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Data assimilation permits to compute optimal forecasts in high-dimensional systems as,

e.g., in weather forecasting. Typically such forecasts are spatially distributed time series of

system variables. We hypothesize that such forecasts are not optimal if the major interest

does not lie in the temporal evolution of system variables but in time series composites

or features. For instance, in neuroscience spectral features of neural activity are the

primary functional elements. The present work proposes a data assimilation framework

for forecasts of time-frequency distributions. The framework comprises the ensemble

Kalman filter and a detailed statistical ensemble verification. The performance of the

framework is evaluated for a simulated FitzHugh-Nagumo model, various measurement

noise levels and for in situ-, nonlocal and speed observations. We discover a resonance

effect in forecast errors between forecast time and frequencies in observations.

Keywords: Kalman filter, neural activity, prediction, dynamical system, verification

1. INTRODUCTION

Understanding the dynamics of natural complex systems is one of the great challenges in
science. Various research domains have developed optimized analytical methods, computational
techniques or conceptual frameworks to gain deeper insight into the underlying mechanisms
of complex systems. In the last decades, more and more interdisciplinary research attracted
attention building bridges between research domains by applying methodologies outside of
domains. These cross-disciplinary techniques fertilize research domains and shed new light on
their underlying properties. A prominent example is the mathematical domain of dynamical
systems theory that traditionally is applied in physics and engineering and that has been applied
very successfully in biology and neuroscience. For instance, taking a closer look at the spatio-
temporal nonlinear dynamics of neural populations has allowed to identify epilepsy as a so-called
dynamical disease [1]. This approach explains epileptic seizures as spatio-temporal instabilities
hypothesizing that epileptic seizures emerge by phase transitions well-studied in physics. Another
example is control theory that is well-established in electric engineering, e.g., in the cruise-control
in automobiles or the flight control of airplanes. Similar control engineering techniques have been
applied in neuroscience for some years now, e.g., to optimize electric deep brain stimulation in
Parkinson disease [2, 3].

Weather forecasts are an everyday service provided by national and regional weather services
that allows to plan business processes as well as private activity and serves as a warning system
for extreme weather situations, such as floods or thunderstorms. Weather forecast is also an
important research domain in meteorology that has been developed successfully in the last decades
improving the forecasts for both global phenomena and local weather situations. In detail, todays
weather services employ highly tuned and optimized meteorological models and data processing
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techniques to compute reliable forecasts. Specifically the
combination of an efficient model and measured meteorological
data enables researchers to provide various types of predictions,
such as the probability of rain or the expected temperature in
certain local regions. This optimal combination of model and
data is achieved by data assimilation [4] and yields corresponding
optimal forecasts.

In other research domains, prediction methods are rare
but highly requested. For instance, the prediction of epileptic
seizures [5] would dramatically improve the life of epilepsy
patients and spare some of them health-critical drug treatments.
The typical approach of seizure prediction classifies measured
neural activity [6, 7] into seizure-no seizure data, what however
does not provide forecasts of neural activity. Although such
forecasts are made possible by data assimilation techniques,
until today research in neuroscience does apply data assimilation
rarely. In recent years, data assimilation methods have been
applied in neuroscience for model parameter identification
primarily [3, 8–12]. The present work extends these studies
by a framework to both compute and validate forecasts in
neural problems. Although large parts of the methodology
presented is well-established in meteorological forecasts [4],
we extend the techniques by a focus on spectral features
in measurement data. Such spectral data features play an
important role in neuroscience since there is almost-proofed
evidence that neural information processing is encoded in
rhythmic activity. For instance, mammalian visual perception
is achieved by synchronization in the frequency range [30
Hz; 60 Hz] [13] and unconsciousness and sleep is reflected in
increased activity in the frequency range [0.5 Hz; 4 Hz] [14].
Moreover, epileptic seizures exhibit strong rhythmic patterns [1].
Consequently, we aim to forecast spectral distributions over
time. To our best knowledge the present work is one of
the first to predict spectral distributions optimally by data
assimilation.

Most recent data assimilation studies apply the unscented
Kalman filter [3, 10] that performs well for low-dimensional
models. The present work considers the ensemble Kalman
filter [15, 16] that has been shown to outperform the unscented
Kalman filter and still performs well for high-dimensional
models [17]. One of the major differences to previous studies
is that the data assimilation cycle applied here does not
estimate system parameters but providing reasonable forecasts.
We provide a detailed description of the data assimilation
elements and its extension to spectral feature forecasts. The
additional verification of the ensemble forecasts gives insights
into the power and weakness of spectral feature forecasts.
For instance, we find a resonance effect between forecast
time and the oscillation frequency of observations that yields
improved verification metrics although forecasts are not
improved.

The work is structured as follows. The Methods section
introduces the model, simulated observations, the ensemble
Kalman filter and the verification metrics applied. The
subsequent section shows obtained results for in situ-, nonlocal,
and speed observations and various measurement noise levels. A
final discussion closes the work.

2. MATERIALS AND METHODS

2.1. The Model
Single biological neurons may exhibit various types of activity,
such as no spike discharge, discharge of single spikes, regular
spike discharge, or spike burst discharges. These activity modes
can be described by high-dimensional dynamical models. Amore
simple model is the FitzHugh-Nagumomodel [18, 19] describing
spike discharges by two coupled nonlinear ordinary differential
equations

dV

dt
= V − 1

3
V3 − w+ I (1a)

τ
dw

dt
= (V + a− bw) (1b)

with membrane potential V , recovery variable w and
corresponding time scale τ , external input I, and physiological
constants a = 0.1, b = −0.15. In our study, we consider two
models. The nature model is non-homogeneous and time scales
and input vary according to

τn(t) = 10+ 10t

T
, 0 ≤ t ≤ T (2a)

In(t) = 0.35+ 0.95t

T
, 0 ≤ t ≤ T (2b)

with maximum time T. This model is supposed to describe the
true dynamics in the system under study and typically that one
does not know. The change of τn and In over time results in a
shift of oscillation frequency of the system, i.e., from larger to
smaller frequencies. Such a non-homogeneous temporal rhythm
is well-known in neuroscience, e.g., in the presence of anesthetic
drugs [20, 21]. The false model is not complete and represents
just an estimate of the system under study. This is the model with
which one describes systems and, typically, it is not correct. We
assume that we do not know the non-homogeneous nature of the
true model and assume temporally constant time scale and input

τf = 20, If = 1.3 (3)

leading to a single oscillation frequency. We point out that
τn(T) = τf and In(T) = If and both models converge to each
other for t → T.

The model integration over time uses a time step of 0.01 and
every 50 steps a sample is written out running the integration
over 5 · 104 steps in total. Initial conditions are x(t = 0) =
(1.0, 0.2)t . After numerical integration, we re-scaled the unit-less
time by αt → t with α = 0.002s rendering the sample time to
1t = 1 ms and the maximum time to tmax = 1s. This sets the
number of data points to N = 1,000.

