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For the Research Topic Data Assimilation and Control: Theory and Applications in Life

Sciences we first review the formulation of statistical data assimilation (SDA) and discuss

algorithms for exploring variational approximations to the conditional expected values of

biophysical aspects of functional neural circuits. Then we report on the application of

SDA to (1) the exploration of properties of individual neurons in the HVC nucleus of the

avian song system, and (2) characterizing individual neurons formulated as very large

scale integration (VLSI) analog circuits with a goal of building functional, biophysically

realistic, VLSI representations of functional nervous systems. Networks of neurons pose

a substantially greater challenge, and we comment on formulating experiments to probe

the properties, especially the functional connectivity, in song command circuits within

HVC.
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1. INTRODUCTION

A broad class of “inverse” problems presents itself in many scientific and engineering inquiries.
The overall question addressed by these is how to transfer information from laboratory and field
observations to candidate models of the processes underlying those observations.

The existence of large, information rich, well curated data sets from increasingly sophisticated
observations on complicated nonlinear systems has set new challenges to the information transfer
task. Assisting with this challenge are new substantial computational capabilities.

Together they have provided an arena in which principled formulation of this information
transfer along with algorithms to effect the transfer have come to play an essential role. This paper
reports on some efforts to meet this class of challenge within neuroscience. Many of the ideas are
applicable much more broadly than our focus, and we hope the reader will find this helpful in their
own inquiries.

In this special issue entitled Data Assimilation and Control: Theory and Applications in Life
Sciences, of the journal Frontiers in Applied Mathematics and Statistics–Dynamical Systems, we
participate in the broader quantitative setting for this information transfer. The procedures are
called “data assimilation” following its use in the effort to develop realistic numerical weather
prediction models [1, 2] over many decades. We prefer the term “statistical data assimilation”
(SDA) to emphasize that key ingredients in the procedures involved in the transfer rest on noisy
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data and on recognizing errors in the models to which
information in the noisy data is to be transferred.

This article begins with a formulation of SDA with some
additional clarity beyond the discussion in Abarbanel [3].
We also discuss some algorithms helpful for implementing
the information transfer, testing model compatibility with
the available data, and quantitatively identifying how much
information in the data can be represented in the model
selected by the SDA user. Using SDA will also remind us that
data assimilation efforts are well cast as problems in statistical
physics [4].

After the discussion of SDA, we turn to some working ideas
on how to perform the high dimensional integrals involved in
SDA. In particular we address the “standard model” of SDA
where data is contaminated by Gaussian noise and model errors
are represented by Gaussian noise, though the integrals to be
performed are, of course, not Gaussian. The topics include the
approximation of Laplace [5] and Monte Carlo methods.

With these tools in hand, we turn to neurobiological questions
that arise in the analysis of individual neurons and, in planning,
for network components of the avian song production pathway.
These questions are nicely formulated in the general framework,
and we dwell on specifics of SDA in a realistic biological
context. The penultimate topic we address is the use of SDA to
calibrate VLSI analog chips designed and built as components
of a developing instantiation of the full songbird song command
network, called HVC. Lastly, we discuss the potential utlization
of SDA for exploring biological networks.

At the outset of this article we may expect that our readers
from Physics and Applied Mathematics along with our readers
from Neurobiology may find the conjunction of the two “strange
bedfellows” to be incongruous. For the opportunity to illuminate
the natural melding of the facets of both kinds of questions, we
thank the editors of this special issue.

2. MATERIALS AND METHODS

2.1. General Overview of Data Assimilation
We will provide a structure within which we will frame our
discussion of transfer of information from data to a model of the
underlying processes producing the data.

We start with an observation window in time [t0, tF]
within which we make a set of measurements at times
t = {τ1, τ2, ..., τk, ..., τF}; t0 ≤ τk ≤ tF . At each of
these measurement times, we observe L quantities y(τk) =
{y1(τk), y2(τk), ..., yL(τk)}. The number L of observations at each
measurement time τk is typically less, often much less, than the
number of degrees of freedom D in the observed system; D≫ L.

These are views into the dynamical processes of a system we
wish to characterize. The quantitative characterization is through
a model we choose. It describes the interactions among the states
of the observed system. If we are observing the time course
of a neuron, for example, we might measure the membrane
voltage y1(τk) = Vm(τk) and the intracellular Ca

2+ concentration
y2(τk) = [Ca2+](τk). From these data we want to estimate the
unmeasured states of the model as a function of time as well as
estimate biophysical parameters in the model.

The processes characterizing the state of the system (neuron)
we call xa(t); a = 1, 2, ...,D ≥ L, and they are selected by the user
to describe the dynamical behavior of the observations through a
set of equations in continuous time

dxa(t)

dt
= Fa(x(t), q), (1)

or in discrete time tn = t0 + n1t; n = 0, 1, ...,N; tN = tF via

xa(tn+1) = xa(n+ 1) = fa(x(tn), q) = fa(x(n), q), (2)

where q is a set of fixed parameters associated with the model.
f(x(n), q) is related to F(x(t), q) through the choice the usermakes
for solving the continuous time flow for x(t) through a numerical
solution method of choice [6].

Considering neuronal activity, Equation 1 could be coupled
Hodgkin-Huxley (HH) Equations [7, 8] for voltage, ion
channel gating variables, constituent concentrations, and other
ingredients. If the neuron is isolated in vitro, such as by using
drugs to block synaptic transmission, then there would be no
synaptic input to the cell to describe. While if it is coupled to
a network of neurons, their functional connectivity would be
described in F(x(t), q) or f(x(n), q). Typical parameters might be
maximal conductances of the ion channels, reversal potentials,
and other time-independent numbers describing the kinetics of
the gating variables. In many experiments L is only 1, namely, the
voltage across the cell membrane, whileDmay be on the order of
100; Hence D≫ L.

