question. Vertical coloured lines in the histograms mark the
value of the three A parameters being estimated (one in each
figure). The histograms show a strong dependence on space of
the quality of the estimations. As a general trait, the estimations
are better when the electrodes are near the cortical column whose
value ofA is being estimated, whereas the more distant electrodes
show a wider distribution of final values for the parameter.

In Figure 6 the distribution of the estimations of A1 are
shown. The distributions tend to be narrowest in the vicinities of
the cortical column whoseA value is being estimated. However, it
is noteworthy that the histograms obtained from the observations
in distant electrodes tend to group not around the actual value of
A1 = 4.25 mV (red vertical line), but of A3 = 3.25 mV (blue
vertical line). This result suggests that the algorithm is unable

FIGURE 7 | Distribution of 50 realisations of A estimations from a single

electrode for cortical column 2 (solid green circle). The distributions here are

wider than for A1 and A3, although they still tend to be more accurate near the

cortical column (solid green circle) and group around the target value of

A2 = 10.00 mV (vertical green line).

to distinguish the origin of the EEG activity when sources and
electrodes are distant from each other.

Figure 7 shows the results of the estimation of A2 (actual
value shown by vertical green lines), revealing wider distributions
in general, which indicates a stronger dependence on initial
conditions. Although it is true that the electrodes near cortical
column 2 perform better in estimating A for that column, the
difference with more distant electrodes is not as large as for the
estimates of A for cortical columns 1 and 3.

Finally, Figure 8 shows the performance of each electrode
when A3 is being estimated (actual value shown by vertical blue
lines in the figure). Interestingly, even the electrodes located at
the far left of the figure lead to a good estimate of A, comparable
to that coming from the electrodes in the far right, which are
closer to column 3 and could therefore be expected to provide
a much more accurate estimation.

While the estimations arising from single electrodes are
reasonably accurate in some cases, using the complete set of
15 electrodes invariably yields better results. This is because, in
Kalman filtering, combining many sources of information always
improves the final estimation, even if some of the sources are
inaccurate or incomplete [72].

3.3. Three Bidirectionally Coupled Cortical
Columns: Fine Parameter Estimation
In the previous section, the aim was to generate widely different
dynamics in each column. We now consider the results of
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FIGURE 8 | Distribution of 50 realisations of A estimations from a single

electrode for cortical column 3 (solid blue circle). As in the two previous figures,

the distributions for the electrodes closest to the source (solid blue circle) are

narrow, grouping around the correct value (A3 = 3.25 mV, vertical blue line).

Surprisingly, the electrodes in the far left also give rise to narrow distributions.

estimating parameters which are much closer to one another.
The purpose of this test was to ascertain whether the filter
could differentiate between parameters with smaller differences
in value. This ability is very important if we expect to use the
technique in clinical applications. Figure 9 shows the extracranial
estimation of the A parameters using the complete subset of 15
electrodes. The estimations converge to the actual values with
enough accuracy as to give hopes of using the filter in a clinical
setting.

4. DISCUSSION

The most important limitation of current data assimilation
processes in neuroscience is that the appropriate experimental
recordings are usually intracranial. Despite this fact, using
Kalman filtering to fit these data to neural mass models shows
promise in several contexts and applications. In this study we
have modified this type of approach by extending it with a head
model, with the aim of integrating non-invasive experimental
recordings taken from the scalp (EEG). By increasing the range
of recordings in this way, the application of the data assimilation
protocols opens up to the large set of situations in which scalp
recordings are used. We keep the exploration of the technique
using real EEG experimental data in mind, but here we have
explored the limitations and advantages of our model using
in silico data in very well controlled conditions.