To reveal non-stationary cyclic dynamics, we analyze the
time-frequency distribution of data with spectral density
S(tk, νm), k = 1, . . . ,K, m = 1, . . . ,M for number of time points
K and number of frequenciesM. The Morlet wavelet transform

W[y](t, ν) =
∫ ∞

−∞
y(t′)9∗

(

t′ − t

a(ν)

)

dt′
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FIGURE 1 | Noise-free dynamics of the Fitzhugh-Nagumo model and corresponding observations. (A) The model trajectory in phase space for non-stationary (black)

and stationary (red) dynamics. (B) The time series of corresponding observations H[x] for non-stationary and stationary dynamics. (C) The time-frequency evolution of

observations for non-stationary dynamics in the true model with Equation (2). (D) The time-frequency evolution of observations for the stationary dynamics with

Equation (3).

applied uses a mother wavelet 9 with central frequency fc = 8
and the time-frequency distribution has a frequency resolution
of 1ν = 0.5 Hz in the range ν ∈ [5 Hz; 20 Hz]. The parameter
a = fc/ν is the scale that depends on the pseudo-frequency ν.
By the choice of the central frequency fc, the mother wavelet has
a width of 4 periods of the respective frequency. This aspect is
important to re-call while interpreting temporal borders of time-
frequency distributions. For instance, at a frequency of 15 Hz
border disturbances occur in a window of 0.26 s from the initial
and final time instant.

Figure 1A presents the phase space dynamics of the true
model (black) and the false model (red) and one observes
nonlinear cyclic dynamics. For illustration, Figure 1B shows the
potential V . Oscillations of the true model (black) decelerate
with time while the false model dynamics (red) is a stationary
limit cycle. This can be seen even better in the time-frequency
distribution shown in Figures 1C,D of the corresponding
observations.

2.2. Observations
To relate model variables to observations, data assimilation
introduces the notion of a measurement operator H :X ∈ M →
Y ∈ O. This operator maps system variables x ∈ M in model
spaceM to observable variables y ∈ O in observation spaceO.

The system dynamics can be observed in various ways and the
observation operator is chosen correspondingly. Measurements
directly in the system are called in-situ observations and,
typically, the measured observable is proportional to a model
variable. In this case, the operator is proportional to the
identity. Examples for such observables are temperature or
humidity in meteorology and intra-cellular potentials or Local
Field Potentials in neurophysiology. Conversely, measurements
outside the system are called nonlocal observations capturing
the integral of activity from the system. Examples for such
observations are satellite radiances or radar reflectivities in
meteorology and encephalographic data and the BOLD response
in functional Magnetic Resonance Imaging in neurophysiology.

The present study considers scalar in-situ observations,
nonlocal observations and temporal derivatives and in-situ
observations. We begin with in-situ observations y(t) disturbed
by measurement noise

y(t) = V(t)+ κξ (t), (4)

where ξ (t) are Gaussian distributed uncorrelated random
numbers with 〈ξ (t)〉 = 0, 〈ξ (t)ξ (t′)〉 = δ(t − t′), 〈·〉 denotes
the ensemble average and V(t) is the membrane potential from
model (1). The noise level κ is chosen to κ = 0 (no noise), κ =
0.5 (medium noise), and κ = 0.8 (large noise). Figure 2 shows
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FIGURE 2 | Noisy in-situ observations. (A) Time series for medium noise level κ = 0.5. (B) Time series for large noise level κ = 0.8. (C) Time-frequency distribution for

medium noise level κ = 0.5. (D) Time-frequency distribution for large noise level κ = 0.8.

the noisy observations under study. The oscillation frequency
decreases corresponding to the non-homogeneous dynamics (2).

From Equation (4), one reads off the observation operator

H =
(

1 0
)

∈ ℜ1×2

with y = Hx, x = (V ,w)t ∈ ℜ2.
For comparison, we also consider nonlocal observations with

the observation operator

H =
(

1 1
)

∈ ℜ1×2

yielding

y(t) = V(t)+ w(t)+ κξ (t), (5)

for the same noise levels κ as above. Figure 3A shows time series
and corresponding time-frequency distributions. The frequency
of the oscillation decreases over time similar to the in-situ
observations.

As already stated, the aim of the present work is to introduce
the idea to forecast temporal features. As a further step in
this direction, let us consider temporal changes of the signal
evolution, i.e., the speed of the system. To this end the definition
of the observation operatorH is extended to

y(t) = Hx(t)

with

H =
(

d
dt

0
)

∈ ℜ1×2 (6)

yielding

y(t) = dV(t)

dt
+ κξ (t),

for two noise levels κ = 0.0 and κ = 0.02. Numerically, the
derivative dV(t)/dt is implemented as V(tn) − V(tn−1) at time
instance tn. Figure 3B shows the corresponding time series. We
recognize the short time scale of the spike activity in in-situ
observations as couples of sharp positive and negative spikes.

2.3. Ensemble Transform Kalman Filter
One of the major aims of data assimilation techniques is the
optimal fit of model dynamics to observed data. Here, we
introduce the major idea with a focus on the 2-dimensional
model (1) and the scalar observation. Observations y(t) evolve in
the 1-dimensional observation space, while the model solutions
are embedded in the 2−dimensional model phase space.

2.3.1. Analysis Ensemble
To merge observation y(t) and model background state xb(t) at
time t optimally, the best new model state xa minimizes the cost
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FIGURE 3 | Nonlocal and speed observations at various measurement noise levels κ. (A) Time series and time-frequency distributions of nonlocal observations

(B) time series of speed observations.

function

C(xa) = (xa − xb)
tB−1(xa − xb)+ (y−Hxa)

t(y−Hxa)/R

= min!, (7)

i.e., the solution is the minimum of the cost function C. Here,
H is the observation operator, xa is called the analysis, B is
the model error covariance matrix and R the observation error.
If the assumed dynamical model and the assumed observation
operator used in the data assimilation procedure are the true
model and operator, respectively, then the assumed observation
error is identical to the true error, i.e., R = κ2. However, typically,
one does not know the true observation error κ and R can just be
estimated. This is the case we consider in the present work. In
the present implementation R = 1.5. For given matrix B and the

scalar R, the optimal new model state is

xa = xb +
1

R+HBHt BH
t(y−Hxb). (8)

This is the major result of the 3DVar technique for scalar
observations [10].

Conversely, if the covariance error matrix B is not known,
it can be estimated from the model. To this end, one considers
an ensemble of model states {xl

b
}, l = 1, . . . , L of L ensemble

members and estimates B by

B ≈ 1

L− 1

L
∑

l= 1

(

xlb − x̄b

) (

xlb − x̄b

)t
(9)

= 1

L− 1
XXt (10)
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with the ensemble mean x̄b =
∑L

l= 1 x
l
b
/L and Xkl = (xl

b
)k.

