
ORIGINAL RESEARCH
published: 21 January 2019

doi: 10.3389/fams.2018.00065

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 January 2019 | Volume 4 | Article 65

Edited by:

Bubacarr Bah,

African Institute for Mathematical

Sciences, South Africa

Reviewed by:

Nazeer Muhammad,

COMSATS University Islamabad,

Pakistan

Dustin Mixon,

The Ohio State University,

United States

*Correspondence:

Keaton Hamm

hamm@math.arizona.edu

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 14 September 2018

Accepted: 19 December 2018

Published: 21 January 2019

Citation:

Aldroubi A, Hamm K, Koku AB and

Sekmen A (2019) CUR

Decompositions, Similarity Matrices,

and Subspace Clustering.

Front. Appl. Math. Stat. 4:65.

doi: 10.3389/fams.2018.00065

CUR Decompositions, Similarity
Matrices, and Subspace Clustering

Akram Aldroubi 1, Keaton Hamm 2*, Ahmet Bugra Koku 3 and Ali Sekmen 4

1Department of Mathematics, Vanderbilt University, Nashville, TN, United States, 2Department of Mathematics, University of

Arizona, Tucson, AZ, United States, 3Department of Mechanical Engineering, Middle East Technical University, Ankara,

Turkey, 4Department of Computer Science, Tennessee State University, Nashville, TN, United States

A general framework for solving the subspace clustering problem using the CUR

decomposition is presented. The CUR decomposition provides a natural way to

construct similarity matrices for data that come from a union of unknown subspaces

U =
M
⋃

i=1

Si. The similarity matrices thus constructed give the exact clustering in the

noise-free case. Additionally, this decomposition gives rise to many distinct similarity

matrices from a given set of data, which allow enough flexibility to perform accurate

clustering of noisy data. We also show that two known methods for subspace clustering

can be derived from the CUR decomposition. An algorithm based on the theoretical

construction of similarity matrices is presented, and experiments on synthetic and real

data are presented to test the method. Additionally, an adaptation of our CUR based

similarity matrices is utilized to provide a heuristic algorithm for subspace clustering;

this algorithm yields the best overall performance to date for clustering the Hopkins155

motion segmentation dataset.

Keywords: subspace clustering, similarity matrix, CUR decomposition, union of subspaces, data clustering,

skeleton decomposition, motion segmentation

1. INTRODUCTION

We present here two tales: one about the so-called CUR decomposition (or sometimes skeleton
decomposition), and another about the subspace clustering problem. It turns out that there is a
strong connection between the two subjects in that the CUR decomposition provides a general
framework for the similarity matrix methods used to solve the subspace clustering problem, while
also giving a natural link between these methods and other minimization problems related to
subspace clustering.

The CUR decomposition is remarkable in its simplicity as well as its beauty: one can decompose
a given matrix A into the product of three matrices, A = CU†R, where C is a subset of columns of
A, R is a subset of rows of A, and U is their intersection (see Theorem 1 for a precise statement).
The primary uses of the CUR decomposition to date are in the field of scientific computing. In
particular, it has been used as a low-rank approximation method that is more faithful to the data
structure than other factorizations [1, 2], an approximation to the singular value decomposition
[3–5], and also has provided efficient algorithms to compute with and store massive matrices in
memory. In the sequel, it will be shown that this decomposition is the source of some well-known
methods for solving the subspace clustering problem, while also adding the construction of many
similarity matrices based on the data.

The subspace clustering problem may be stated as follows: suppose that some collected data
vectors in K

m (with m large, and K being either R or C) comes from a union of linear subspaces

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2018.00065
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2018.00065&domain=pdf&date_stamp=2019-01-21
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hamm@math.arizona.edu
https://doi.org/10.3389/fams.2018.00065
https://www.frontiersin.org/articles/10.3389/fams.2018.00065/full
http://loop.frontiersin.org/people/533468/overview

Aldroubi et al. CUR Decompositions and Subspace Clustering

(typically low-dimensional) ofKm, which will be denoted by U =
M
⋃

i=1
Si. However, one does not know a priori what the subspaces

are, or even how many of them there are. Consequently, one
desires to determine the number of subspaces represented by the
data, the dimension of each subspace, a basis for each subspace,
and finally to cluster the data: the data {wj}

n
j=1 ⊂ U are not

ordered in any particular way, and so clustering the data means
to determine which data belong to the same subspace.

There are indeed physical systems which fit into the
model just described. Two particular examples are motion
tracking and facial recognition. For example, the Yale Face
Database B [6] contains images of faces, each taken with 64
different illumination patterns. Given a particular subject i,
there are 64 images of their face illuminated differently, and
each image represents a vector lying approximately in a low-
dimensional linear subspace, Si, of the higher dimensional
space R

307,200 (based on the size of the grayscale images). It
has been experimentally shown that images of a given subject
approximately lie in a subspace Si having dimension 9 [7].
Consequently, a data matrix obtained from facial images under
different illuminations has columns which lie in the union of low-
dimensional subspaces, and one would desire an algorithmwhich
can sort, or cluster, the data, thus recognizing which faces are the
same.

There are many avenues of attack to the subspace clustering
problem, including iterative and statistical methods [8–
15], algebraic methods [16–18], sparsity methods [19–22],
minimization problem methods inspired by compressed sensing
[22, 23], and methods based on spectral clustering [20, 21, 24–
29]. For a thorough, though now incomplete, survey on the
spectral clustering problem, the reader is invited to consult [30].

Some of the methods mentioned above begin by finding a
similarity matrix for a given set of data, i.e. a square matrix
whose entries are nonzero precisely when the corresponding data
vectors lie in the same subspace, Si, of U (see Definition 3 for
the precise definition). The present article is concerned with a
certain matrix factorization method—the CUR decomposition—
which provides a quite general framework for finding a similarity
matrix for data that fits the subspace model above. It will be
demonstrated that the CUR decomposition indeed produces
many similarity matrices for subspace data. Moreover, this
decomposition provides a bridge between matrix factorization
methods and the minimization problem methods such as Low-
Rank Representation [22, 23].

1.1. Paper Contributions
• In this work, we show that the CUR decomposition gives rise

to similarity matrices for clustering data that comes from a
union of independent subspaces. Specifically, given the data
matrix W = [w1 · · ·wn] ⊂ K

m drawn from a union
U =

⋃M
i=1 Si of independent subspaces {Si}

M
i=1 of dimensions

{

di
}M

i=1
, any CUR decomposition W = CU†R can be used to

construct a similarity matrix for W. In particular, if Y = U†R
and Q is the element-wise binary or absolute value version
of Y∗Y , then 4W = Qdmax is a similarity matrix for W; i.e.,

4W(i, j) 6= 0 if the columns wi and wj of W come from the
same subspace, and 4W(i, j) = 0 if the columns wi and wj of
W come from different subspaces.

• This paper extends our previous framework for finding
similarity matrices for clustering data that comes from the
union of independent subspaces. In Aldroubi et al. [31], we
showed that any factorization W = BP, where the columns
of B come from U and form a basis for the column space of
W, can be used to produce a similarity matrix 4W. This work
shows that we do not need to limit the factorization of W to
bases, but may extend it to frames, thus allowing for more
flexibility.

• Starting from the CUR decomposition framework, we
demonstrate that some well-known methods utilized in
subspace clustering follow as special cases, or are tied directly
to the CUR decomposition; these methods include the Shape
Interaction Matrix [32, 33] and Low-Rank Representation
[22, 23].

• A proto-algorithm is presented which modifies the similarity
matrix construction mentioned above to allow clustering
of noisy subspace data. Experiments are then conducted
on synthetic and real data (specifically, the Hopkins155
motion dataset) to justify the proposed theoretical framework.
It is demonstrated that using an average of several CUR
decompositions to find similarity matrices for a data matrix
W outperforms many known methods in the literature while
being computationally fast.