As we proceed from the initiation of the observation window
at t0 we must move our model equation variables x(0), Equation
2, from t0 to τ1 where a measurement is made. Then using the
model dynamics we move along to τ2 and so forth until we reach
the last measurement time τF and finally move the model from
x(τF) to x(tF). In each stepping of the model equations (Equation
2) we may make many steps of 1t in time to achieve accuracy
in the representation of the model dynamics. The full set of
times tn at which we evaluate the model x(tn) we collect into
the path of the state of the model through D-dimensional space:
X = {x(0), x(1), ..., x(n), ..., x(N) = x(F)}. The dimension of the
path is (N + 1)D + Nq, where Nq is the number of parameters q
in our model.

It is worth a pause here to note that we have now collected
two of the needed three ingredients to effect our transfer
of the information in the collection of all measurements
Y = {y(τ1), y(τ2), ..., y(τF)} to the model f(x(n), q) along the
path X through the observation window [t0, tF]: (1) data Y and
(2) a model of the processes in Y, devised by our experience
and knowledge of those processes. The notation and a visual
presentation of this is found in Figure 1.

The third ingredient, comprised of methods to generate the
transfer from Y to properties of the model, will command our
attention throughout most of this paper. If the transfer methods
are successful and, according to some metric of success, we
arrange matters so that at the measurement times τk, the Lmodel
variables x(t) associated with y(τk) are such that xl(τk) ≈ yl(τk),
we are not finished. We have then only demonstrated that the
model is consistent with the known data Y. We must use the
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FIGURE 1 | A visual representation of the window t0 ≤ t ≤ tF in time during which L-dimensional observations y(τk ) are performed at observation times

t = τk; k = 1, ..., F. This also shows times at which the D-dimensional model developed by the user x(n+ 1) = f (x(n),q) is used to move forward from time n to time

n+ 1: tn = t0 + n1t; n = 0, 1, ...,N. D ≥ L. The path of the model X = {x(0), x(1), ..., x(n), ..., x(N) = x(F )} and the collection Y of L-dimensional observations at each

observation time τk , Y = {y(τ1), y(τ2), ..., y(τk ), ..., y(τF } (y = {y1, y2, ..., yL}) is also indicated.

model, completed by the estimates of q and the state of the model
at tF , x(tF), to predict forward for t > tF , and we should succeed
in comparison with measurements for y(τr) for τr > tF . As the
measure of success of predictions, we may use the same metric as
utilized in the observation window.

As a small aside, the same overall setup applies to supervised
machine learning networks [9] where the observation window is
called the training set; the prediction window is called the test set,
and prediction is called generalization.

2.1.1. The Data Are Noisy; The Model Has Errors
Inevitably, the data we collect is noisy, and equally the model we
select to describe the production of those data has errors. This
means we must, at the outset, address a conditional probability
distribution P(X|Y) as our goal in the data assimilation transfer
from Y to the model. In Abarbanel [3] we describe how to use the
Markov nature of the model x(n) → x(n + 1) = f(x(n), q) and
the definition of conditional probabilities to derive the recursion
relation:

P(X(n+ 1)|Y(n+ 1)) =
P(y(n+ 1), x(n+ 1),X(n)|Y(n))

P(y(n+ 1)|Y(n))P(x(n+ 1),X(n)|Y(n))
•

P(x(n+ 1)|x(n))P(X(n)|Y(n))
= exp[CMI(y(n+ 1), x(n+ 1),X(n)|Y(n))] •

P(x(n+ 1)|x(n))P(X(n)|Y(n)), (3)

where we have identified CMI(a, b|c) = log
[

P(a,b|c)
P(a|c)P(b|c)

]

. This

is Shannon’s conditional mutual information [10] telling us
how many bits (for log2) we know about a when observing b
conditioned on c. For us a = {y(n+1)}, b = {x(n+1),X(n)}, c =
{Y(n)}. We can simplify this further with the assumption that an
observation at any time depends only on the state of the system.

P(X(n+ 1)|Y(n+ 1)) = P(y(n+ 1)|X(n+ 1))P(x(n+ 1)

|x(n))P(X(n)|Y(n)) (4)

Using this recursion relation to move backwards through
the observation window from tF = t0 + N1t through the

measurements at times τk to the start of the window at t0, we may
write, up to factors independent of X

P(X|Y) =
{ F
∏

k=1

P(y(τk)|X(τk))
N−1
∏

n=0

P(x(n+ 1)|x(n))
}

P(x(0)).

(5)
If we now write P(X|Y) ∝ exp[−A(X)] where A(X), the negative
of the log likelihood, we call the action, then conditional expected
values for functions along the path X are defined by

E[G(X)|Y] = 〈G(X)〉 =
∫

dXG(X)e−A(X)

∫

dX e−A(X)
, (6)

dX =
∏N

n=0 dDx(n), and all factors in the action independent of
X cancel out here. The action takes the convenient expression

A(X) = −
{ F
∑

k=1

log[P(y(τk)|X(τk)]+
N−1
∑

n=0

log[P(x(n+ 1)|x(n))]
}

− log[P(x(0))], (7)

which is the sum of the terms which modify the conditional
probability distribution when an observation is made at t =
τk and the sum of the stochastic version of x(n) → x(n +
1) − f(x(n), q) and finally the distribution when the observation
window opens at t0.

What quantities G(X) are of interest? One natural one is the
path G(X) = Xµ;µ = {a, n} itself; another is the covariance
around that mean 〈Xµ〉 = X̄µ = 〈Xµ〉 :〈(Xµ − X̄µ)(Xν −
X̄ν)〉. Other moments are of interest, of course. If one has an
anticipated form for the distribution at large X, then G(X) may
be chosen as a parametrized version of that form and those
parameters determined near the maximum of P(X|Y).

The action simplifies to what we call the “standard model”
of data assimilation when (1) observations y are related to their
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model counterparts via Gaussian noise with zero mean and
diagonal precisionmatrixRm, and (2)model errors are associated
with Gaussian errors of mean zero and diagonal precision matrix
Rf :

A(X) =
F

∑

k=1

L
∑

l=1

Rm(k)

2
(xl(τk)− yl(τk))

2 +
N−1
∑

n=0

D
∑

a=1

Rf (a)

2

(xa(n+ 1)− fa(x(n), q))
2. (8)

If we have knowledge of the distribution P(x(0)) at t0 we may
add it to this action. If we have no knowledge of P(x(0)), we may
take its distribution to be uniform over the dynamic range of the
model variables, then it, as here, is absent, canceling numerator
and denominator in Equation (6).