In applications, we choose L = 10 if not stated differently.
Introducing the equivalent of X in observation space Y = HX,
Equation (8) reads in model space

xa − xb =
1

(L− 1)R+ YYtXY
t(y−Hxb) (11)

and in observation space

ya − yb =
YYt

(L− 1)R+ YYt (y− yb) (12)

with ya,b = Hxa,b. Since YY
t and R are positive-definite scalars,

0 <
ya − yb

y− yb
< 1 (13)

stating that the analysis equivalent in observation space ya is
always closer to the observation as the background equivalent in
observation space yb.

The ensemble transform Kalman filter (ETKF) [22] optimizes
observation and background ensemble members {xl

b
} to gain

an analysis ensemble {xla} in the ensemble space. This space is
L-dimensional and is spanned by the ensemble members

xb = x̄b + Xw

with the ensemble space coordinates w ∈ ℜL. Re-considering the
optimization scheme (7) in this space

w̄ = PYt(y− ȳb)/R, P =
(

(L− 1)I+ YtY/R
)−1 ∈ ℜL×L

with ȳb = Hx̄b and the identity matrix I ∈ ℜL×L. Then the
analysis ensemble mean x̄a and its covariance Pa reads

x̄a = x̄b + Xw̄ (14)

Pa = XPXt . (15)

The analysis ensemble members can be calculated by

xla = x̄b + Xwl
a, (16)

with wl
a ∈ ℜL, l = 1, . . . , L. Let us define the deviations from the

analysis mean

Wl = wl
a − w̄, l = 1, . . . , L (17)

Pa = 1

L− 1
XaX

t
a (18)

corresponding to (10) and with Wl ∈ ℜL. Defining the matrix
W ∈ ℜL×L with columns Wl, the ansatz P = WWt , and
Equation (15) yields Xa =

√
L− 1XW. With the singular value

decomposition P = UDUt , the orthogonal matrix U and the
diagonal matrixD, essentially we gain

W = UD1/2U
t
,

where D
1/2
kk

= √
Dkk. This is the square-root filter

implementation of the ETKF [23].
Equation (7) implies that all states, observations, covariances

and operators are instantaneous. Extensions of this formulation
are known, e.g., as the 4D-ENKF or the 4DVar [24–26]. Most
of these previous extensions imply an instantaneous observation
operator H. In the previous section, we considered the speed
of observations as the observations under study implying the
temporal derivative of observed signals. This derivative is
nonlocal in time and hence non-instantaneous. Here, we argue
that the system evolves on a time scale that is much larger than
the sampling time or, in other words, the sampling rate is high
enough that the temporal derivative can be considered as being
local in time. Consequently, Equation (7) may still hold in a good
approximation.

2.3.2. Inflation
In each analysis step, the analysis equivalent in observation
space ya moves away from the model background state yb
closer to the observation y, cf. discussion of Equation (13).
This assumes that observations reflect the true state. Of course,
observations usually are errorneous due to measurement errors
or errors in the observation operator. This is taken care of by
the model error covariance matrix R. The uncertainty of the
model state in observation space is described by the covariance
estimator YY t . However, the model has errors which are not
completely reflected by the state estimate error covariance matrix
YY t , since this is calculated based on an ensemble of model
forecasts with the same simulated model equations. To take
care of the model error and draw the analysis closer to the
background state, typically one enhances the ensemble spread by
inflation.

For in situ- and nonlocal observations we have implemented
constant multiplicative inflation by scaling wl

a in Equation (16)
by a factor wl

a → 1.4 · wl
a. In addition, we employed additive

covariance inflation by B → B+ 0.15I in Equation (10) with the
2×2 unity matrix I. For speed observations, we have reduced the
multiplicative inflation factor to 1.05 and the additive covariance
inflation factor to 0.05.

2.4. Data Assimilation Cycling
Putting together models and data assimilation, the model
evolution is controlled by observed data optimizing the initial
state of the model iteration. Our data assimilation cycle starts
with initial conditions from which the model evolves during the
sampling interval. The model state after one sampling interval
1t is the background state or first guess xb. The subsequent data
assimilation step estimates the analysis state xa that represents
the initial state for the next model evolution step. In other
words, data assimilation tunes the initial state for the model
evolution after each sampling interval. Using the ETKF, this
cycling is applied for all ensemble members which obey the
model evolution and whose analysis state is computed in each
data assimilation step. Initial ensemble member model states
were xl(0) = (η1, η2)

t , l = 1, . . . , L with random uniformly
distributed numbers η1, η2 in the range η1, η2 ∈ [0; 1].
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2.5. Ensemble Prediction and Verification
The aim of the present work is to show how optimal forecasting
can be done. Free ensemble forecasts are model evolutions over a
time typically longer than the sampling time. This forecast time
is called lead time. The initial state of the free forecasts are the
analysis model states determined by data assimilation.

In the present work, we are interested in forecasts at every
sample time instant. To this end we compute the model activity
at a certain lead time. This forecast is computed for all ensemble
members what renders it an ensemble prediction. The forecasts
are solutions of the model xf (t; ta) at time t ≥ ta with initial
analysis state xa at time t = ta and lead time T = t −
ta. To compare them to observations, forecasts are mapped to
observation space yielding model equivalents

yf (t; ta) = Hxf (t; ta).

Later sections show free forecasts yf (t; t−T) with fixed lead time.
In the following, model forecasts with the sampling time as lead
time T = 1t are called first guess.

Naturally, one expects that the forecasts diverge from
observations with longer lead times but the question is which
forecasts can still be trusted, i.e., are realistic. Essentially we ask
the question how one can verify the forecasts. To this end, various
metrics and scores have been developed [27]. Sincemost forecasts
are validated against observations, metrics are based on model
forecast equivalents in the observation space.

2.5.1. First Guess Departure Statistics

To estimate the deviation of forecast ensemblemembers y
f (l)
n with

forecast ensemble means ȳ
f
n =

∑L
l= 1 y

f (l)
n , n = 1, . . . ,N from

observations yn, n = 1, . . . ,N of number N, we compute the
mean error (bias)

bias = 1

N

N
∑

n= 1

yn − ȳ
f
n,

the root-mean square error

rmse =

√

√

√

√

1

N

N
∑

n= 1

(yn − ȳ
f
n)2

and the ensemble spread

spread = 1

N

N
∑

n= 1

√

√

√

√

1

L− 1

L
∑

l= 1

(y
f (l)
n − ȳ

f
n)2.

For scalar observations and corresponding forecasts, i.e.,

temporal time series, y
f
n = yf (tn; tn − T), n = 1, . . . ,N and

N is the number of time points. Conversely, for time-frequency
distributions S(t, ν) computed from the observation time series
by a wavelet transform (cf. section 2.1) with K time points andM

frequencies, y
f
n = S(tk, νm), k = 1, . . . ,K, m = 1, . . . ,M, n =

(m − 1)K + k and N = KM is the number of all time-frequency
elements.