• A clustering algorithm based on the methodology of the
Robust Shape Interaction Matrix of Ji et al. [33] is also
considered, and using our CUR decomposition framework
together with their algorithm yields the best performance to
date for clustering the Hopkins155 motion dataset.

1.2. Layout
The rest of the paper develops as follows: a brief section on
preliminaries is followed by the statement and discussion of
the most general exact CUR decomposition. Section 4 contains
the statements of the main results of the paper, while section 5
contains the relation of the general framework that CUR gives for
solving the subspace clustering problem. The proofs of the main
theorems are enumerated in section 6 followed by our algorithm
and numerical experiments in section 7, whereupon the paper
concludes with some discussion of future work.

2. PRELIMINARIES

2.1. Definitions and Basic Facts
Throughout the sequel, K will refer to either the real or complex
field (R or C, respectively). For A ∈ K

m×n, its Moore–Penrose
psuedoinverse is the unique matrix A† ∈ K

n×m which satisfies
the following conditions:

1) AA†A = A,
2) A†AA† = A†,
3) (AA†)∗ = AA†, and
4) (A†A)∗ = A†A.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

Additionally, if A = U6V∗ is the Singular Value Decomposition
of A, then A† = V6†U∗, where the pseudoinverse of the m × n
matrix 6 = diag(σ1, . . . , σr , 0, . . . , 0) is the n × m matrix 6† =

diag(1/σ1, . . . , 1/σr , 0 . . . , 0). For these and related notions, see
section 5 of Golub and Van Loan [34].

Also of utility to our analysis is that a rank r matrix has a so-
called skinny SVD of the form A = Ur6rV

∗
r , where Ur comprises

the first r left singular vectors of A, Vr comprises the first r right
singular vectors, and 6r = diag(σ1, . . . , σr) ∈ K

r×r . Note that in
the case that rank(A) > r, the skinny SVD is simply a low-rank
approximation of A.

Definition 1 (Independent Subspaces). Non-trivial subspaces
{Si ⊂ K

m}Mi=1 are called independent if their dimensions satisfy
the following relationship:

dim(S1 + · · · + SM) = dim(S1)+ · · · + dim(SM) ≤ m.

The definition above is equivalent to the property that any set of
non-zero vectors {w1, · · · ,wM} such that wi ∈ Si, i = 1, . . . ,M is
linearly independent.

Definition 2 (Generic Data). Let S be a linear subspace of Km

with dimension d. A set of data W drawn from S is said to be
generic if (i) |W| > d, and (ii) every d vectors from W form a
basis for S.

Note this definition is equivalent to the frame-theoretic
description that the columns of W are a frame for S with spark
d+ 1 (see [35, 36]). It is also sometimes said that the dataW is in
general position.

Definition 3 (Similarity Matrix). Suppose W = [w1 · · ·wn] ⊂

K
m has columns drawn from a union of subspaces U =

⋃M
i=1 Si.

We say 4W is a similarity matrix for W if and only if (i) 4W is
symmetric, and (ii) 4W(i, j) 6= 0 if and only if wi and wj come
from the same subspace.

Finally, if A ∈ K
m×n, we define its absolute value version via

abs(A)(i, j) = |A(i, j)|, and its binary version via bin(A)(i, j) = 1 if
A(i, j) 6= 0 and bin(A)(i, j) = 0 if A(i, j) = 0.

2.2. Assumptions
In the rest of what follows, we will assume that U =

⋃M
i=1 Si is a

nonlinear set consisting of the union of non-trivial, independent,
linear subspaces {Si}

M
i=1 of Km, with corresponding dimensions

{

di
}M

i=1
, with dmax : = max1≤i≤M di. We will assume that the data

matrix W = [w1 · · ·wn] ∈ K
m×n has column vectors that are

drawn from U , and that the data drawn from each subspace Si is
generic for that subspace.

3. CUR DECOMPOSITION

Our first tale is the remarkable CUR matrix decomposition, also
known as the skeleton decomposition [37, 38] whose proof can
be obtained by basic linear algebra.

Theorem 1. Suppose A ∈ K
m×n has rank r. Let I ⊂ {1, . . . ,m},

J ⊂ {1, . . . , n} with |I| = s and |J| = k, and let C be the m × k

matrix whose columns are the columns of A indexed by J. Let R be
the s× n matrix whose rows are the rows of A indexed by I. Let U
be the s× k sub-matrix of A whose entries are indexed by I × J. If
rank(U) = r, then A = CU†R.

Proof: Since U has rank r, rank(C) = r. Thus the columns of C
form a frame for the column space of A, and we have A = CX
for some (not necessarily unique) k × n matrix X. Let PI be an
s × m row selection matrix such that R = PIA; then we have
R = PIA = PICX. Note also that U = PIC, so that the last
equation can then be written as R = UX. Since rank(R) = r,
any solution to R = UX is also a solution to A = CX. Thus the
conclusion of the theorem follows upon observing that Y = U†R
is a solution to R = UX. Indeed, the same argument as above
implies that U†R is a solution to R = UX if and only if it is
a solution to RPJ = U = UXPJ where PJ is a n × k column-
selection matrix which picks out columns according to the index
set J. Thus, noting that UU†RPJ = UU†U = U completes the
proof, whence A = CY = CU†R.

Note that the assumption on the rank ofU implies that k, s ≥ r
in the theorem above. While this theorem is quite general, it
should be noted that in some special cases, it reduces to a much
simpler decomposition, a fact that is recorded in the following
corollaries. The proof of each corollary follows from the fact
that the pseudoinverse U† takes those particular forms whenever
the columns or rows are linearly independent ([34, p. 257], for
example).

Corollary 1. Let A,C,U, and R be as in Theorem 1 with C ∈

K
m×r ; in particular, the columns of C are linearly independent.

Then A = C(U∗U)−1U∗R.

Corollary 2. Let A,C,U, and R be as in Theorem 1 with R ∈

K
r×n; in particular, the rows of R are linearly independent. Then

A = CU∗(UU∗)−1R.

Corollary 3. Let A,C,U, and R be as in Theorem 1 with U ∈

K
r×r ; in particular, U is invertible. Then A = CU−1R.

In most sources, the decomposition of Corollary 3 is what is
called the skeleton or CUR decomposition [39], though the case
when k = s > r has been treated in Caiafa and Cichocki [40]. The
statement of Theorem 1 is the most general version of the exact
CUR decomposition.

The precise history of the CUR decomposition is somewhat
difficult to discern. Many articles cite Gantmacher [41], though
the authors have been unable to find the term skeleton
decomposition therein. However, the decomposition does appear
implicitly (and without proof) in a paper of Penrose from 1955
[42]. However, Perhaps the modern starting point of interest
in this decomposition is the work of Goreinov et al. [37, 39].
They begin with the CUR decomposition as in Corollary 3, and
study the error ‖A− CU−1R‖2 in the case that A has rank larger
than r, whereby the decomposition CU−1R is only approximate.
Additionally, they allow more flexibility in the choice of U since
computing the inverse directly may be computationally difficult
(see also [43–45]).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

More recently, there has been renewed interest in this
decomposition. In particular, Drineas et al. [5] provide two
randomized algorithms which compute an approximate CUR
factorization of a given matrix A. Moreover, they provide error
bounds based upon the probabilistic method for choosing C and
R from A. It should also be noted that their middle matrix U is
not U† as in Theorem 1. Moreover, Mahoney and Drineas [1]
give another CUR algorithm based on a way of selecting columns
which provides nearly optimal error bounds for ‖A− CUR‖F (in
the sense that the optimal rank r approximation to any matrix
A in the Frobenius norm is its skinny SVD of rank r, and they
obtain error bounds of the form ‖A − CUR‖F ≤ (2 + ε)‖A −

Ur6rV
T
r ‖F). They also note that the CUR decomposition should

be favored in analyzing real data that is low dimensional because
the matrices C and R maintain the structure of the data, and the
CUR decomposition actually admits an viable interpretation of
the data as opposed to attempting to interpret singular vectors of
the data matrix, which are generally linear combinations of the
data (see also [46]).