Our challenge is to perform integrals such as Equation (6).
One should anticipate that the dominant contribution to the
expected value comes from themaxima of P(X|Y) or, equivalently
the minima of A(X). At such minima, the two contributions to
the action, the measurement error and the model error, balance
each other to accomplish the explicit transfer of information from
the former to the latter.

We note, as before, that when f(x(n), q) is nonlinear in X, as
it always is in interesting examples, the expected value integral
Equation (6) is not Gaussian. So, some thinking is in order to
approximate this high dimensional integral. We turn to that now.
After consideration of methods to do the integral, we will return
to a variety of examples taken from neuroscience.

The two generally useful methods available for evaluating this
kind of high dimensional integral are Laplace’s method [5] and
Monte Carlo techniques [6, 11, 12]. We address them in order.
We also add our own new and useful versions of the methods.

2.1.2. Laplace’s Method
To locate the minima of the action A(X) = − log[P(X|Y)] we
must seek paths X(j); j = 0, 1, ... such that ∂A(X)/∂X|

X(j) = 0,

and then check that the second derivative atX(j), the Hessian, is a
positive definite matrix in path coordinates. The vanishing of the
derivative is a necessary condition.

Laplace’s method [5] expands the action around the X(j)

seeking the path X(0) with the smallest value of A(X). The
contribution of X(0) to the integral Equation (6) is approximately
exp[A(X(1))− A(X(0))] bigger than that of the path with the next
smallest action.

This soundsmore or less straightforward; however, finding the
global minimum of a nonlinear function such as A(X) is an NP-
complete problem [13]. In a practical sense one cannot expect
to succeed with such problems. However there is an attractive
feature of the form of A(X) that permits us to accomplish more.

We now discuss two algorithmic approaches to implementing
Laplace’s method.

2.1.3. Precision Annealing for Laplace’s Method
Looking at Equation (8) we see that if the precision of the model
is zero, Rf = 0, the action is quadratic in the L measured
variables xl(n) and independent of the remaining states. The
global minimum of such an action comes with xl(τk) = yl(τk)

and any choice for the remaining states and parameters. Choose
the path with these values of x(τk) and values from a uniform
distribution of the other state variables and parameters covering
the expected dynamic range of those, and call it path Xinit.
In practice, we recognize that the global minimum of A(X) is
degenerate at Rf = 0, so we select many initial paths. We choose
NI of them, and initialize whatever numerical optimization
program we have selected, to run on each of them. We continue
to call the collection of NI paths Xinit.

• Nowwe increase Rf from Rf = 0 to a small value Rf 0. Use each
of the NI paths in Xinit as initial conditions for our numerical
optimization program chosen to find the minima of A(X), and
we arrive at NI paths X0. Evaluate A(X0) on all NI paths X0.

• We increase Rf = Rf 0 → Rf 0α; α > 1, and now use
the NI paths X0 as the initial conditions for our numerical
optimization program chosen to find the minima of A(X), we
arrive at NI paths X1. Evaluate A(X1) on all NI paths X1.

• We increase Rf = Rf 0α → Rf 0α
2. Now use the NI paths X1 as

the initial conditions for our numerical optimization program
chosen to find the minima of A(X), we arrive at NI paths X2.
Evaluate A(X2) on all NI paths X2.

• Continue in this manner increasing Rf to Rf = Rf 0α
β; β =

0, 1, ..., then using the selected numerical optimization
program to arrive at NI paths Xβ . Evaluate A(Xβ ) on all NI

paths Xβ .

• As a function of logα

[

Rf
Rf 0

]

display all NI values of A(Xβ ) vs. β

for all β = 0, 1, 2, ...βmax.

We call this method precision annealing (PA) [14–17]. It
slowly turns up the precision of themodel collecting paths at each
Rf that emerged from the degenerate global minimum at Rf = 0.
In practice it is able to track NI possible minima of A(X) at each
Rf . When not enough information is presented to the model, that
is L is too small, there are many local minima at all Rf . This is
a manifestation of the NP-completeness of the minimization of
A(X) problem. None of the minima may dominate the expected
value integral of interest.

As L increases, and enough information is transmitted to the
model, for large Rf one minimum appears to stand out as the
global minimum, and the paths associated with that smallest
minimum yields good predictions. We note that there are always
paths, not just a single path, as we have a distribution of paths,NI

of which are sampled in the PA procedure, within a variation of
size 1/

√
Rm. A clear example of this is seen in Shirman [18] in a

small, illustrative model.
In the even that the chosen model is inconsistent with the

data, or there is too much noise in the model error term, a single
minimum of the action will not appear for large Rf . As in the case
of too fewmeasurements, there will be multiple local minima. An
example of this can be seen in Ye et al. [14].

2.1.4. “Nudging” Within Laplace’s Method
Inmeteorology one approach to data assimilation is to add a term
to the deterministic dynamics which move the state of a model
toward the observations [19]

xa(n+ 1) = fa(x(n), q)+ u(n)(yl(n)− xl(n))δal, (9)
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where u(n) > 0 and vanishes except where a measurement is
available. This is referred to as “nudging.” It appears in an ad hoc,
but quite useful, manner.

Within the structure we have developed, one may see that
the “nudging term” arises through the balance between the
measurement error term and the model error term in the action.
This is easy to see when we look at the continuous time version
of the data assimilation standard model

A(x(t), ẋ(t)) =
∫ tF

t0

dt

{ L
∑

l=1

Rm(t, l)

2
(xl(t)− yl(t))

2

+
D

∑

a=1

Rf (a)

2
(ẋa(t)− Fa(x(t), q))

2

}

. (10)

The extremum of this action is given by the Euler-Lagrange
equations for the variational problem [20]

[

δab
d

dt
+

∂Fb(x(t)

∂xa(t)

][

ẋb(t)− Fb(x(t))

]

=
Rm(a, t)

Rf (a)
δal(xl(t)− yl(t)), (11)

in which the right hand side is the “nudging” term appearing in a

natural manner. Approximating the operator δab
d
dt
+ ∂Fb(x(t)

∂xa(t)
we

can rewrite this Euler-Lagrange equation in “nudging” form

dxa(t)

dt
= Fa(x(t))+ u(t)δal(xl(t)− yl(t)). (12)

We will use both the full variation of the action, in discrete
time, as well as its nudging form in our examples below.