The time-frequency distribution represents the spectral power
distribution S at various time instances. Since spectral power is
a positive-definite measure, the distance of two time-frequency
distributions could be computed differently as a rootmean square
error. We can interpret the rmse as the Euclidean distance
in high-dimensional signal space. However, the spectral power
lies on a manifold in signal space and hence the distance
between spectral power values is a Riemannian distance [28, 29].
Alternatively, the distance between time-frequency distributions
may represent the temporal average of distances between two
instantaneous power spectra S1(tk, ν), S2(tk, ν) at time instance
tk. A corresponding well-known distance measures is the time-
averaged Itakura-Saito distance (ISD) [29, 30]

ISDk = 1

M

M
∑

m= 1

Sobs(tk, νm)

Sfc(tk, νm)
− ln

Sobs(tk, νm)

Sfc(tk, νm)
− 1,

ISD = 1

K

K
∑

k= 1

ISDk.

This distance measure is not symmetric in the spectral
distributions and hence not a metric. As an alternative, one may
also consider the log-spectral distance (LSD) [29, 31]

LSDk =

√

√

√

√

1

M

M
∑

m= 1

[

10 log10
Sobs(tk, νm)

Sfc(tk, νm)

]2

, LSD = 1

K

K
∑

k= 1

LSDk

which has the advantage that it is symmetric in the distributions.
In both latter measures Sobs and Sfc are the power spectra of
observations and forecasts, respectively.

As pointed out above, we hypothesize that spectral features
extracted from forecasts can be predicted in a better or more
precise way than forecasts themselves. Since measurement noise
plays an important role in experimental data, we evaluate
predictions for medium and large noise levels κ compared to
κ = 0. The skill score [32]

SS(κ) = 1− rmse(κ)

rmse(κ = 0)
, κ = 0.5, 0.8

reflects the deviation of forecast errors at medium and large
noise levels from noiseless forecasts. For SS = 0, forecasts have
identical rmse and SS < 0 (SS > 0 ) reflects larger (smaller) rmse,
i.e., worse (better) forecasts. The skill score SS is less sensitive
to the bias as the rmse, and that also plays an important role in
the evaluation of forecasts (similarly to the standard deviation).
However, for small bias SS > 0 is a strong indication of improved
forecasts.

According to Equation (10), the ensemble is supposed to
describe well the model error. The ensemble spread represents
the variability of the model and an optimal ensemble stipulates
spread = rmse [33]. The spread-skill relation [34]

SSR = spread

rmse
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quantifies this relation. If SSR > 1, the ensemble spread is too
large yielding bad estimates of the analysis ensemble and free
forecasts, whereas SSR < 1 reflects a too small spread giving
observations too much weight and yielding bad estimates of
analysis ensemble and forecasts as well.

2.5.2. Ensemble Distribution Statistics
A representative forecast ensemble has the same distribution
as the observations. This can be quantified by computing the
rank of an observation in a forecast ensemble [35, 36]. If
this rank is uniformly distributed, then the ensemble describes
well the variability of the observations. Conversely, if the
rank distribution has an U-shape (inverse U-shape) then most
observations lie outside (inside) the range of the ensemble and
the forecast ensemble is not representative. To estimate the shape
of the rank distribution, we parameterize it by a beta-function

f (x) = Ŵ(α + β)

Ŵ(α)Ŵ(β)
xα−1(1− x)β−1, x ∈ [0, 1]

with the gamma-function Ŵ(x) and two parameters α, β > 0.
For a uniform distribution α = β = 1, and U-shape (inverse
U-shape) distributions have α,β < 1 (α,β > 1). Computing the
sample of ranks r ∈ [0, L] from the set of forecast ensembles and
observations, their mean µ and variance σ 2 permits to estimate
the function parameters by

α̂ = µ

L

(

µ(L− µ)

σ 2
− 1

)

β̂ =
(

1− µ

L

)

(

µ(L− µ)

σ 2
− 1

)

.

The derived β−score [35]

βc = 1− 1/

√

α̂β̂

equals 0 for a uniform distribution and βc > 0 (βc < 0) reflects
the ensemble overestimation (underestimation) of the model
uncertainty for an inverse U-shaped (U-shaped) distribution. In
addition, the β-bias [35]

βb = β̂ − α̂

quantifies the skewness of the rank distribution and βb = 0
reflects symmetric distributions. β−bias values βb > 0 (βb <

0) reflect a weight to lower (higher) ranks and the majority of
ensemble members is larger (smaller) than observations.

3. RESULTS

At first, we consider in-situ observations and evaluate the
data assimilation cycle to illustrate some properties of the
ETKF. Subsequently, we present forecasts for in-situ observations
as time series and time-frequency distributions and evaluate
the corresponding ensemble forecasts by statistical metrics
well-known from verification in meteorology. To understand
the specific nature of in-situ observations, subsequently we

also consider nonlocal observations and speed observations
and present corresponding verification results. Eventually, we
compute advanced statistical estimates specific for spectral power
distributions and verify corresponding forecasts.

3.1. Data Assimilation Cycle—in-situ

Observations
To start, we consider in-situ observations. Figure 4 shows
observations, the ensemble mean of first guess and analysis
equivalents in observations space. We observe that the analysis
(red) is always closer to the observation (black) than the first
guess (blue). This validates Equation (13). Moreover, visual
inspection tells that higher noise levels yields worse fits of the first
guess and the analysis to observation. This will be quantified in
more detail in later section 3.3 .

To illustrate the ensemble evolution, Figure 5 shows
observations and the ensemble mean (blue solid line) and the
single ensemble members (blue dots) of the first guess in an
initial and final time interval. We observe that the ensemble
starts with a narrow distribution while it diverges rapidly after
several time steps. The ensemble spread about the ensemble
mean reached after the initial transient phase remains rather
constant over time.

3.2. Forecast—in-situ Observations
Now let us turn to the forecasts. In the data assimilation cycle,
after one model step and hence one sampling time interval, the
analysis is computed and initializes the phase space trajectory
of the model evolution for the subsequent model step. In free
forecasts yf (t; ta), the model is integrated over a certain lead
time T = t − ta initialized by the analysis at each time
instant ta. Figures 6A–C shows time series of observations and
forecast ensemble mean equivalents for two lead times. For the
short lead time T = 10 ms the first guess equivalent follows
rather closely the observation, whereas it is phase-shifted to the
observation for large lead time 40 ms. This holds true for all noise
levels.

The time-frequency distribution of the observations and
forecast equivalents is shown in Figures 6D–F. The time-
frequency distribution of forecasts at short lead time resembles
well the time-frequency distribution of observations, whereas
prominent differences between large lead time-forecasts and
observations occur, especially at the temporal borders.