Subsequently, others have considered algorithms for
computing CUR decompositions which still provide
approximately optimal error bounds in the sense described
above (see, for example, [2, 38, 47–49]). For applications of the
CUR decomposition in various aspects of data analysis across
scientific disciplines, consult [50–53]. Finally, a very recent paper
discusses a convex relaxation of the CUR decomposition and its
relation to the joint learning problem [54].

It should be noted that the CUR decomposition is one of
a long line of matrix factorization methods, many of which
take a similar form. The main idea is to write A = BX for
some less complicated or more structured matrices B and X.
In the case that B consists of columns of A, this is called the
interpolative decomposition, of which CUR is a special case.
Alternative methods include the classical suspects such as LU,
QR and singular value decompositions. For a thorough treatment
of such matters, the reader is invited to consult the excellent
survey [55]. In general, low rank matrix factorizations find utility
in a broad variety of applications, including copyright security
[56, 57], imaging [58], andmatrix completion [59] to name a very
few.

4. SUBSPACE CLUSTERING VIA CUR
DECOMPOSITION

Our second tale is one of the utility of the CUR decomposition
in the similarity matrix framework for solving the subspace
segmentation problem discussed above. Prior works have
typically focused on CUR as a low-rank matrix approximation
method which has a low cost, and also remains more faithful
to the initial data than the singular value decomposition.
This perspective is quite useful, but here we demonstrate
what appears to be the first application in which CUR is
responsible for an overarching framework, namely subspace
clustering.

As mentioned in the introduction, one approach to clustering
subspace data is to find a similarity matrix from which one can

simply read off the clusters, at least when the data exactly fits the
model and is considered to have no noise. The following theorem
provides a way to find many similarity matrices for a given data
matrix W, all stemming from different CUR decompositions
(recall that a matrix has very many CUR decompositions
depending on which columns and rows are selected).

Theorem 2. Let W = [w1 · · ·wn] ∈ K
m×n be a rank r matrix

whose columns are drawn from U which satisfies the assumptions
in section 2.2. Let W be factorized as W = CU†R where C ∈

K
m×k, R ∈ K

s×n, and U ∈ K
s×k are as in Theorem 1, and let

Y = U†R and Q be either the binary or absolute value version of
Y∗Y. Then, 4W = Qdmax is a similarity matrix forW.

The key ingredient in the proof of Theorem 2 is the fact that
the matrix Y = U†R, which generates the similarity matrix,
has a block diagonal structure due to the independent subspace
structure of U ; this fact is captured in the following theorem.

Theorem 3. LetW,C,U, and R be as in Theorem 2. If Y = U†R,
then there exists a permutation matrix P such that

YP =

Y1 0 · · · 0
0 Y2 · · · 0
...

...
. . .

...
0 · · · 0 YM

,

where each Yi is a matrix of size ki × ni, where ni is the number of
columns in W from subspace Si, and ki is the number of columns
in C from Si. Moreover, WP has the form [W1 . . .WM] where the
columns ofWi come from the subspace Si.

The proofs of the above facts will be related in a subsequent
section.

The role of dmax in Theorem 2 is that Q is almost a similarity
matrix but each cluster may not be fully connected. By raising Q
to the power dmax we ensure that each cluster is fully connected.

The next section will demonstrate that some well-known
solutions to the subspace clustering problem are consequences
of the CUR decomposition. For the moment, let us state some
potential advantages that arise naturally from the statement of
Theorem 2. One of the advantages of the CUR decomposition
is that one can construct many similarity matrices for a data
matrixW by choosing different representative rows and columns;
i.e. choosing different matrices C or R will yield different, but
valid similarity matrices. A possible advantage of this is that
for large matrices, one can reduce the computational load by
choosing a comparatively small number of rows and columns.
Often, in obtaining real data, many entries may be missing or
extremely corrupted. In motion tracking, for example, it could
be that some of the features are obscured from view for several
frames. Consequently, some form of matrix completion may be
necessary. On the other hand, a look at the CUR decomposition
reveals that whole rows of a data matrix can be missing as long as
we can still choose enough rows such that the resulting matrix
R has the same rank as W. In real situations when the data
matrix is noisy, then there is no exact CUR decomposition for
W; however, if the rank of the clean data W is well-estimated,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

then one can compute several CUR approximations of W, i.e. if
the clean data should be rank r, then approximate W ≈ CU†R
where C and R contain at least r columns and rows, respectively.
From each of these approximations, an approximate similarity
may be computed as in Theorem 2, and some sort of averaging
procedure can be performed to produce a better approximate
similarity matrix for the noisy data. This idea is explored more
thoroughly in section 7.

5. SPECIAL CASES

5.1. Shape Interaction Matrix
In their pioneering work on factorization methods for motion
tracking [32], Costeira and Kanade introduced the Shape
Interaction Matrix, or SIM. Given a data matrixW whose skinny
SVD is Ur6rV

∗
r , SIM(W) is defined to be VrV

∗
r . Following their

work, this has found wide utility in theory and in practice. Their
observation was that the SIM often provides a similarity matrix
for data coming from independent subspaces. It should be noted
that in Aldroubi et al. [31], it was shown that examples of data
matricesW can be found such thatVrV

∗
r is not a similarity matrix

for W; however, it was noted there that SIM(W) is almost surely
a similarity matrix (in a sense made precise therein).

Perhaps the most important consequence of Theorem 2 is
that the shape interaction matrix is a special case of the general
framework of the CUR decomposition. This fact is shown in the
following two corollaries of Theorem 2, whose proofs may be
found in section 6.4.

Corollary 4. Let W = [w1 · · ·wn] ∈ K
m×n be a rank r matrix

whose columns are drawn from U . Let W be factorized as W =

WW†W, and let Q be either the binary or absolute value version of
W†W. Then 4W = Qdmax is a similarity matrix forW. Moreover,
if the skinny singular value decomposition of W is W = Ur6rV

∗
r ,

thenW†W = VrV
∗
r .

Corollary 5. Let W = [w1 · · ·wn] ∈ K
m×n be a rank r matrix

whose columns are drawn from U . Choose C = W, and R to be
any rank r row restriction ofW. ThenW = WR†R by Theorem 1.
Moreover, R†R = W†W = VrV

∗
r , where Vr is as in Corollary 4.

It follows from the previous two corollaries that in the ideal
(i.e. noise-free case), the shape interaction matrix of Costeira and
Kanade is a special case of the more general CUR decomposition.
However, note thatQdmax need not be the SIM,VrV

∗
r , in the more

general case when C 6= W.

5.2. Low-Rank Representation Algorithm
Another class of methods for solving the subspace clustering
problem arises from solving some sort of minimization problem.
It has been noted that in many cases such methods are intimately
related to some matrix factorization methods [30, 60].

One particular instance of a minimization based algorithm
is the Low Rank Representation (LRR) algorithm of Liu et al.
[22, 23]. As a starting point, the authors consider the following
rank minimization problem:

min
Z

rank(Z) s.t. W = AZ, (1)

where A is a dictionary that linearly spansW.
Note that there is indeed something to minimize over here

since if A = W, Z = In×n satisfies the constraint, and evidently
rank(Z) = n; however, if rank(W) = r, then Z = W†W

is a solution to W = WZ, and it can be easily shown that
rank(W†W) = r. Note further that any Z satisfying W = WZ
must have rank at least r, and so we have the following.