2.1.5. Monte Carlo Methods
Monte Carlo methods [6, 11, 17, 21] are well covered in the
literature. We have not used them in the examples in this paper.
However, the development of a precision annealing version of
Monte Carlo techniques promises to address the difficulties
with large matrices for the Jacobian and Hessians required in
variational principles (Wong et al., unpublished). When one
comes to network problems, about which we comment later, this
method may be essential.

3. RESULTS

3.1. Using SDA to Analyze the Avian Song
System
We take our examples of the use of SDA in neurobiology
from experiments on the avian song system. These have been
performed in the University of Chicago laboratory of Daniel
Margoliash, and we do not plan to describe in any detail the
experiments nor the avian song production pathways in the avian
brain. We give the essentials of the experiments and direct the
reader to our references to develop the full biologically oriented
idea why this system is enormously interesting.

Essentially, however, the manner in which songbirds learn
and produce their functional vocalization—song—is an elegant

non-human example of a behavior that is cultural: the song is
determined both by a genetic substrate and, interestingly, by
refinement on top of that substrate by juveniles learning the
song from their (male) elders. The analogs to learning speech in
humans [22] are striking.

Our avian singer is a zebra finch. They, as do most other
songbirds, learn vocal expression through auditory feedback [22–
26]. This makes the study of the song system a good model for
learning complex behavior [25, 27, 28]. Parts of the song system
are analogous to the mammalian basal ganglia and regions of
the frontal cortex [25, 29, 30]. Zebra finch in particular have the
attractive property of singing only a single learned song, and with
high precision, throughout their adult life.

Beyond the auditory pathways themselves, two neural
pathways are principally responsible for song acquisition and
production in zebra finch. The first is the Anterior Forebrain
Pathway (AFP) which modulates learning. The second is a
posterior pathway responsible for directing song production: the
SongMotor Pathway (SMP) [24, 26, 31]. The HVC nucleus in the
avian brain uniquely contributes to both of these [26].

There are two principal classes of projection neurons which
extend from HVC: neurons which project to the robust nucleus
of the arcopallium (HVCRA), and neurons which project to
Area X (HVCX). HVCRA neurons extend to the SMP pathway
and HVCX neurons extend to the AFP [26, 32]. These two
classes of projection neurons combined with classes of HVC
interneurons, make up the three broad classes of neurons within
HVC. Figure 2 [33] displays these structures in the avian brain.

In vitro observations of each HVC cell type have been
obtained through patch-clamp techniques making intracellular
voltage measurements in a reduced, brain slice preparation [23].
In this configuration, the electrode can simultaneously inject
current into the neuron while measuring the whole cell voltage
response [34]. From these data, one can establish the physical
parameters of the system [23]. Traditionally this is done using
neurochemicals to block selected ion channels and measuring
the response properties of others [35]. Single current behavior is
recorded and parameters are found through mathematical fits of
the data. This procedure has its drawbacks, of course. There are
various technical problems with the choice of channel blockers.
Many of even the modern channel blockers are not subtype
specific [36] and may only partially block channels [37]. A deeper
conceptual problem is that is difficult to know what channels one
may have missed altogether. Perhaps there are channels which
express themselves only outside the bounds of the experimental
conditions.

Our solution to such problems is the utilization of
statistical data assimilation (SDA). This a method developed
by meteorologists and others as computational models of
increasingly large dynamical systems have been desired. Data
assimilation has been described in our earlier sections.

In this paper, we focus on the song learning pathway,
reporting on experiments involving the HVCX neuron. The
methods are generally applicable to the other neurons in HVC,
and actually, to neurons seen as dynamical systems in general.

We start with a discussion about the neuron model. First
we demonstrate the utility of our precision annealing methods
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FIGURE 2 | A drawing of the Song Production Pathway and the Anterior Forebrain Pathway of avian songbirds. Parts of the auditory pathways are shown in gray.

Pathways from the brainstem that ultimately return to HVC are not shown. The HVC network image is taken from Brainard and Doupe [33]. Reprinted by permission

from Copyright Clearance Center: Springer Nature.

through the use of twin experiments. These are numerical
experiments in which “data” is generated through a knownmodel
(of HVCX), then analyzed via precision annealing. In a twin
experiment, we know everything, so we can verify the SDA
method by looking at predictions after a observation window
in which the model is trained, and we may also compare the
estimations of unobserved state variables and parameters to the
ingredients and output of the model.

Twin experiments are meant to mirror the circumstances of
the real experiment. We start by taking the model that we think
describes our physical system. Initial points for the state variables
and parameters are chosen at random from a uniform distrubtion
within the state/parameter bounds, which are used along with the
model to numerically integrate forward in time. This leaves us
with complete information about the system. Noise is added to a
subset of the state variables to emulate the data to be collected in a
lab experiment. We then perform PA on these simulated data, as
if they were real data. The results of these numerical experiments
can be used to inform laboratory experiments, and indeed help
design them, by identifying the necessary measurements and
stimulus needed to accurately electrophysiologically characterize
a neuron.

The second set of SDA analyses we report on using “nudging,”
as described above, to estimate some key biophysical properties
of HVCX neurons from laboratory data. This SDA procedure is
applied to HVCX neurons in two different birds. The results show
that though each bird is capable of normal vocalization, their
complement of ion channel strengths is apparently different. We
report on a suggestive example of this, leaving a full discussion
to Daou and Margoliash (in review).