3.3. Verification—in-situ Observations
To quantify the differences between forecasts and observations
detected by visual inspection in section 3.2, we compute the
forecast departure statistics subject to the lead time. Figure 7A
shows that rmse of time-frequency data increases monotonically
with lead time and it increases and finally decreases when based
on time series data. The periodicity of rmse results from the
increasing forecast-observation delay that increases with the lead
time. Hence at a phase lag of π when the lead time is half the
mean oscillation period the rmse is maximum. This explains why
the two rmse minima have a temporal distance of ∼ 70 ms what
corresponds to one period of the mean system frequency of 14
Hz. Moreover, the bias decreases monotonically with the lead
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FIGURE 4 | In-situ observations y, ensemble mean of first guess H[x̄b] and ensemble mean of analysis H[x̄a] in observation space for no noise κ = 0 (A), medium

noise level κ = 0.5 (B), and large noise level κ = 0.8 (C). In (A) the right panel zooms in a signal part illustrating that the analysis mean (in observation space, red

color) is closer to the observations (black color) than the first guess mean (in observation space, blue color) in accordance to theory, see section 2. In all panels,

observations are color-coded in black, first guess equivalents in observation space in blue and analysis equivalents in observation space in red.

FIGURE 5 | Illustration of the temporal evolution of ensemble spread in observation space. (A) κ = 0, (B) κ = 0.5, (C) κ = 0.8. Observations are color-coded in black,

the ensemble mean of the first guess is color-coded in blue and solid line and the single ensemble members are color-coded in blue and single dots.
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FIGURE 6 | In-situ time series and time-frequency distributions of free ensemble forecasts for two lead times T and different noise levels. (A–C) Time series,

observations are color-coded in black, the ensemble mean of first guess equivalents in observation space H[x̄f ] is color-coded in blue. (D–F) Time-frequency

distributions. The forecasts shown are ensemble means of first guess equivalents in observation space H[x̄f ]. It is important to re-call that disturbances occur in a

window of 4/f from the left and right temporal borders where f is the corresponding frequency, cf. section 2. (A,D) κ = 0, (B,E) κ = 0.5, and (C,F) κ = 0.8.

time for time series and increases for time-frequency data. To
summarize these findings, we compute the skill score SS. Since
the rmse for different noise levels approach each other for large

lead times the skill score approaches SS = 0 (Figure 7B). We
observe that the skill score of time-frequency data exceeds SS of
time series data.
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FIGURE 7 | Ensemble verification metrices and scores with respect to lead times. (A) rmse (solid line) and bias (dashed line) based on time series and time-frequency

distributions. (B) Skill score SS(κ ) = 1−rmse(κ )/rmse(0). (C) rmse (solid line) and spread (dashed line) based on time series and time-frequency distributions.

(D) Spread-skill ratio SSR =spread/rmse. (E) Features of ensemble rank histogram β-score and β-bias with respect to lead times. Colors in (A,C,D,E) encode κ = 0

(orange), κ = 0.5 (black), and κ = 0.8 (red), line types in (B,D,E) encode time series data (dashed-dotted) and time-frequency distributions (solid). The estimates

bias, rmse, and spread are averages over N = 1,000 observations for each lead time.

The ensemble spread decreases with lead time in both time
series data and time-frequency data to values smaller than the
rmse. This yields a decreasing spread-skill relation where SSR
is well below SSR = 1 for both time series data and time-
frequency distribution data. We note that SSR falls faster to lower
values for time-frequency distribution data. Since one expects of
good filters that the ensemble variations (spread) explain well the
error (rmse), here the forecast ensemble of time series explains
better the observations than time-frequency data since their SSR
is closer to SSR = 1.

The reliability of the ensemble forecasts can be evaluated by
rank histograms, i.e., the β−score βc and β−bias βb. Figure 7E

shows that βc decreases from positive to negative values both
for time series and time-frequency distribution data. This reveals
an underestimation of the model uncertainty. The β−bias
remains positive-definite for time series data whereas βb of time-
frequency distribution data decreases from positive to negative
values. This result reveals that the majority of ensemble members
are larger than the time series observations and smaller than the
time-frequency spectral power observations.

To understand better why the ensemble spread shrinks at
large lead time, Figure 8 compares the ensemble mean of the
model forecasts in phase space with the true phase space data.
The forecasts exceed the true data at lead time T = 1 ms.
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FIGURE 8 | Phase space dynamics for short and long lead times. The ensemble mean of forecasts and the true data are color-coded in red and black, respectively.

The blue-coded points represent the false model data.

Conversely the forecast spread is much smaller than the true data
at T = 80 ms since the forecasts obey the false model dynamics
that evolves on a smaller phase space regime. Consequently the
spread shrinkage with the lead time results from the smaller phase
space regime of the false model.

3.4. Nonlocal Observations
To understand how specific the gained results from in-
situ observations are, we compare them to statistics of
other data type. Now let us consider nonlocal observations
subjected to various noise levels. Figures 9B–D shows the
time-frequency distributions for three noise levels and three
lead times T. Forecasts at medium lead time T differ
clearly to observations and forecasts at short and long lead
time.

To understand this, we take a closer look at the forecast
time series at T = 40 and compare it to the observations,
cf. Figure 9A. Re-call that the analysis sets the initial condition
for forecasts. For a lead time T = 40 ms the forecasts
are in a fixed phase relation to an observation oscillations
with ν0 = 12.5 Hz since then T = 1/ν0 is exactly
one period of this oscillation. This fixed phase relation is
observed in Figure 9A at ∼0.5 s. Before and after that time,
the observation frequency is larger and smaller, respectively, see
also Figure 6, and the forecasts are out of phase. In addition, in
the beginning and end the forecasts do not evolve rhythmically
yielding missing spectral power, cf. Figures 9B–D. Summarizing,
forecasts may resonate with oscillatory observations at frequency
ν0 = 1/T.

The departure statistics between forecasts and observations
resembles the findings for in-situ observations, cf. Figure 10A.
Time-frequency distributions have almost optimal skill score
SS for medium and large lead times, however with too small
ensemble spread (SSR is very small). Conversely, time series data
yield worse skill score but larger ensemble spread. Moreover,
the rmse and bias have a maximum at about T = 25 ms and
a minimum at about T = 45 ms. The minimum is explained

above as a resonance between forecast time and observation
frequency.

These results are in good accordance to the rank histogram
features βc and βb seen in Figure 10B. Very short lead times
yield βc > 0 reflecting an overestimation of the spread, otherwise
βc < 0 reflecting a too small ensemble spread. This holds true
for all data types and all noise levels. The β−bias is similar to
Figure 7 and shows that the majority of the ensemble members
is larger than the time series observations and smaller than the
spectral power values.

Summarizing, the ensemble varies much with the lead time
what indicates a fundamental problem in the ensemble forecast.