Proposition 1. Let W be a rank r data matrix whose columns
are drawn from U , then W†W is a solution to the minimization
problem

min
Z

rank(Z) s.t. W = WZ.

Note that in general, solving this minimization problem (1) is
NP–hard (a special case of the results of [61]; see also [62]).
Note that this problem is equivalent to minimizing ‖σ (Z)‖0
where σ (Z) is the vector of singular values of Z, and ‖ · ‖0
is the number of nonzero entries of a vector. Additionally, the
solution to Equation (1) is generally not unique, so typically
the rank function is replaced with some norm to produce a
convex optimization problem. Based upon intuition from the
compressed sensing literature, it is natural to consider replacing
‖σ (Z)‖0 by ‖σ (Z)‖1, which is the definition of the nuclear norm,
denoted by ‖Z‖∗ (also called the trace norm, Ky–Fan norm, or
Shatten 1–norm). In particular, in Liu et al. [22], the following
was considered:

min
Z

‖Z‖∗ s.t. W = AZ. (2)

Solving this minimization problem applied to subspace clustering
is dubbed Low-Rank Representation by the authors in Liu et al.
[22].

Let us now specialize these problems to the case when the
dictionary is chosen to be the whole data matrix, in which case
we have

min
Z

‖Z‖∗ s.t. W = WZ. (3)

It was shown in Liu et al. [23] and Wei and Lin [60] that the SIM
defined in section 5.1, is the unique solution to problem (3):

Theorem 4 ([60], Theorem 3.1). Let W ∈ K
m×n be a rank r

matrix whose columns are drawn from U , and let W = Ur6rV
∗
r

be its skinny SVD. Then VrV
∗
r is the unique solution to (3).

For clarity and completeness of exposition, we supply a
simpler proof of Theorem 4 here than appears in Wei and Lin
[60].

Proof: Suppose that W = U6V∗ is the full SVD of W. Then
sinceW has rank r, we can write

W = U6V∗ =
[

Ur Ũr

]

[

6r 0
0 0

] [

V∗
r

Ṽ∗
r

]

,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

where Ur6rV
∗
r is the skinny SVD of W. Then if W = WZ,

we have that I − Z is in the null space of W. Consequently,
I − Z = ṼrX for some X. Thus we find that

Z = I + ṼrX

= VV∗ + ṼrX

= VrV
∗
r + ṼrṼ

∗
r + ṼrX

= VrV
∗
r + Ṽr(Ṽ

∗
r + X)

= :A+ B.

Recall that the nuclear norm is unchanged by multiplication on
the left or right by unitary matrices, whereby we see that ‖Z‖∗ =

‖V∗Z‖∗ = ‖V∗A+ V∗B‖∗. However,

V∗A+ V∗B =

[

V∗
r

0

]

+

[

0

Ṽ∗
r + X

]

.

Due to the above structure, we have that ‖V∗A + V∗B‖∗ ≥

‖V∗A‖∗, with equality if and only if V∗B = 0 (for example, via
the same proof as [63, Lemma 1], or also Lemma 7.2 of [23]).

It follows that

‖Z‖∗ > ‖A‖∗ = ‖VrV
∗
r ‖∗,

for any B 6= 0. Hence Z = VrV
∗
r is the unique minimizer of

problem (3).

Corollary 6. LetW be as in Theorem 4, and letW = WR†R be a
factorization of W as in Theorem 1. Then R†R = W†W = VrV

∗
r

is the unique solution to the minimization problem (3).

Proof: Combine Corollary 5 and Theorem 4.

Let us note that the uniqueminimizer of problem (2) is known
for general dictionaries as the following result of Liu, Lin, Yan,
Sun, Yu, and Ma demonstrates.

Theorem 5 ([23], Theorem 4.1). Suppose that A is a dictionary
that linearly spans W. Then the unique minimizer of problem (2)
is

Z = A†W.

The following corollary is thus immediate from the CUR
decomposition.

Corollary 7. If W has CUR decomposition W = CC†W (where
R = W, hence U = C, in Theorem 1), then C†W is the unique
solution to

min
Z

‖Z‖∗ s.t. W = CZ.

The above theorems and corollaries provide a theoretical bridge
between the shape interaction matrix, CUR decomposition, and
Low-Rank Representation. In particular, in Wei and Lin [60], the
authors observe that of primary interest is that while LRR stems
from sparsity considerations à la compressed sensing, its solution
in the noise free case in fact comes from matrix factorization,
which is quite interesting.

5.3. Basis Framework of Aldroubi et al. [31]
As a final note, the CUR framework proposed here gives a
broader vantage point for obtaining similarity matrices than that
of Aldroubi et al. [31]. Consider the following, which is the main
result therein:

Theorem 6 ([31], Theorem 2). LetW ∈ K
m×n be a rank r matrix

whose columns are drawn from U . Suppose W = BP where the
columns of B form a basis for the column space of W and the
columns of B lie in U (but are not necessarily columns of W). If
Q = abs(P∗P) or Q = bin(P∗P), then 4W = Qdmax is a similarity
matrix forW.

At first glance, Theorem 6 is on the one hand more specific
than Theorem 2 since the columns of B must be a basis for
the span of W, whereas C may have some redundancy (i.e., the
columns form a frame). On the other hand, Theorem 6 seems
more general in that the columns of B need only come from U ,
but are not forced to be columns of W as are the columns of
C. However, one need only notice that if W = BP as in the
theorem above, then defining W̃ = [W B] gives rise to the CUR
decomposition W̃ = BB†W̃. But clustering the columns of W̃ via
Theorem 2 automatically gives the clusters ofW.

6. PROOFS

Here we enumerate the proofs of the results in section 4,
beginning with some lemmata.

6.1. Some Useful Lemmata
The first lemma follows immediately from the definition of
independent subspaces.

Lemma 1. Suppose U = [U1 . . .UM] where each Ui is a
submatrix whose columns come from independent subspaces of
K

m. Then we may write

U = [B1 . . . BM]

V1 0 . . . 0
0 V2 . . . 0
...

...
. . .

...
0 . . . 0 VM

.

where the columns of Bi form a basis for the column space of Ui.

The next lemma is a special case of [31, Lemma 1].

Lemma 2. Suppose that U ∈ K
m×n has columns which are generic

for the subspace S of Km from which they are drawn. Suppose P ∈

K
r×m is a row selection matrix such that rank(PU) = rank(U).

Then the columns of PU are generic.

Lemma 3. Suppose that U = [U1 . . . UM], and that each Ui is
a submatrix whose columns come from independent subspaces Si,
i = 1, . . . ,M of Km, and that the columns of Ui are generic for
Si. Suppose that P ∈ K

r×m with r ≥ rank(U) is a row selection
matrix such that rank(PU) = rank(U). Then the subspaces P(Si),
i = 1, . . . ,M are independent.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

Proof: Let S = S1 + · · · + SM . Let di = dim(Si), and d =

dim(S). From the hypothesis, we have that rank(PUi) = di,

and rank(PU) = d =
M
∑

i=1
di. Therefore, there are d linearly

independent vectors for P(S) in the columns of PU. Moreover,
since PU = [PU1, . . . , PUM], there exist di linearly independent
vectors from the columns of PUi for P(Si). Thus, dim P(S) =

d =
∑

i di =
∑

i dim P(Si), and the conclusion of the lemma
follows.

The next few facts which will be needed come from basic graph
theory. Suppose G = (V ,E) is a finite, undirected, weighted
graph with vertices in the set V = {v1, . . . , vk} and edges E. The
geodesic distance between two vertices vi, vj ∈ V is the length
(i.e., number of edges) of the shortest path connecting vi and vj,
and the diameter of the graph G is the maximum of the pairwise
geodesic distances of the vertices. To each weighted graph is
associated an adjacency matrix, A, such that A(i, j) is nonzero if
there is an edge between the vertices vi and vj, and 0 if not. We
call a graph positively weighted if A(i, j) ≥ 0 for all i and j. From
these facts, we have the following lemma.