In order to obtain good estimation results, we must choose a
forcing or stimulus with the model in mind: the dynamical range
of the neuron must be thoroughly explored. This suggests a few
key properties of the stimulus:

• The current waveform of Iinjected(t) must have sufficient
amplitudes (±) and must be applied sufficiently long in time
that it explores the full range of the neuron variation.

• The frequency content of the stimulus current must be a low
enough that it does not exceed the low-pass cutoff frequency
associated with the RC time constant of the neuron. This cutoff
is typically in the neighborhood of 50–100 Hz.

• The current must explore all time scales expressed in the
neuron’s behavior.

3.2. Analysis of HVCX Data
Themodel for an HVCX neuron is substantially taken fromDaou
et al. [23] and described in Supplementary Data Sheet 1. We
now use this model in a “twin experiment” in which PA is utilized,
and then using “nudging” we present the analysis of experimental
data on two Zebra Finch.

3.2.1. Twin Experiment on HVCX Neuron Model
A twin experiment is a synthetic numerical experiment meant to
mirror the conditions of a laboratory experiment. We use our
mathematical model with some informed parameter choices in
order to generate numerical data. Noise is added to observable
variables in themodel, hereV(t). These data are then put through
our SDA procedure to estimate parameters and unobserved states
of the model. The neuron model is now calibrated or completed.

Using the parameters and the full state of the model at the end
tF of an observation window [t0, tF], we take a current waveform
Iinjected(t ≥ tF) to drive the model neuron and predict the
time course of all dynamical variables in the prediction window
[tF , ...]. This validation of the model is the critical test of our
SDA procedure, here PA. In a laboratory experiment we have
no specific knowledge of the parameters in the model and, by
definition, cannot observe the unobserved state variables; here we
can do that. So, “fitting” the observed data within the observation
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window [t0, tF] is not enough, we must reproduce all states for
t ≥ tF to test our SDA methods.

We use the model laid out in the
Supplementary Data Sheet 1. We assume that the neuron
has a resting potential of −70 mV and set the initial values for
the voltage and each gating variable accordingly. We assume that
the internal calcium concentration of the cell is Cin = 0.1 µM.
We use an integration time step of 0.02 ms and integrate forward
in time using an adaptive Runge-Kutta method [6]. Noise is
added to the voltage time course by sampling from a Gaussian
distributionN (0, 2) in units of mV.

The waveform of the injected current was chosen to have three
key attributes: (1) It is strong enough to cause spiking in the
neuron, (2) it dwells a long time in a hyperpolarizing region, and
(3) its overall frequency content is low enough to not be filtered
out by the neuron’s RC time constant. On this last point, a neuron
behaves like an RC circuit, it has a cut off frequency limited by
the time constant of the system. Any input current which has
a frequency higher than that of the cut off frequency won’t be
“seen” by the neuron. The time constant is taken to be the time it
takes to spike and return back to 37% above its resting voltage.
We chose a current where the majority of the power spectral
density exists below 50 Hz.

The first two seconds of our chosen current waveform is a
varying hyperpolarizing current. In order to characterize Ih(t)
and ICaT(t), it is necessary to thoroughly explore the region
where the current is active. Ih(t) is only activated when the
neuron is hyperpolarized. The activation of Ih(t) deinactivates
ICaT(t), thereby allowing its dynamics to be explored. In order
to characterize INa(t) and IK(t), it is necessary to cause spiking in
the neuron. The depolarizing current must be strong enough to
hit the threshold potential for spike activation.

The parameters used to generate the data used in the twin
experiment are in Table 1, and the injection current data and the
membrane voltage response may be seen in Figures 3A,B.

The numbers chosen for the data assimilation procedure in
this paper are α = 1.4 and β ranging from 1 to 100. Rf ,0,V = 10−4

for voltage and Rf ,0,j = 1 for all gating variables. These numbers
are chosen because the voltage range is 100 times large than the
gating variable range. Choosing a single Rf ,0 value would result in
the gating variable equations being less enforced than the voltage
equation by a factor of 104. The α and β numbers are chosen

because we seek to make
Rf
Rf 0

sufficiently large. The α and β values

chosen allow
Rf
Rf 0

to reach 1015.

During estimation we instructed our methods to estimate the
inverse capacitance and estimate the ratio g′ = g

Cm
instead of g

andCm independently. That separation can present a challenge to
numerical procedures. We also estimated the reversal potentials
as a check on the SDA method.

Within our computational capability we can reasonably
perform estimates on 50,000 data points. This captures a second
of data when 1t = 0.02ms. However, there are time constants in
the model neuron which are on order 1 second. In order for us
to estimate the behavior of these parameters accurately, we need
to see multiple instances of the full response. We need a window
on the order of 2–3 s. We can obtain this by downsampling the

TABLE 1 | Parameter values used to numerically generate the HVCX data. The

source of these values comes from Daou et al. [23]. Data was generated using an

adaptive Runge-Kutta method, and can be seen in Figures 3A,B.

Parameter Value Parameter Value Parameter Value

gNa 450 nS gL 2 nS kf 0.3

ENa 50 mV EL -70 mV θmp -40 mV

gK 50 nS gNap 1 nS σmp -6 mV

EK -90 mV gCaL 19 nS θs -20 mV

gCaT 2.65 nS θm -35 mV σs -0.05 mV

gSK 6 nS σm -5 mV θhp -48 mV

gH 4 nS θn -30 mV σhp 6 mV

EH -30 mV σn -5 mV τ̄hp 1000 ms

Cm 100 pF τ̄n 10 ms θe -60 mV

θa -20 mV θrf -105 mV σe 5 mV

σa -10 mV σrf 5 mV τe 20 ms

θrs -105 mV θaR -65 mV θb 0.4 mV

σrs 25 mV σaT -7.8 mV σb -0.1 mV

θrT -67 mV θrrT 68 mV f 0.1

σrT 2 mV σrrT 2.2 mV ǫ 0.0015 µM
pA·ms

τr0 200 ms τr1 87.5 ms prf 100

kCa 0.3 ms−1 bCa 0.1 µM ks 0.5 µM

data. We know from previous results that downsampling can
lead to better estimations [38]. We take every ith data point,
depending on the level of downsampling we want to do. In
this data assimilation run, we downsampled by a factor of 4 to
incorporate 4 s of data in the estimation window.