3.5. Speed Observations
Spectral power takes into account data at several time instances.
Since to our knowledge Kalman filters have not been developed
yet for observation operators nonlocal in time, we take a first
step and consider speed observations subjected to two noise
levels. Figure 11A compares observations, first guess and analysis
in data assimilation cycling for the same number of ensemble
members as in the previous assimilation examples. We observe
that the first guess and analysis do not fit at all to the observations
and hence the assimilation performs badly.

To improve the assimilation cycle, we diminish the
observation error to R = 0.01 drawing the analysis closer
to the observations. In addition, a larger ensemble improves the
estimation of the model covariance inflation and we increase
the number of ensemble members to L = 50 while decreasing
the inflation factors to 1.05 (multiplicative inflation) and
0.05 (additive inflation). Figure 11B demonstrates that these
modifications well improve the assimilation cycle. Now the
first guess and analysis fit much better to the observations. An
increased noise level renders the first guess and analysis less
accurate.

The forecasts in Figure 12 show that the assimilation cycle
captures the upper observation spikes for T = 40 ms whereas
forecasts at larger lead times are worse.
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FIGURE 9 | Time series and time-frequency distributions of free ensemble mean forecasts compared to nonlocal observations. (A) Forecast for T = 40ms (blue) and

noise-free observations (black). (B–D) Forecasts for two lead times T and observations at different noise levels. (B) κ = 0, (C) κ = 0.5, and (D) κ = 0.8.

This can be quantified by departure statistics metrics as shown
in Figure 13. The rmse increases slightly with lead time, i.e., the
forecast error is larger for larger forecast times, while the bias
is rather lead-time independent. Moreover, we observe that the
spread is much smaller than the rmse. Since reliable ensemble
forecasts should have a unity spread-skill ratio, this too small
spread reflects a too small analysis inflation factor.

These results are in good accordance to the rank histogram
features βc and βb seen in Figure 14. The negative values of βc

for all lead times reflects the underestimation of the spread and
the β−bias βb ≈ 0 indicates that this underestimation is present
for all forecast values. This holds true for both noise levels.

3.6. Advanced Statistical Measures
Since the rmse is not an optimal measure to quantify the
difference between time-frequency distributions, we compute
more advanced measures specific for power spectra. The Itakura-
Saito distance (ISD) and the log-spectral distance (LSD) increase
with the lead time for in-situ observations with a light local
maximum at about T = 40 ms, cf. Figure 15A. A closer look
at Figure 6 reveals that the forecast spectral power at T = 40
is much smaller than the observation spectral power explaining
this local increase of distance. The time-frequency distribution
distances are rather similar in all noise levels. Moreover,
spectral distances between nonlocal observations and forecasts
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FIGURE 10 | The departure metrics Bias, rmse and spread of forecasts of nonlocal observations, the corresponding skill score SS and spread-skill ratio SSR (A) and

the rank statistics βc and βb (B). The color- and line-coding is identical to the Figure 7. The estimates Bias, rmse, and spread are averages over N = 1,000

observations for each lead time.

exhibit a strongly non-monotonic dependence of the lead time.
This is in good accordance to the results with the rmse in
Figure 10.

Time frequency distributions appear to represent instant-
aneous spectral power. However, the spectral power distributions
at subsequent time instances are strongly correlated dependent
on the frequency. The correlation length is τ = 4/f leading
to distortions at the temporal borders. Since the major spectral
power occurs in the frequency interval [11 Hz; 15 Hz], i.e., for
correlation times 0.27 ≤ τ ≤ 0.36, we define distorted time
intervals with width 0.3 s and estimate improved time-frequency
distribution distances neglecting the distorted initial and final
time interval. Figure 15B shows the corresponding results. We
observe that rmse, ISD and LSD depend similarly on the lead

time for both data types. Moreover, ISD and LSD are slightly
smaller than their equivalents for the full time interval shown in
Figure 15A.

4. DISCUSSION

The present work applies well-established techniques known
in meteorology to find out whether they can be useful to
forecast spectral features in other science domains where spectral
dynamics plays an important role, such as in neuroscience. For
in situ- and nonlocal observations, the assimilation of spectral
features is indirect since the features are computed after the
computation of conventional forecasts, i.e., in time series. We
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FIGURE 11 | Observations, first guess and analysis for speed data. (A) Noise-free observations and low number of ensemble members L = 10. (B) Two

measurement noise levels and the modified assimilation parameters R = 0.01, L = 50, and the modified inflation factors.

FIGURE 12 | Time series of observations and forecasts (model equivalent in observation space) at two lead times and two noise levels. (A) κ = 0.0 (B) κ = 0.05.

Observations are color-coded in black and forecasts in blue. Parameters are identical to parameters in Figure 11.

show that they strongly improve skill scores (Figures 7, 10)
for large lead times, whereas their spread is worse than for
conventional forecasts for large lead times. This holds true for all
measurement noise levels under study. In general, the ensemble
forecast verification points to problems with the ensemble spread
in all data types. This may result from a poor estimation of the

model error covariance B by too few ensemble members and a
non-optimal choice of the inflation factor.

Since time-frequency distributions show time-variant spectral
power, it is necessary to verify forecasts by spectral power-
specific measures and take care of spectral power-specific
artifacts, cf. Figure 15. The conventional estimate rmse and the
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FIGURE 13 | The departure metrics bias, rmse, and spread of forecasts to speed observations and the corresponding skill score SS and spread-skill ratio SSR.

Comparison of (A) bias and rmse and (B) spread and rmse. The skill score relates the rmse at both noise levels. The colors encode the noise level κ = 0 (orange) and

κ = 0.05 (black). Parameters are identical to parameters in Figure 11.

FIGURE 14 | Rank statistics βc and βb for the ensemble in the presence of speed observations. The color-coding is identical to Figure 13. Parameters are identical

to parameters in Figure 11.

spectral-power specific estimates ISD and LSD behave similarly
with respect to the lead time. Small differences between rmse and
both ISD and LSD originates from the fact that ISD and LSD
are time-averages over instantaneous spectral distance measures,
whereas rmse averages over all frequencies and time instances
and hence smoothes differences. Consequently ISD and LSD
appear to be better verification measures of time-frequency
distributions. Since LSD is a metric but ISD is not, future work
will derive score measures based on LSD equivalent to the skill
score SS. Moreover, we find that the border artifacts introduced
by the wavelet transform do not affect our results qualitatively.
Nevertheless, we recommend to exclude these artifacts in future
work.

Conversely, speed observations consider the dynamical
evolution of the system and are a very first approximation to
a direct spectral feature. This is true since speed observations
do not take into account the system state and observation
at a single time instance only. Future work will extend this
approach to a larger time window what allows to compute the
power spectrum that can be mapped to a single time instance.
Since generalizations or differential operators are integral

operators [37], future work will consider integral observation
operators.