Lemma 4. Let G be a finite, undirected, positively weighted graph
with diameter r such that every vertex has a self-loop, and let A be
its adjacency matrix. Then Ar(i, j) > 0 for all i, j. In particular, Ar

is the adjacency matrix of a fully connected graph.

Proof: See [31, Corollary 1].

The following lemma connects the graph theoretic
considerations with the subspace model described in the
opening.

Lemma 5. Let V = {p1, . . . , pN} be a set of generic vectors that
represent data from a subspace S of dimension r and N > r ≥ 1.
Let Q be as in Theorem 2 for the case U = S. Finally, let G be
the graph whose vertices are pi and whose edges are those pipj such
that Q(i, j) > 0. Then G is connected, and has diameter at most r.
Moreover, Qr is the adjacency matrix of a fully connected graph.

Proof: The proof is essentially contained in [31, Lemmas 2 and
3], but for completeness is presented here.

First, to see that G is connected, first consider the base case
when N = r + 1, and let C be a non-empty set of vertices of
a connected component of G. Suppose by way of contradiction
that CC contains 1 ≤ k ≤ r vertices. Then since N = r + 1, we
have that |CC| ≤ r, and hence the vectors {pj}j∈CC are linearly
independent by the generic assumption on the data. On the other
hand, |C| ≤ r, so the vectors {pi}i∈C are also linearly independent.
But by construction 〈p, q〉 = 0 for any p ∈ C and q ∈ CC, hence
the set {pi}i∈C∪CC is a linearly independent set of r + 1 vectors
in S which contradicts the assumption that S has dimension r.
Consequently, CC is empty, i.e., G is connected.

For generic N > r, suppose p 6= q are arbitrary elements
of V . It suffices to show that there exists a path connecting p
to q. Since N > r and V is generic, there exists a set V0 ⊂

V \ {p, q} of cardinality r − 1 such that {p, q} ∪ V0 is a set of
linearly independent vectors in S. This is a subgraph of r + 1
vertices of G which satisfies the conditions of the base case when

N = r + 1, and so this subgraph is connected. Hence, there is a
path connecting p and q, and since these were arbitrary, we can
conclude that G is connected.

Finally, note that in the proof of the previous step for general
N > r, we actually obtain that there is a path of length at
most r connecting any two arbitrary vertices p, q ∈ V . Thus,
the diameter of G is at most r. The moreover statement follows
directly from Lemma 4, and so the proof is complete.

6.2. Proof of Theorem 3
Without loss of generality, we assume that W is such that W =

[W1 . . .WM] whereWi is anm×ni matrix for each i = 1, . . . ,M

and
M
∑

i
ni = n, and the vector columns of Wi come from the

subspace Si. Under this assumption, we will show that Y is a block
diagonal matrix.

Let P be the row selection matrix such that PW = R; in
particular, note that P maps Rm to R

s, and that because of the
structure ofW, we may write R = [R1 . . .RM] where the columns
of Ri belong to the subspace S̃i : = P(Si). Note also that the
columns of each Ri are generic for the subspace S̃i on account of
Lemma 2, and that the subspaces S̃i are independent by Lemma
3. Additionally, since U consists of certain columns of R, and
rank(U) = rank(R) = rank(W) by assumption, we have that
U = [U1 . . . UM] where the columns of Ui are in S̃i.

Next, recall from the proof of the CUR decomposition that
Y = U†R is a solution to R = UX; thus R = UY . Suppose that r is
a column of R1, and let y = [y1 y2 . . . yM]∗ be the corresponding
column of Y so that r = Uy. Then we have that r =

∑M
j=1 Ujyj,

and in particular, since r is in R1,

(U1y1 − r)+ U2y2 + · · · + UMyM = 0,

whereupon the independence of the subspaces S̃i implies that
U1y1 = r andUiyi = 0 for every i = 2, . . . ,M. On the other hand,
note that ỹ = [y1 0 . . . 0]∗ is another solution; i.e., r = Uỹ.
Recalling that U†y is the minimal-norm solution to the problem
r = Uy, we must have that

‖y‖22 =

M
∑

i=1

‖yi‖
2
2 ≤ ‖ỹ‖22 = ‖y1‖

2
2.

Consequently, y = ỹ, and it follows that Y is block diagonal by
applying the same argument for columns of Ri, i = 2, . . . ,M.

6.3. Proof of Theorem 2
Without loss of generality, on account of Theorem 3, we
may assume that Y is block diagonal as above. Then we first
demonstrate that each block Yi has rank di = dim(Si) and has
columns which are generic. Since Ri = UiYi, and rank(Ri) =

rank(Ui) = di, we have rank(Yi) ≥ di since the rank of a product
is at most the minimum of the ranks. On the other hand, since
Yi = U†Ri, rank(Yi) ≤ rank(Ri) = di, whence rank(Yi) = di.
To see that the columns of each Yi are generic, let y1, . . . , ydi be
di columns in Yi and suppose there are constants c1, . . . , cdi such

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

that
∑di

j=1 cjyj = 0. It follows from the block diagonal structure

of Y that

0 = Ui

di
∑

j=1

cjyj

 =

di
∑

j=1

cjUiyj =

di
∑

j=1

cjrj,

where rj, j = 1, . . . , di are the columns of Ri. Since the columns of
Ri are generic by Lemma 2, it follows that ci = 0 for all i, whence
the columns of Yi are generic.

NowQ = Y∗Y is an n×n block diagonal matrix whose blocks
are given by Qi = Y∗

i Yi, i = 1, . . . ,M, and we may consider each
block as the adjacency matrix of a graph as prescribed in Lemma
4. Thus from the conclusion there, each block gives a connected
graph with diameter di, and soQ

dmax will give rise to a graph with
M distinct fully connected components, where the graph arising
from Qi corresponds to the data inW drawn from Si. Thus Q

dmax

is indeed a similarity matrix forW.

6.4. Proofs of Corollaries
Proof of Corollary 4: That 4W is a similarity matrix follows
directly from Theorem 2. To see the moreover statement, recall

that W† = Vr6
†
rU

∗
r , whence W†W = Vr6

†
rUrU

∗
r 6rV

∗
r =

Vr6
†
r 6rV

∗
r = VrV

∗
r .

Proof of Corollary 5: By Lemma 1, we may writeW = BZ, where
Z is block diagonal, and B = [B1 . . . BM] with the columns of Bi
being a basis for Si. Let P be the row-selection matrix which gives
R, i.e. R = PW. Then R = PBZ. The columns of B are linearly
independent (and likewise for the columns of PB by Lemma
3), whence W† = Z†B†, and R† = Z†(PB)†. Moreover, linear
independence of the columns also implies that B†B and (PB)†PB
are both identity matrices of the appropriate size, whereby

R†R = Z†(PB)†PBZ = Z†Z = Z†B†BZ = W†W,

which completes the proof (note that the final identity W†W =

VrV
∗
r follows immediately from Corollary 4).

7. EXPERIMENTAL RESULTS

7.1. A Proto-Algorithm for Noisy Subspace
Data
Up to this point, we have solely considered the noise-free case,
when W contains uncorrupted columns of data lying in a union
of subspaces satisfying the assumptions in section 2.2. We now
depart from this to consider the more interesting case when the
data is noisy as is typical in applications. Particularly, we assume
that a data matrix W is a small perturbation of an ideal data
matrix, so that the columns of W approximately come from a
union of subspaces; that is, wi = ui + ηi where ui ∈ U and
ηi is a small noise vector. For our experimentation, we limit our
considerations to the case of motion data.