We look at a plot of the action as a function of β ; that is,
log[Rf /Rf 0]. We expect to see a leveling off of the action [16] as
a function of Rf . If the action becomes independent of Rf , we
can then explore how well our parameter estimations perform
when integrating them forward as predictions of the calibrated
model. Looking at the action plot in Figure 4, we can see there
is a region in which the action appears to level off, around
β = 40. It is in this region where we look for our parameter
estimates.

We examine all solutions around this region of β and utilize
their parameter estimates in our predictions. We compare our
numerical prediction to the “real" data from our synthetic
experiment. We evaluate good predictions by finding the
correlation coefficient between these two curves. This metric is
chosen instead of a simple root mean square error because slight
variations in spike timings yield a high amount of error even if
the general spiking pattern is correct. The prediction plot and
parameters for the best prediction can be seen in Figure 5 and
Table 2. The voltage trace in red is the estimated voltage after
data assimilation is completed. It is overlayed on the synthetic
input data in black. The blue time course is a prediction, starting
at the last time point of the red estimatedV(t) trace and using the
parameter estimates for t ≤ 4, 000ms.

The red curve matches the computed voltage trace quite well.
There is no significant deviation in the frequency of spikes, spike
amplitudes, or the hyperpolarized region of the cell. Looking at
the prediction window, we can see that there is some deviation
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FIGURE 3 | (A) Stimulating current Iinjected (t) presented to the HVCX model. (B) Response of the HVCX model membrane voltage to the selected Iinjected (t). The

displayed time course V (t) has no added noise.

FIGURE 4 | Action Levels of the standard model action for the HVCX neuron

model discussed in the text. We see that the action rises to a “plateau” where

it becomes quite independent of Rf . The calculation of the action uses PA with

α = 1.4 and Rf0 = Rm. NI = 100 initial choices for the path Xinit were used in

this calculation. For small Rf one can see the slight differences in action level

associated with local minima of A(X).

in the hyperpolarized voltage trace after 7,000 ms. Our our
predicted voltage does not become nearly as hyperpolarized as
the real data. This is an indication that our parameter estimates
for currents activated in this region are not entirely correct.
Comparing parameters in Table 2, we can see that Eh is estimated
as lower than its actual value. Despite that, we still are able to
reproduce neuron behavior fairly well.

3.2.2. Analysis of Biophysical Parameters From HVCX

Neurons in Two Zebra Finch
Our next use of SDA employs the “nudging” method described
in Eq. (9). In this section we used some of the data [Daou and

TABLE 2 | Parameter Estimates from the Best Predictions.

Parameter Bounds Best estimate Actual value Units

g′
Na

0.1, 10 4.98 4.5 nS/pF

ENa 1, 100 43.2 50 mV

g′
K

0.01, 5 0.907 0.5 nS/pF

EK -140, -10 -127.4 -90 mV

g′
CaT

0.001, 1 0.0326 0.0265 nS/pF

g′
SK

0.001, 1 0.0373 0.06 nS/pF

g′
h

0.001, 1 0.0432 0.04 nS/pF

Eh -100, -1 -44.1 -30 mV

Cinv 0.001, 0.5 0.011 0.01 pF−1

The best prediction is chosen by finding the highest correlation coefficient between the

predicted voltage and “real” voltage. This comparison can be made on experimental data.

It represents an attractive alternative to the familiar least squares metric commonly used.

That metric is very sensitive to spike times in data with action potentials: small errors in

spike times may result in large errors in a least squares metric.

Margoliash (in review)] taken in experiments on multiple HVCX

neurons from different zebra finches. The questions we asked was
whether we could, using SDA, identify differences in biophysical
characteristics of the birds. This question is motivated by prior
biological observations [Daou and Margoliash (in review)].

Using the same HVCX model as before, we estimated the
maximal conductances {gNa, gK , gCaT , gSK , gh} holding fixed other
kinetic parameters and the Nernst/Reversal potentials. The
baseline characteristics of an ion channel are set by the properties
of the cell membrane and the complex proteins penetrating
the membrane forming the physical channel. Differences among
birds would then come from the density or numbers of various
channels as characterized by the maximal conductances. If
such differences were identified, it would promote further
investigation of the biologically exciting proposition that these
differences arise in relation to some aspect of the song learning
experience of the birds [Daou and Margoliash (in review)].
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FIGURE 5 | Results of the “twin experiment” using the model HVCX neuron

described in the Supplementary Data Sheet 1. Noise was added to data

developed by solving the dynamical equations. The noisy V (t) was presented

to the precision annealing SDA calculation along with the Iinjected (t) in the

observation window t0 = 0ms, tF = 4000ms. The noisy model voltage data is

shown in black, and the estimated voltage is shown in red. For t ≥ 4, 000ms

we show the predicted membrane voltage, in blue, generated by solving the

HVCX model equations using the parameters estimated during SDA within the

observation window.

In Figures 6A,B we display the stimulating current and
membrane voltage response from one of 9 neurons in our
large sample. The analysis using SDA was of four neurons
from one bird and seven neurons from another. The results
for {gCaT , gNa, gSK} is displayed in Figure 7. The maximal
conductances from one bird are shown in blue and from the
other bird, in red. There is a striking difference between the
distributions of maximal conductances.

We do not propose here to delve into the biological
implications of these results. Nevertheless, we note that the
neurons from each bird occupy a small but distinct region of
the parameter space (Figure 7). This result and its implications
for birdsong learning, and more broadly for neuroscience, are
described in Daou andMargoliash (in review). Here, however, we
display this result as an example of the power of SDA to address
a biologically important question in a systematic, principled
manner beyond what is normally achieved in analyses of such
data.