Since spectral feature forecasts are sensitive to certain
frequencies, they are sensitive to lead time-observation frequency
resonances. Such resonances seem to improve the forecast
although these resonances are artifacts. To our best knowledge,
the current work is the first to uncover these resonances that may
play an important role in the interpretation of forecasts.

The ensemble data assimilation cycle involves several modern
techniques, such as multiplicative and additive covariance
inflation that well improves the forecasts. As a disadvantage, the
spread for short lead times is too large . Future work will improve
the ensemble statistics by adaptive inflation factors [38] and
quality control methods, e.g., first guess checks [39] to remove
outliers in every data assimilation step. This will surely contribute
to improve ensemble forecasts.

The ensemble Kalman filter applied is one possible technique
to gain forecasts. Other modern powerful techniques are
the variational methods 3D- and 4D-Var [40], hybrids of
ensemble and variational techniques like the EnVar [41] and
particle filters [42, 43]. These techniques have been applied

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 November 2018 | Volume 4 | Article 52

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hutt and Potthast Forecasts of Spectral Features

FIGURE 15 | Improved verification statistics of in-situ and non-local observations. (A) Itakura-Saito distance (ISD) and log-spectral distance (LSD) between forecasts

and in-situ observations (left panel) and between forecasts and non-local observations (right panel) at various lead times. The distance measures are averages over

the full time interval. (B) rmse, Itakura-Saito distance (ISD), and log-spectral distance (LSD). Here, the distance measures are averages over the constraint time interval

[0.3 s;0.7 s] to take care of the border effects generated the wavelet transform.

successfully in meteorological services world-wide and future
work will investigate their performance in forecasting of power
spectra.

Eventually, the present study considers a specific model
system that exhibits a single time scale due to a single oscillation
frequency. However, natural complex systems exhibit multiple
time scales what may render the Kalman filter less effective and
the superiority of the time-frequency data less obvious. In the
future, it will be an important task to extend the present work
to multi-scale Kalman filters [44, 45].

AUTHOR CONTRIBUTIONS

AH conceived the study and performed all simulations. AH
and RP planned the manuscript structure and have written the
manuscript.

ACKNOWLEDGMENTS

The authors would like to thank Felix Fundel, Michael Denhardt,
and Andreas Rhodin for valuable discussions.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 November 2018 | Volume 4 | Article 52

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hutt and Potthast Forecasts of Spectral Features

REFERENCES

1. Milton J, Jung P, (eds.). Epilepsy as a Dynamic Disease. New York, NY:

Springer-Verlag (2002).

2. Schiff S, Sauer T. Kalman filter control of a model of spatiotemporal cortical

dynamics. J Neural Eng. (2008) 5:1–8. doi: 10.1088/1741-2560/5/1/001

3. Schiff S. Neural Control Engineering. London, UK: MIT University Press

(2011).

4. Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability.

Cambridge, UK: Academic Press (2002).

5. Assi E, Nguyen D, Rihana S, Sawan M. Towards accurate prediction of

epileptic seizures: a review. Biomed Sign Proc Control (2017) 34:144–57.

doi: 10.1016/j.bspc.2017.02.001

6. Park Y, Luo L, Parhi K, Netoff T. Seizure prediction with spectral power

of EEG using cost-sensitive support vector machines. Epilepsia (2011)

52:1761–70. doi: 10.1111/j.1528-1167.2011.03138.x

7. Chisci L, Mavino A, Perferi G, Sciandrone M, Anile C, Colicchio G,

et al. Real-time epileptic seizure prediction using AR models and

support vector machines. IEEE Trans Biomed Eng. (2010) 57:1124–

32. doi: 10.1109/TBME.2009.2038990

8. Ullah G, Schiff S. Assimilating seizure dynamics. PLoS Comput Biol. (2010)

6:e1000776. doi: 10.1371/journal.pcbi.1000776

9. Sedigh-Sarvestani M, Schiff S, Gluckman B. Reconstructing mammalian

sleep dynamics with data assimilation. PLoS Comput Biol. (2012) 8:e1002788.

doi: 10.1371/journal.pcbi.1002788

10. Nakamura G, Potthast R. Inverse Modeling - An Introduction to the Theory

and Methods of Inverse Problems and Data Assimilation. Bristol, UK: IOP

Publishing (2015).

11. Alswaihli J, Potthast R, Bojak I, Saddy D, Hutt A. Kernel reconstruction

for delayed neural field equations. J Math Neurosci. (2018) 8:3.

doi: 10.1186/s13408-018-0058-8

12. Hashemi M, Hutt A, Buhry L, Sleigh J. Optimal model parameter estimation

from EEG power spectrum features observed during general anesthesia.

Neuroinformatics (2018) 16:231–51. doi: 10.1007/s12021-018-9369-x

13. Fries P. Neuronal gamma-band synchronization as a fundamental

process in cortical computation. Annu Rev Neurosci. (2009) 32:209–24.

doi: 10.1146/annurev.neuro.051508.135603

14. Hutt A, (ed.). Sleep and Anesthesia: Neural Correlates in Theory and

Experiment. No. 15 in Springer Series in Computational Neuroscience. New

York, NY: Springer (2011).

15. Roth M, Hendeby G, Fritsche C, Gustafsson F. The Ensemble Kalman Filter:

a signal processing perspective. EURASIP J Adv Sign Process. (2017) 2017:56.

doi: 10.1186/s13634-017-0492-x

16. Evensen G. Data Assimilation: The Ensemble Kalman Filter. Heidelberg:

Springer (2009).

17. Roth M, Fritsche C, Hendeby G, Gustafsson F. The Ensemble Kalman

Filter and its relations to other nonlinear filters. In: Proceedings of the 2015

European Signal Processing Conference (EUSIPCO 2015), Institute of Electrical

and Electronics Engineers (IEEE) (New York, NY) (2015). p. 1236–40.

18. FitzHugh R. Mathematical models of threshold phenomena in the nerve

membrane. Bull Math Biophys. (1955) 17:257–78.

19. Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line

simulating nerve axon. Proc IRE (1962) 50:2061–270.

20. Hutt A, Lefebvre J, Hight D, Sleigh J Suppression of underlying neuronal

fluctuations mediates EEG slowing during general anaesthesia. Neuroimage

(2018) 179:414–28. doi: 10.1016/j.neuroimage.2018.06.043

21. Hashemi M, Hutt A, Sleigh J How the cortico-thalamic feedback affects

the EEG power spectrum over frontal and occipital regions during propofol-

induced anesthetic sedation. J Comput Neurosci. (2015) 39:155–79.

doi: 10.1007/s10827-015-0569-1

22. Hunt B, Kostelich E, Szunyoghc I. Efficient data assimilation for

spatiotemporal chaos: a local ensemble transformKalman filter. Phys D (2007)

230:112–26. doi: 10.1016/j.physd.2006.11.008

23. Tippett M, Anderson J, Bishop C, Hamill T, Whitaker J.

Ensemble square root filters. Mon Weather Rev. (2003)

131:1485–90. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2

24. Fertig E, Harlim J, Hunt B. A comparative study of 4D-Var and a 4D

ensemble kalman filter: perfect model simulations with Lorenz-96. Tellus

(2007) 59A:96–100. doi: 10.1111/j.1600-0870.2006.00205.x

25. Le Dimet F, Talagrand O. Variational algorithm for analysis and

assimilation of meteorological observations: theoretical aspects. Tellus (1986)

38A:97–110.