In motion segmentation, one begins with a video, and some
sort of algorithm which extracts features on moving objects and
tracks the positions of those features over time. At the end of
the video, one obtains a data matrix of size 2F × N where F

is the number of frames in the video and N is the number of
features tracked. Each vector corresponds to the trajectory of
a fixed feature, i.e., is of the form (x1, y1, . . . , xF , yF)

T , where
(xi, yi) is the position of the feature at frame 1 ≤ i ≤ F.
Even though these trajectories are vectors in a high dimensional
ambient space R2F , it is known that the trajectories of all feature
belonging to the same rigid body lie in a subspace of dimension
4 [64]. Consequently, motion segmentation is a suitable practical
problem to tackle in order to verify the validity of the proposed
approach.

Proto-algorithm: CUR Subspace Clustering

Input: A data matrixW = [w1 · · ·wN] ∈ K
m×n, expected

number of subspaces M, and number of trials k.
Output: Subspace (cluster) labels

1 for i = 1 to k do

2 Find approximate CUR factorization ofW,W ≈ CiU
†
i Ri

3 Yi = U†
i Ri

4 Threshold Yi

5 Compute 4
(i)
W = Y∗

i Yi

6 Enforce known connections

7 end

8 4W = abs(median(4
(1)
W , . . . ,4

(k)
W))

9 Cluster the columns of 4W

10 return cluster labels

It should be evident that the reason for the term proto-
algorithm is that several of the steps admit some ambiguity in
their implementation. For instance, in line 2, how should one
choose a CUR approximation to W? Many different ways of
choosing columns and rows have been explored, e.g., by Drineas
et al. [5], who choose rows and columns randomly according
to a probability distribution favoring large columns or rows,
respectively. On the other hand, Demanet and Chiu [38] show
that uniformly selecting columns and rows can also perform quite
well. In our subsequent experiments, we choose to select rows and
columns uniformly at random.

There is yet more ambiguity in this step though, in that one
has the flexibility to choose different numbers of columns and
rows (as long as each number is at least the rank of W). Our
choice of the number of rows and columns will be discussed in
the next subsections.

Thirdly, the thresholding step in line 4 of the proto-algorithm
deserves some attention. In experimentation, we tried a number
of thresholds, many of which were based on the singular values
of the data matrix W. However, the threshold that worked the
best for motion data was a volumetric one based on the form of
Yi guaranteed by Theorem 3. Indeed, if there are M subspaces
each of the same dimension, then Yi should have precisely a
proportion of 1 − 1

M of its total entries being 0. Thus our
thresholding function orders the entries in descending order and
keeps the top (1− 1

M)× (total # of entries), and sets the rest to 0.
Line 7 is simply a way to use any known information about

the data to assist in the final clustering. Typically, no prior

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

information is assumed other than the fact that we obviously
know that wi is in the same subspace as itself. Consequently here,
we force the diagonal entries of 4i to be 1 to emphasize that this
connection is guaranteed.

The reason for the appearance of an averaging step in line
8 is that, while a similarity matrix formed from a single CUR
approximation of a data matrix may contain many errors, this
behavior should average out to give the correct clusters. The

entrywise median of the family {4
(i)
W}ki=1 is used rather than the

mean to ensure more robustness to outliers. Note that a similar
method of averaging CUR approximations was evaluated for
denoising matrices in Sekmen et al. [65]; additional methods
of matrix factorizations in matrix (or image) denoising may be
found in Muhammad et al. [66], for example.

Note also that we do not take powers of the matrix Y∗
i Yi

as suggested by Theorem 2. The reason for this is that when
noise is added to the similarity matrix, taking the matrix product
multiplicatively enhances the noise and greatly degrades the
performance of the clustering algorithm. There is good evidence
that taking elementwise products of a noisy similarity matrix
can improve performance [26, 33]. This is really a different
methodology than taking matrix powers, so we leave this
discussion until later.

Finally, the clustering step in line 10 is there because at that
point, we have a non-ideal similarity matrix 4W, meaning that
it will not exactly give the clusters because there are few entries
which are actually 0. However, each column should ideally have
large (i, j) entry whenever wi and wj are in the same subspace,
and small (in absolute value) entries whenever wi and wj are
not. This situation mimics what is done in Spectral Clustering,
in that the matrix obtained from the first part of the Spectral
Clustering algorithm does not have rows which lie exactly on
the coordinate axes given by the eigenvectors of the graph
Laplacian; however hopefully they are small perturbations of
such vectors and a basic clustering algorithm like k–means can
give the correct clusters. We discuss the performance of several
different basic clustering algorithms used in this step in the
sequel.

In the remainder of this section, the proto-algorithm above
is investigated by first considering its performance on synthetic
data, whereupon the initial findings are subsequently verified
using the motion segmentation dataset known as Hopkins155
[67].

7.2. Simulations Using Synthetic Data
A set of simulations are designed using synthetic data. In
order for the results to be comparable to that of the motion
segmentation case presented in the following section, the data
is constructed in a similar fashion. Particularly, in the synthetic
experiments, data comes from the union of independent 4
dimensional subspaces of R300. This corresponds to a feature
being tracked for 5 s in a 30 fps video stream. Two cases
similar to the ones in Hopkins155 dataset are investigated
for increasing levels of noise. In the first case, two subspaces
of dimension 4 are randomly generated, while in the second
case three subspaces are generated. In both cases, the data
is randomly drawn from the unit ball of the subspaces. In

both cases, the level of noise on W is gradually increased
from the initial noiseless state to the maximum noise level.
The entries of the noise are i.i.d. N (0, σ 2) random variables
(i.e., with zero-mean and variance σ 2), where the variance
increases as σ = [0.000, 0.001, 0.010, 0.030, 0.050, 0.075,
0.10].
In each case, for each noise level, 100 data matrices are

randomly generated containing 50 data vectors in each subspace.
Once each data matrix W is formed, a similarity matrix
4W is generated using the proto-algorithm for CUR subspace
clustering. The parameters used are as follows: in the CUR
approximation step (line 2), we choose all columns and the
expected rank number of rows. Therefore, the matrix Y of
Theorem 2 is of the form R†R. The expected rank number
of rows (i.e., the number of subspaces times 4) are chosen
uniformly at random from W, and it is ensured that R has
the expected rank before proceeding; the thresholding step (line
4) utilizes the volumetric threshold described in the previous
subsection, so in Case 1 we eliminate half the entries of Y ,
while in Case 2 we eliminate 2/3 of the entries; we set k =

25, i.e. we compute 25 separate similarity matrices for each
of the 100 data matrices and subsequently take the entrywise
median of the 25 similarity matrices (line 8)—extensive testing
shows no real improvement for larger values of k, so this value
was settled on empirically; finally, we utilized three different
clustering algorithms in line 10: k–means, Spectral Clustering
[24], and Principal Coordinate Clustering (PCC) [68]. To spare
unnecessary clutter, we only display the results of the best
clustering algorithm in Figure 2, which turns out to be PCC,
and simply state here that using Matlab’s k–means algorithm
gives very poor performance even at low noise levels, while
Spectral Clustering gives good performance for low noise levels
but degrades rapidly after about σ = 0.05. More specifically,
k–means has a range of errors from 0 to 50% even for the
σ = 0 in Case 2, while having an average of 36 and 48%
clustering error in Case 1 and 2, respectively for the maximal
noise level σ = 0.1. Meanwhile, Spectral Clustering exhibited
on average perfect classification up to noise level σ = 0.03
in both cases, but jumped rapidly to an average of 12 and
40% error in Case 1 and 2, respectively for the case σ =

0.1. Figure 2 below shows the error plots for both cases when
utilizing PCC. For a full description of PCC the reader is
invited to consult [68], but essentially it eliminates the use of
the graph Laplacian as in Spectral Clustering, and instead uses
the principal coordinates of the first few left singular vectors
in the singular value decomposition of 4W. Namely, if 4W

has skinny SVD of order M (the number of subspaces) of
UM6MV∗

M , then PCC clusters the rows of 6MV∗
M using k–

means.
Results for Case 1 and Case 2 using PCC are given in

Figure 1. For illustration, Figure 2 shows the performance of
a single CUR decomposition to form 4W. As expected, the
randomness involved in finding a CUR decomposition plays a
highly nontrivial role in the clustering algorithm. It is remarkable
to note, however, the enormity of the improvement the averaging
procedure gives for higher noise levels, as can be seen by
comparing the two figures.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

FIGURE 1 | Synthetic Cases 1 and 2 for 4W calculated using the median of 25 CUR decompositions. (A) Case 1, (B) Case 2.