To fully embrace the utility of SDA for these experiments,
however, further work is needed. A limitation of the present
result is that the SDA estimates for gSK for a subset of the
neurons/observations for Bird One reach the bounds of the
observation window (Figure 7). Addressing such issues would be
prelude to the exciting possibility of estimating more parameters
than just the principle ion currents in the Hodgkin-Huxley
equations. This could use SDA numerical techniques to calculate,
over hours or days, estimates of parameters that could require
months or years of work to measure with traditional biological
and biophysical approaches, in some cases requiring specialized
equipment beyond that available for most in vitro recording set

ups. In contrast, applying SDA to such data sets requires only a
computer.

3.3. Analysis of Neuromorphic VLSI
Instantiations of Neurons
An ambitious effort in neuroscience is the creation of low
power consumption analog neural-emulating VLSI circuitry.
The goals for this effort range from the challenge itself to
the development of fast, reconfigurable circuitry on which to
incorporate information revealed in biological experiments for
use in

• creating model neural circuits of “healthy” performance to be
compared to subsequent observations on the same circuitry
informed by “unhealthy” performances. If the comparison can
be made rapidly and accurately, the actual instantiations in
the VLSI circuitry could be used to diagnose the changes in
neuron properties and circuit connectivity perhaps leading to
directions for cures, and

• in creating VLSI realizations of neural circuits with desired
functions–say, learning syntax in interesting sequences–might
allow those functions to be performed at many times increased
speed than seen in the biological manifestation. If those
functionalities are of engineering utility, the speed up could
be critical in applications.

One of the curious roadblocks in achieving critical steps of
these goals is that after the circuitry is designed andmanufactured
into VLSI chips, what comes back from a fabrication plant is not
precisely what we designed. This is due to the realities of the
manufacturing processes and not inadequacies of the designers.

To overcome this barrier in using the VLSI devices in
networks, we need an algorithmic tool to determine just what
did return from the factory, so we know how the nodes of a
silicon network are constituted. As each chip is an electronic
device built on a model design, and the flaws in manufacuring
are imperfections in the realization of design parameters, we can
use data from the actual chip and SDA to estimate the actual
parameters on the chip.

SDA has an advantageous position here. If we present to the
chip input signals with much the same design as we prepared
for the neruobiological experimets discussed in the previous
section, we can measure everything about each output from the
chip and use SDA to estimate the actual parameters produced
in manufacturing. Of course, we do not know those paramters
a priori so after estimating the parameters, thus “calibrating”
the chip, we must use those estimated parameters to predict
the response of the chip to a new stimulating currents. That
will validate (or not) the completion of the model of the actual
circuitry on the chip and permit confidence in using it in building
interesting networks.

We have done this on chips produced in the laboratory of Gert
Cauwenberghs at UCSD using PA [38, 39] and using “nudging”
as we now report.

The chip we worked with was designed to produce the
simplest spiking neuron, namely one having just Na, K, and leak
channels [7, 8] as in the original HH experiments. This neuron
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FIGURE 6 | (A) One of the library of stimuli used in exciting voltage response activity in an HVCX neuron. The cell was prepared in vitro, and a single patch clamp

electrode injected Iinjected (t) (this waveform) and recorded the membrane potential. (B) The voltage response. One of the library of stimuli used in exciting voltage

response activity in an HVCX neuron. The cell was prepared in vitro, and a single patch clamp electrode injected Iinjected (t) (this waveform) and recorded the

membrane potential.

has four state variables {V(t),m(t), h(t), n(t)}:

C
dV(t)

dt
= gNam

3(t)h(t)(ENa − V(t))+ gKn
4(t)(EK − V(t))

+gL(EL − V(t))+ Iinjected(t)

in which the gating variables w(t) = {m(t), h(t), n(t)} satisfy
dw(t)

dt
=

(w∞(V(t))− w(t))

τw(V(t))
, (13)

and the functions w∞(V) are discussed in depth in Johnston and
Wu [7] and Sterratt et al. [8].

In our experiments on a “NaKL” chip we used the stimulating
current displayed in Figure 8,

and measured all the neural responses {V(t),m(t), h(t), n(t)}.
These observations were presented to the designed model within
SDA to estimate the parameters in the model.

We then tested/validated the estimations by using the
calibrated model to predict how the VLSI chip would respond
to a different injected current. In Figure 9 we show the observed
Vdata(t) in black, the estimation of the voltage through SDA in
red, and the prediction of V(t) in blue for times after the end of
the observation window.

While one can be pleased with the outcome of these
procedures, for our purposes we see that the use of our
SDA algorithms gives the user substantial confidence in the
functioning characteristics of the VLSI chips one wishes to use
at the nodes of a large, perhaps even very large, realization of
a desired neural circuit in VLSI. We are not unaware of the
software developments to allow efficient calibration of very large
numbers of manufactured silicon neurons. A possible worry
about also determining the connectivity, both the links and their
strength and time constants, may be alleviated by realizing these
links through a high bandwidth bi-directional connection of
the massive array of chips and the designation of connectivity
characteristics on an off-chip computer.

FIGURE 7 | A three dimensional plot of three of the maximal conductances

estimated from HVCX cells using the stimulating current shown in Figure 6A.

Membrane voltage responses from five neurons from one bird were recorded

many times, and membrane voltage responses from four neurons from a

second bird were recorded many times. One set of maximal conductances

{gNa,gCaT , gSK } are shown. The estimates from Bird 1 are in red-like colors,

and the estimates from Bird 2 are in blue-like colors. This is just one out of a

large number of examples discussed in detail in Daou and Margoliash (in

review).

Part of the same analysis is the ability to observe, estimate and
predict the experimentally unobservable gating variables. This
serves, in this context, as a check on the SDA calculations. The Na
inactivation variable h(t) is shown in Figure 10 as its measured
time course hdata(t) in black, its estimated time course hest(t) in
red, and its predicted time course hpred(t) in blue.
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FIGURE 8 | This waveform for Iinjected (t) was used to drive the VLSI NaKL

neuron after receipt from the fabrication facility.