Our main goal in this paper has been to show that data
assimilation employing multiple non-invasive EEG electrodes

FIGURE 9 | Extracranial fit with parameters close together in value. The

estimations of the amplitude of the EPSPs of the three cortical columns are

shown after averaging over 50 realisations (solid lines); the shadowed areas

indicate the standard deviation. The actual values of the amplitudes of the

EPSPs are A1 = 3.58 mV, A2 = 3.25 mV, and A3 = 3.10 mV; the rest of the

parameters were set to standard values (Table 1). The external input p(t) for

the three cortical columns had p0 = 200 s−1 and ǫ = 100 s−1. The coupling

constant was set to k = 5. The Gaussian noise in the extracranial

measurements has standard deviation 100 mV. The estimation of the

parameters is fairly accurate.

(as coming from scalp EEG measurements) provides a better
estimate of the brain’s dynamical state than using a single
invasive (intracranial) EEG electrode. In particular, we have
aimed at contrasting our results with existing work using the
latter approach, which has employed a filtering method, namely
the unscented Kalman filter [39]. Filtering methods have been
so far the method of choice in data assimilation problem in
neuroscience [37, 38, 40–43], with variational methods having
been used very sparsely [73]. We thus chose to work with
a filtering algorithm, the UKF, that is already relatively well
characterized in neural model, and which we could therefore use
as a benchmark.

We have considered a system comprised of three cortical
columns, modelled according to Jansen and Rit’s equations and
coupled following two different motifs. The cortical columns are
all driven by a noisy input coming from the columns of the rest
of the brain and sensory stimuli. The signal from the cortical
columns is then transferred to the skull, after which it is corrupted
with Gaussian noise to simulate electrode readings from EEG.
These are then used to estimate the amplitude of the excitatory
post-synaptic potentials.

Even though the quality of the experimental measurements
at the scalp might be, in general, worse than the intracranial
recordings, EEG can always be measured from several positions.
This allows to obtain measurements for patients without
intracranial implants and also to compensate the potentially
low quality of the data by having many recordings at the same
time. Besides, the spatial distribution of the electrodes on the
scalp allows the information arriving from the whole cortex
to be available during the assimilation process. In order to
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address these strengths and weaknesses of the scalp recordings
with respect to intracranial measurements, we have analysed
situations where assimilation with only intracortical recordings
may be wanting, where diverse dynamical regimes coexist due to
large differences in control parameters in the cortical columns,
or where fine changes of the parameters make the discrimination
difficult.

The first study considered here involves three columns
that are coupled unidirectionally with no backflow. The first
cortical column is made hyperexcitable by increasing the
excitatory post-synaptic potential to A1 = 3.58 mV; this cortical
column causes the second cortical column and, indirectly, the
third, to modify their behaviour by inducing spiking. For the
intracranial estimations, single intracortical electrodes measured
the evolution of the three cortical columns independently; for
the extracranial estimations, 15 extracranial electrodes were used
simultaneously. Applying the Kalman filter to the extracranial
data provided a good estimation of the A parameters and of the
dynamical state of the model; the intracortical measurements,
however, yielded mixed results. The estimation for cortical
column 1 was accurate, whereas for cortical columns 2 and
3 the estimation of A was above the target value and very
close to the estimation for cortical column 1 (see orange
dashed lines in Figure 3). The estimation of the dynamical
state of cortical columns 2 and 3 was also worse than the
estimation for cortical column 1. We attribute this to the
fact that columns 2 and 3 are excited by column 1, which
spikes due to a higher value of A. As a consequence, when
independently evaluated using the intracranial information, the
estimation is higher than the actual value. Therefore we suggest
that one intracranial electrode provides only a partial view
of the system, and thus cannot capture the behaviours of all
three cortical columns and the interactions between them; the
use of many electrodes provides a more complete view of the
system.