FIGURE 2 | Synthetic Cases 1 and 2 for 4W calculated using a single CUR decomposition. (A) Case 1, (B) Case 2.

7.3. Motion Segmentation Dataset:
Hopkins155
The Hopkins155 motion dataset contains 155 videos which can
be broken down into several categories: checkerboard sequences
where moving objects are overlaid with a checkerboard pattern
to obtain many feature points on each moving object, traffic
sequences, and articulated motion (such as people walking)
where the moving body contains joints of some kind making the
4-dimensional subspace assumption on the trajectories incorrect.
Associated with each video is a data matrix giving the trajectories
of all features on the moving objects (these features are fixed
in advance for easy comparison). Consequently, the data matrix
is unique for each video, and the ground truth for clustering is
known a priori, thus allowing calculation of the clustering error,
which is simply the percentage of incorrectly clustered feature
points. An example of a still frame from one of the videos in
Hopkins155 is shown in Figure 3. Here we are focused only on
the clustering problem for motion data; however, there are many
works on classifying motions in video sequences which are of a
different flavor (e.g., [69–71]).

As mentioned, clustering performance using CUR
decompositions is tested using the Hopkins155 dataset. In
this set of experiments, we use essentially the same parameters
as discussed in the previous subsection when testing synthetic

data. That is, we use CUR approximations of the form WR†R
where exactly the expected rank number of rows are chosen
uniformly at random, the volumetric threshold is used, and we
take the median of 50 similarity matrices for each of the 155 data
matrices (we use k = 50 here instead of 25 to achieve a more
robust performance on the real dataset). Again, PCC is favored
over k–means and Spectral Clustering due to a dramatic increase
in performance.

It turns out that for real motion data, CUR yields better overall

results than SIM, the other pure similarity matrix method. This

is reasonable given the flexibility of the CUR decomposition.
Finding several similarity matrices and averaging them has the

effect of averaging out some of the inherent noise in the data. The

classification errors for our method as well as many benchmarks
appear inTables 1–3. Due to the variability of any single trial over

the Hopkins155 dataset, the CUR data presented in the tables is
the average of 20 runs of the algorithm over the entire dataset.
The purpose of this work is not to fine tune CUR’s performance
on the Hopkins155 dataset; nonetheless, the results using this
simple method are already better than many of those in the
literature.

To better compare performance, we timed the CUR-based
method described above in comparison with some of the
benchmark timings given in Tron and Vidal [67]. For direct

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

FIGURE 3 | Example stills from a car sequence (left) and checkerboard sequence (right) from the Hopkins155 motion dataset.

TABLE 1 | % classification errors for sequences with two motions.

GPCA (%) LSA (%) RANSAC (%) MSL (%) ALC (%) SSC-B (%) SSC-N (%) NLS (%) SIM (%) CUR (%)

CHECKER (78)

Average 6.09 2.57 6.52 4.46 1.55 0.83 1.12 0.23 3.52 0.94

Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00 0.00 0.80 0.00

TRAFFIC (31)

Average 1.41 5.43 2.55 2.23 1.59 0.23 0.02 1.40 8.46 1.08

Median 0.00 1.48 0.21 0.00 1.17 0.00 0.00 0.00 1.95 0.05

ARTICULATED (11)

Average 2.88 4.10 7.25 7.23 10.70 1.63% 0.62 1.77 6.00 6.36

Median 0.00 1.22 2.64 0.00 0.95 0.00 0.00 0.88 0.43 0.00

ALL (120 SEQ)

Average 4.59% 3.45% 5.56% 4.14% 2.40% 0.75% 0.82% 0.57% 5.03% 1.47%

Median 0.38% 0.59% 1.18% 0.00% 0.43% 0.00% 0.00% 0.00% 1.07% 0.00%

TABLE 2 | % classification errors for sequences with three motions.

GPCA (%) LSA (%) RANSAC (%) MSL (%) ALC (%) SSC-B (%) SSC-N (%) NLS (%) SIM (%) CUR (%)

CHECKER (26)

Average 31.95 5.80 25.78 10.38 5.20 4.49 2.97 0.87 8.26 3.25

Median 32.93 1.77 26.00 4.61 0.67 0.54 0.27 0.35 2.16 1.05

TRAFFIC (7)

Average 19.83 25.07 12.83 1.80 7.75 0.61 0.58 1.86 16.59 3.57

Median 19.55 23.79 11.45 0.00 0.49 0.00 0.00 1.53 10.33 0.72

ARTICULATED (2)

Average 16.85 7.25 21.38 2.71 21.08 1.60 1.60 5.12 18.42 8.80

Median 16.85 7.25 21.38 2.71 21.08 1.60 1.60 5.12 18.42 8.80

ALL (35 SEQ)

Average 28.66 9.73 22.94 8.23 6.69 3.55 2.45 1.31 10.51 3.63

Median 28.26 2.33 22.03 1.76 0.67 0.25 0.20 0.45 4.46 0.92

comparison, we ran all of the algorithms on the same machine,
which was a mid-2012 Macbook Pro with 2.6 GHz Intel Core
i7 processor and 8GB of RAM. The results are listed in Table 4.
We report the times for various values of k as in Step 1 of the
Proto-algorithm, indicating how many CUR approximations are
averaged to compute the similarity matrix.

7.4. Discussion
It should be noted that after thorough experimentation on noisy
data, using a CUR decomposition which takes all columns and
exactly the expected rank number of rows exhibits the best
performance. That is, a decomposition of the form W = WR†R
performs better on average than one of the form W = CU†R.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

TABLE 3 | % classification errors for all sequences.

GPCA (%) LSA (%) RANSAC (%) MSL (%) ALC (%) SSC-B (%) SSC-N (%) NLS (%) SIM (%) CUR (%)

ALL (155 SEQ)

Average 10.34 4.94 9.76 5.03 3.56 1.45 1.24 0.76 6.26 1.96

Median 2.54 0.90 3.21 0.00 0.50 0.00 0.00 0.20 1.33 0.07

TABLE 4 | Run times (in s) over the entire Hopkins155 dataset for various

algorithms.

Algorithm GPCA LSA RANSAC CUR CUR CUR

(k = 25) (k = 50) (k = 75)

Time (s) 3.80 361.77 3.39 71.96 202.43 392.26

The fact that choosing more columns performs better when
the matrix W is noisy makes sense in that any representation
of the form W = CX is a representation of W in terms of
the frame vectors of C. Consequently, choosing more columns
in the matrix C means that we are adding redundancy to the
frame, and it is well-known to be one of the advantages of frame
representations that redundancy provides greater robustness to
noise. Additionally, we noticed experimentally that choosing
exactly r rows in the decomposition WR†R exhibits the best
performance. It is not clear as of yet why this is the case.

As seen in the tables above, the proposed CUR based
clustering algorithm works dramatically better than SIM, but
does not beat the best state-of-the-art obtained by the first and
fourth author in Aldroubi and Sekmen [72]. More investigation
is needed to determine if there is a way to utilize the CUR
decomposition in a better fashion to account for the noise. Of
particular interest may be to utilized convex relaxation method
recently proposed in Li et al. [54].