26. Hunt B, Kalnay E, Ott E, Patil D, Sauer T, Szunyogh I, et al. Four-

dimensional ensemble kalman filtering. Tellus (2004) 56A:273–7.

doi: 10.3402/tellusa.v56i4.14424

27. Mason S. Understanding forecast verification statistics. Meteorol Appl. (2008)

15:13040. doi: 10.1002/met.51

28. Li Y, Wong KM. Riemannian distances for signal classification by

power spectral density. IEEE J Select T Sign Proc. (2013) 7:655–

69. doi: 10.1109/JSTSP.2013.2260320

29. Jiang X, Ning L, Georgiou TT Distances and Riemannian metrics for

multivariate spectral densities. IEEE Trans Auto Contr. (2012) 57:1723–35.

doi: 10.1109/TAC.2012.2183171

30. Iser B, Schmidt G, Minker W. Bandwidth Extension of Speech Signals.

Heidelberg: Springer (2008).

31. Rabiner L, Juang B. Fundamentals of Speech Recognition. Upper Saddle River,

NJ: PTR Prentice Hall (1993).

32. Murphy AH Skill scores based on the mean square error and their

relationships to the correlation coefficient. Monthly Weather Rev. (1988)

116:2417–24.

33. Weigel A. Ensemble verification. In: Joliffe I, Stephenson D, editors.

Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd Edn.

Chichester: John Wiley and Sons (2011). p. 141–66.

34. Hopson T. Assessing the ensemble spread-error relationship. Mon Weather

Rev. (2014) 142:1125–42. doi: 10.1175/MWR-D-12-00111.1

35. Keller J, Hense A. A new non-Gaussian evaluation method for ensemble

forecasts based on analysis rank histograms. Meteorol Zeitsch. (2011) 20:107–

17. doi: 10.1127/0941-2948/2011/0217

36. Hamil T. Interpretation of rank histograms for verifying

ensemble forecasts. Mon Weather Rev. (2000) 129:550–60.

doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2

37. Hutt A. Generalization of the reaction-diffusion, Swift-Hohenberg, and

Kuramoto-Sivashinsky equations and effects of finite propagation speeds.

Phys Rev E (2007) 75:026214. doi: 10.1103/PhysRevE.75.026214

38. Anderson J. An adaptive covariance inflation error correction

algorithm for ensemble filters. Tellus (2007) 59A:210–24.

doi: 10.1111/j.1600-0870.2006.00216.x

39. Geer A, Bauer P. Observation errors in all-sky data assimilation. Q J R

Meteorol Soc. (2011) 137:2024–37. doi: 10.1002/qj.830

40. Gauthier P, Tanguay M, Laroche S, Pellerin S, Morneau J. Extension of

3DVar to 4DVar: implementation of 4DVar at the Meteorological Service

of Canada. Monthly Weather Rev. (2007) 135:2339–54. doi: 10.1175/

MWR3394.1

41. Bannister RN. A review of operational methods of variational and ensemble-

variational data assimilation. Q J R Meteorol Soc. (2017) 143:607–33.

doi: 10.1002/qj.2982

42. van Leeuwen P.J. Particle filtering in geophysical systems.

Monthly Weather Rev. (2009) 137:4098–114. doi: 10.1175/2009MWR

2835.1

43. Potthast R, Walter A, Rhodin A. A localised adaptive particle filter

within an operational NWP Framework. (2018). Monthly Weather Rev.

doi: 10.1175/MWR-D-18-0028.1. [Epub ahead of print].

44. Hickmann KS, Godinez HC. A multiresolution ensemble Kalman filter using

the wavelet decomposition. arXiv:1511.01935 (2017).

45. Nadeem A, Potthast R, Rhodin A. On sequential multiscale inversion

and data assimilation. J Comput Appl Math. (2018) 336:338–52.

doi: 10.1016/j.cam.2017.08.013

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Hutt and Potthast. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 18 November 2018 | Volume 4 | Article 52

https://doi.org/10.1088/1741-2560/5/1/001
https://doi.org/10.1016/j.bspc.2017.02.001
https://doi.org/10.1111/j.1528-1167.2011.03138.x
https://doi.org/10.1109/TBME.2009.2038990
https://doi.org/10.1371/journal.pcbi.1000776
https://doi.org/10.1371/journal.pcbi.1002788
https://doi.org/10.1186/s13408-018-0058-8
https://doi.org/10.1007/s12021-018-9369-x
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1186/s13634-017-0492-x
https://doi.org/10.1016/j.neuroimage.2018.06.043
https://doi.org/10.1007/s10827-015-0569-1
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>\penalty -\@M {}2.0.CO;2
https://doi.org/10.1111/j.1600-0870.2006.00205.x
https://doi.org/10.3402/tellusa.v56i4.14424
https://doi.org/10.1002/met.51
https://doi.org/10.1109/JSTSP.2013.2260320
https://doi.org/10.1109/TAC.2012.2183171
https://doi.org/10.1175/MWR-D-12-00111.1
https://doi.org/10.1127/0941-2948/2011/0217
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
https://doi.org/10.1103/PhysRevE.75.026214
https://doi.org/10.1111/j.1600-0870.2006.00216.x
https://doi.org/10.1002/qj.830
https://doi.org/10.1175/MWR3394.1
https://doi.org/10.1002/qj.2982
https://doi.org/10.1175/2009MWR2835.1
https://doi.org/10.1175/MWR-D-18-0028.1
https://doi.org/10.1016/j.cam.2017.08.013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Forecast of Spectral Features by Ensemble Data Assimilation
	1. Introduction
	2. Materials and Methods
	2.1. The Model
	2.2. Observations
	2.3. Ensemble Transform Kalman Filter
	2.3.1. Analysis Ensemble
	2.3.2. Inflation

	2.4. Data Assimilation Cycling
	2.5. Ensemble Prediction and Verification
	2.5.1. First Guess Departure Statistics
	2.5.2. Ensemble Distribution Statistics


	3. Results
	3.1. Data Assimilation Cycle—in-situ Observations
	3.2. Forecast—in-situ Observations
	3.3. Verification—in-situ Observations
	3.4. Nonlocal Observations
	3.5. Speed Observations
	3.6. Advanced Statistical Measures

	4. Discussion
	Author Contributions
	Acknowledgments
	References