Next we considered a situation in which the dipoles were
coupled bidirectionally in an all-to-all configuration. The A
parameters were chosen such as to cause different dynamic
behaviours in the cortical columns. Three types of fitting
via Kalman filtering were performed, using (i) independent
intracortical recordings of single cortical columns, (ii) the
complete subset of 15 extracranial electrodes, and (iii) single
extracranial electrodes. The intracortical data were corrupted
with two different levels (medium and high) of measurement
noise. For both cases, the multi-electrode extracranial estimation
surpasses the intracortical results in both speed of convergence
and quality; the difference, however, is more marked in the
presence of higher measurement noise in the intracortical
recordings. In all these cases, the representation of the dynamical
state of the three cortical columns using the complete set of 15
extracranial electrodes nicely matched the actual dynamical state,
contrary to the limited match obtained using single intracranial
or extracranial recordings. The results for the single electrodes
show a significant influence of space on the quality of the
estimations, in the sense that estimations of electrodes close to
the source are relatively accurate, and electrodes further away
from the source might not allow to discriminate the source of the

information correctly, or might completely fail to represent the
system.

Finally, we considered the situation of an identical cortical
column configuration—in terms of situation and coupling—,
except for the values of the EPSPs of the cortical columns.
This dataset was filtered only extracranially, with the purpose
of evaluating the filter’s ability to discriminate parameter values
within narrower ranges. The results in this case were also
reasonably good, even though the real values of the parameter
were much closer to one another, which makes data assimilation
more challenging.

Even though the results shown here are better when
considering extracranial electrodes, the method has, of course,
limitations. For instance, the head model introduces new
parameters which should be realistic. The use of Jansen’s model,
while being a very standard choice in the field, is not mandatory
and could be substituted by others. There several alternatives to
Ary’s head model too. The succesful application of the method
with different combinations of these models will, for sure, guide
researchers to choose which models are more suitable for the
theoretical description of themesoscale in the brain. Even though
the exploration of the dynamics for the different neural mass
models or of the different head models might be worth exploring
in future works, it lays outside of the scope of this work.

Applications of the method presented here will certainly
appear in the field of brain-machine interface, long-term tracking
for early diagnosis of degenerative diseases, or short-term
tracking during rehabilitation of traumas and strokes. However,
the succesful application of the method in each of these fields will
require further research.

Taken as a whole, our results show that, independently of
the need to explore more realistic situations, extracranial EEG
recordings constitute a good candidate to be used together with
neural mass models and Kalman filters, provided the method is
extended with a head model. With its management of the noise
in the system and of the inherent simplifications in neurological
models, the Kalman filter is an appropriate tool for tackling
the challenges of brain data processing. Using non-invasive
techniques in these processes widens the applications of Kalman-
based data assimilation methods in neuroscience.
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APPENDIX: THE UNSCENTED KALMAN
FILTER (UKF) ALGORITHM

UKF is a predictor-corrector algorithm that estimates the state
and parameters at a given time step k in two phases. The first
one predicts the state based solely on the dynamical information
of the system, i.e., the model. The second incorporates a
measurement with which to correct the first estimation. Table A1
presents the symbols used in this paper for the variables of the
Kalman filter.

The first step of the algorithm involves computing the
expectation of the state and of the state covariance at time instant
k + 1, known as the a priori estimation. For this we use a
numerical implementation (using Heun’s solver) of Jansen and
Rit’s model of a cortical column [26, 51], as described in the
section 2.2.

The nature of the nonlinearities of this model prevents us
from using a simple linearisation approach to propagating the
statistics of the state variables across the transformation, as would
be the case if we used the extended Kalman filter, for example.
Therefore, we incorporate the unscented transform (UT) in our
formulation of the Kalman filter, which, instead of attempting
to propagate a distribution through the nonlinearity, first
propagates a series of deterministically chosen points through the
nonlinearity and then recovers the statistical information of the
distribution from these.

TABLE A1 | Variables of the Unscented Kalman Filter.