FIGURE 9 | The NaKL VLSI neuron was driven by the waveform for Iinjected (t)

seen in Figure 8. The four state variables {V (t),m(t), h(t), n(t)} for the NaKL

model were recorded and used in an SDA “nudging” protocol to estimate the

parameters of the model actually realized at the manufacturing facility. Here we

display the membrane voltages: {Vdata(t),Vest (t),Vpred (t)}–the observed

membrane voltage response when Iinjected (t) was used, the estimated voltage

response using SDA, and finally the predicted voltage response Vpred (t) from

the calibrated model actually on the VLSI chip. In a laboratory experiment, only

this attribute of a neuron would be observable.

4. DISCUSSION

Our review of the general formulation of statistical data
assimilation (SDA) started our remarks. Many details can be
found in Abarbanel [3] and subsequent papers by the authors.
Recognizing that the core problem is to perform, approximately
of course, the integral in Equation (6) is the essential take away
message. This task requires well “curated” data and a model of
the processes producing the data. In the context of experiments in
life sciences or, say, aquisition of data from earth system sensors,

FIGURE 10 | The NaKL VLSI neuron was driven by the waveform for Iinjected (t)

seen in Figure 8. The four state variables {V (t),m(t), h(t), n(t)} for the NaKL

model were recorded and used in an SDA “nudging” protocol to estimate the

parameters of the model actually realized at the manufacturing facility. Here we

display the Na inactivation variable h(t): {hdata(t), hest (t), hpred (t)}–the observed

h(t) time course when Iinjected (t) was used, the estimated h(t) time course using

SDA, and finally the predicted h(t) time course from the calibrated model

actually on the VLSI chip. In a laboratory experiment, this attribute of a neuron

would be unobservable. Note we have rescaled the gating variable from its

natural range 0 ≤ h(t) ≤ 1) to the range within the VLSI chip. The message of

this Figure is in the very good accuracy and prediction of an experimentally

unobservable time course.

curation includes an assessment of errors and the properties of
the instruments as well.

One we have the data and a model, we still need a set of
procedures to transfer the information from the data to the
model, then test/validate the model on data not used to train the
model. The techniques we covered are general. Their application
to examples from neuroscience comprise the second part of this
paper.

In the second part we first address properties of the
avian songbird song production pathway and a neural control
pathway modulating the learning and production of functional
vocalization–song. We focus our attention on one class of
neurons, HVCX , but have also demonstrated the utility of SDA
to describe the response properties of other classes of neurons
in HVC, such as HVCRA [40] and HVCI [41]. Indeed, the SDA
approach is generally applicable wherever there is insight to relate
biophysical properties of neurons to their dynamics through
Hodgkin Huxely equations.

Our SDA methods considered variational algorithms that
seek the highest conditional probability distributions of the
model states and parameters conditioned on the collection
of observations over a measurement window in time. Other
approaches, especially Monte Carlo algorithms were not
discussed here, but are equally attractive.

We discussed methods of testing models of HVCX neurons
using “twin experiments" in which a model of the individual
neuron produces synthetic data to which we add noise with a
selected signal-to-noise-ratio. Some state variable time courses
from the library of these model produced data, for us the voltage
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FIGURE 11 | A cartoon-like idea of an experiment to probe the HVC network. In this graphic three neuron populations of {HVCX ,HVCI,HVCRA} neurons are

stimulated by auditory signals P(t) presented to the bird in vivo. This drives the auditory pathway from the ear to HVC, and the network activity is recorded from a

calibrated, living HVCX neuron, used here as a sensor for network activity. While the experiment is now possible, the construction of a model HVC network will

proceed in steps of complexity using simple then more biophysiclly realistic neuron models and connections among the nodes (neurons) of the network. From libraries

of time courses of P(t), chosen by the user, and responses of V (t) in the “sensor” HVCX neuron, we will use SDA to estimate properties of the network.

across the cell membrane, is then part of the action Equation (8),
specifically in the measurement error term. Errors in the model
are represented in the model error term of the action.

Using a precision annealing protocol to identify and track the
global minimum of the action, the successful twin experiment
gives us confidence in this SDA method from information trans
from data to the model.

We then introduced a “nudging” method as an approximation
to the Euler-Lagrange equations derived from the numerical
optimization of the action Equation (8)–this is Laplace’s method
in our SDA context. The nudging method, introduced in
meteorology some time ago, was used to distinguish between two
different members of the Zebra Finch collection. We showed, in
a quite preliminary manner, that the two, unrelated birds of the
same species, express different HVC network properties as seen
in a critical set of maximal conductances for the ion channels in
their dynamics.

Finally we turned to a consideration of the challenge of
implementing in VLSI technology the neurons in HVC toward
the goal of building a silicon-HVC network. The challenge at the
design and fabrication stages of this effort where illuminated by
our use of SDA to determine what was actually returned from the
manufacturing process for our analog neurons.

4.1. Moving Forward to Network Analysis
Finally, we have a few comments associated with the next stage
of analysis of HVC. In this, and previous papers, we analyzed
individual neurons in HVC. These analyses were assisted by
our using SDA, through twin experiments, to design laboratory
experiments though the selection of effective stimulilaing injected
currents.

Having characterized the electrophysiology of an individual
neuron within the framework of Hodgkin-Huxley (HH) models,
wemay now proceed beyond the study of individual neurons [42]
in vitro. Once we have characterized an HVC neuron through a
biophysical HH model, we may then use it in vivo as a sensor
of the activity of the HVC network where it is connected to
HVCRA, HVCI , and other HVCX neurons. The schema for this

kind of experiment is displayed in Figure 11. These experiments
require the capability to performmeasurements onHVCneurons
in the living bird. That capability is available, and experiments as
suggested in our graphic are feasible, if challenging.

The schematic indicates that the stimulating input to the
experiments is auditory signals, chosen by the user, presented to
the bird’s ear and reaching HVC through the auditory pathway.
The stimuli from this signal is then distributed in a manner to
be deduced from experiment and then produces activity in the
HVC network that we must model. The goal is, at least initially,
to establish, again within the models we develop, the connectivity
of HVC neuron classes as it manifests itself in the function of
the network. We have some information about this [43, 44],
and these results will guide the development of the HVC model
used in these whole-network experiments. An important point to
address is what changes to the in vitromodel might be necessary
to render it a model for in vivo activity.
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