Parameter Description

x̂ State estimate

x̂− a priori state estimate

6 Sigma points

X∗ Transformed sigma points

X Redrawn sigma points [52]

ϒ Sigma points projected to measurement space

y− Estimated measurement

z Measurement

f Model of the system

H Observation model

n State size

λ Scaling parameter

α Primary scaling factor

β Secondary scaling factor

κ Tertiary scaling factor

Wm Weight vector for the mean

Wcov Weight vector for the covariance

P State covariance estimate

P− a priori state covariance estimate

Pyy Predicted measurement covariance

Pxy State-measurement cross-covariance

Q State error covariance*

R Measurement error covariance*

K Kalman gain

Therefore, the a priori estimation of the state, x̂−
k , is

obtained as follows, beginning with the calculation and
projection of the 2n + 1 (where n is the state size) sigma
points,

6k−1,0 = x̂k−1

6k−1,i = x̂k−1 +
(

√

(n+ λ)Pk−1

)

i
, i = 1, ..., n (A1)

6k−1,i = x̂k−1 −
(

√

(n+ λ)Pk−1

)

i−n
, i = n+ 1, ..., 2n

where Pk−1 is the estimated state covariance matrix for the
previous time step. The square root of this matrix is well-
defined, and can be calculated efficiently via a Cholesky
decomposition [52]. This continues with the condensation
of the projected sigma points into the a priori state
estimate:

X∗
k|k−1 = f (6k−1) (A2)

x̂−
k =

2L
∑

i=0

Wm
i X∗

i,k|k−1 (A3)

P−
k =

2L
∑

i=0

Wcov
i [X∗

i,k|k−1 − x̂−
k ][X

∗
i,k|k−1 − x̂−

k ]
T + Q

(A4)

where Q is the state error covariance and Wm and Wcov are the
weight vectors, defined as

Wm
0 =

λ

n+ λ

Wcov
0 =

λ

n+ λ
+ 1− α2 + β (A5)

Wm
i = Wcov

i =
1

2(n+ λ)
, i = 1, ..., 2n

In Equations A1 and A5, α, β and κ are scaling factors,
and λ, which is crucial to guarantee a positive semi-definite
covariance matrix P, is calculated as λ = α2(n + κ) − n.
The primary scaling factor α determines the spread of the
sigma points around the mean and is set at 0.001, it being
usually set between 0.001 and 1 [63] and chosen according to
the quality of the resulting estimation. The secondary scaling
factor β contains prior information about the distribution of
x; for Gaussian distributions, its optimal value is 2. Finally,
κ , the tertiary scaling parameter, is set to 0, as is a usual
practice [63].

We now use a measurement to correct the state estimation,
which implies the mapping of the a priori estimate onto
the measurement space for comparison. In our case, this
transformation is a linear matrix H that relates the state of the
cortical columns to an EEG reading (see section 2.2 for details).
The sigma points 6k|k−1 are projected into the measurement
space [52]

ϒk|k−1 = H[6k|k−1] , (A6)
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from which the estimation of the measurement, ŷ−
k , is calculated:

ŷ−
k =

2L
∑

i=0

Wm
i ϒi,k|k−1 (A7)

The second step of the algorithm corrects the a priori estimation

of state and covariance by using the information available from
the most recent measurement (in our case, an EEG reading).
The impact of the measurement is determined by the Kalman
gain Kk, which essentially expresses the level of confidence
on the accuracy of the model and the level of noise in the
data.

Pykyk =
2L
∑

i=0

Wcov
i [ϒi,k|k−1 − ŷ−

k ][ϒi,k|k−1 − ŷ−
k ]

T + R (A8)

Pxkyk =
2L
∑

i=0

Wcov
i [Xi,k|k−1 − x̂−

k ][ϒi,k|k−1 − ŷ−
k ]

T (A9)

Kk = Pxkyk Pykyk
−1 (A10)

x̂k = x̂−
k + Kk(zk − ŷ−

k ) (A11)

Pk = P−
k − Kk Pykyk Kk

T (A12)

where Pykyk is the predicted measurement covariance, Pxkyk is the
state-measurement cross-covariance, R is the measurement error
covariance, and zk is the measurement for the current time step.
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