One interesting note from the results in the tables above is
that, while some techniques for motion clustering work better on
the checkered sequences rather than traffic sequences (e.g., NLS,
SSC, and SIM), CUR seems to be blind to this difference in the
type of data. It would be interesting to explore this phenomenon
further to determine if the proposed method performs uniformly
for different types of motion data. We leave this task to future
research.

As a final remark, we note that the performance of CUR
decreases as k, the number of CUR decompositions averaged to
obtain the similarity matrix, increases. The error begins to level
out beyond about k = 50, whereas the time steadily increases as k
does (see Table 4). One can easily implement an adaptive way of
choosing k for each data matrix rather than holding it fixed. To
test this, we implemented a simple threshold by taking, for each

i in the Proto-algorithm, a temporary similarity matrix 4̃
(i)
W : =

abs(median(4
(1)
W , . . . 4

(i)
W)). That is, 4̃

(i)
W is the median of all of

the CUR similarity matrices produced thus far in the for loop.We

then computed ‖4̃
(i)
W − 4̃

(i−1)
W ‖2, and compared it to a threshold

(in this case 0.01). If the normwas less than the threshold, thenwe
stopped the for loop, and if not we kept going, setting an absolute

cap of 100 on the number of CUR decompositions used. We
found that on average, 57 CUR decompositions were used, with a
minimum of 37, a maximum of 100 (the threshold value), and a
standard deviation of 13. Thus it appears that a roughly optimal
region for fast time performance and good clustering accuracy is
around k = 50 to k = 60 CUR decompositions.

7.5. Robust CUR Similarity Matrix for
Subspace Clustering
We now turn to a modification of the Proto-algorithm
discussed above. One of the primary reasons for using the
CUR decomposition as opposed to the shape interaction matrix
(VrV

∗
r) is that the latter is not robust to noise. However, Ji et al.

[33] proposed a robustified version of SIM, called RSIM. The
key feature of their algorithm is that they do not enforce the
clustering rank beforehand, but they find a range of possible
ranks, and make a similarity matrix for each rank in this range,
and perform Spectral Clustering on a modification of the SIM.
Then, they keep the clustering labels from the similarity matrix
for the rank r which minimizes the associated minCut quantity
on the graph determined by the similarity matrix.

Recall given a weighted, undirected graph G = (V ,E), and
a partition of its vertices, {A1, . . . ,Ak}, the Ncut value of the
partition is

Ncutk(A1, . . . ,Ak) : =
1

2

k
∑

i=1

W(Ai,A
C
i)

vol(Ai)
,

where W(A,AC) : =
∑

i∈A,j∈AC wi,j, where wi,j is the weight of

the edge (vi, vj) (defined to be 0 if no such edge exists). The RSIM
method varies the rank r of the SIM (i.e. the rank of the SVD
taken), and minimizes the corresponding Ncut quantity over r.

The additional feature of the RSIM algorithm is that rather
than simply taking VrV

∗
r for the similarity matrix, they first

normalize the rows of Vr and then take elementwise power of the
resulting matrix. This follows the intuition of Lauer and Schnorr
[26] and should be seen as a type of thresholding as in Step 4 of
the Proto-algorithm. For the full RSIM algorithm, consult [33],
but we present the CUR analog that maintains most of the steps
therein.

The main difference between Algorithm 1 and that of Ji et al.
[33] is that in the latter, Steps 2–8 in Algorithm 1 are replaced
with computing the thin SVD of order r, and normalizing the
rows of Vr , and then setting 4W = VrV

∗
r . In Ji et al. [33],

the Normalized Cuts clustering algorithm is preferred, which is
also called Spectral Clustering with the symmetric normalized
graph Laplacian [24]. In our testing of RCUR, it appears that the
normalization and elementwise powering steps interfere with the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

Algorithm 1: Robust CUR Similarity Matrix (RCUR)

Input: A data matrixW = [w1 · · ·wN] ∈ K
m×n, minimum

rank rmin and maximum rank rmax, number of trials
k, and exponentiation parameter α.

Output: Subspace (cluster) labels and best rank rbest
1 for r = rmin to rmax do

2 for i = 1 to k do
3 Find approximate CUR factorization ofW,

W ≈ CiU
†
i Ri

4 Yi = U†
i Ri

5 Normalize columns of Yi, call the resulting matrix Yi

6 Compute 4
(i)
W = Y∗

i Yi

7 end

8 4W = abs(median(4
(1)
W , . . . ,4

(k)
W))

9 (4W)i,j = (4W)αi,j, i.e., take elementwise power of the

similarity matrix
10 Cluster the columns of 4W

11 end

12 rbest = argmin
r

Ncutr

13 return cluster labels from trial rbest, and rbest.

TABLE 5 | % classification errors for sequences with two motions.

SSC-B (%) SSC-N (%) NLS (%) RSIM (%) RCUR (%)

CHECKER (78)

Average 0.83 1.12 0.23 0.48 0.17%

Median 0.00 0.00 0.00 0.00 0.00

TRAFFIC (31)

Average 0.23 0.02 1.40 0.06 0.09

Median 0.00 0.00 0.00 0.00 0.00

ARTICULATED (11)

Average 1.63 0.62 1.77 1.43 1.26

Median 0.00 0.00 0.88 0.00 0.00

ALL (120 SEQ)

Average 0.75 0.82 0.57 0.46 0.25

Median 0.00 0.00 0.00 0.00 0.00

Bold values indicates which algorithm achieves the best performance on a given set of

sequences.

principal coordinate system in PC clustering; we therefore used
Spectral Clustering as in the RSIM case. Results are presented
in Tables 5–7. Note that the values for RSIM may differ from
those reported in Ji et al. [33]; there the authors only presented
errors for all 2–motion sequences, all 3–motion sequences, and
overall rather than considering each subclass (e.g., checkered or
traffic). We used the code from [33] for the values specified by
their algorithm and report its performance in the tables below (in
general, the values reported here are better than those in [33]).

The results displayed in the table are obtained by choosing
k = 50 to be fixed (based on the analysis in the previous section),

and taking CUR factorizations of the form W ≈ CiR
†
i Ri, where

we choose r rows to form Ri, where r is given in Step 1 of the
algorithm. This is, by Corollary 5, the theoretical equivalent of
taking VrV

∗
r as in RSIM. Due to the randomness of finding CUR

TABLE 6 | % classification errors for sequences with three motions.

SSC-B (%) SSC-N (%) NLS (%) RSIM (%) RCUR (%)

CHECKER (26)

Average 4.49 2.97 0.87 0.63 0.40

Median 0.54 0.27 0.35 0.40 0.03

TRAFFIC (7)

Average 0.61 0.58 1.86 2.22 0.89

Median 0.00 0.00 1.53 0.19 0.03

ARTICULATED (2)

Average 1.60 1.60 5.12 18.95 4.81

Median 1.60 1.60 5.12 18.95 4.81

ALL (35 SEQ)

Average 3.55 2.45 1.31 2.00 0.75

Median 0.25 0.20 0.45 0.43 0.00

Bold values indicates which algorithm achieves the best performance on a given set of

sequences.

TABLE 7 | % classification errors for all sequences.

SSC-B (%) SSC-N (%) NLS (%) RSIM (%) RCUR (%)

ALL (155 SEQ)

Average 1.45 1.24 0.76 0.81 0.36

Median 0.00 0.00 0.20 0.00 0.00

Bold values indicates which algorithm achieves the best performance on a given set of

sequences.

factorizations in Algorithm 1, the algorithmwas run 20 times and
the average performance was reported in Tables 5–7. We note
also that the standard deviation of the performance across the
20 trials was less than 0.5% for all categories with the exception
of the Articulated 3 motion category, in which case the standard
deviation was large (5.48%).

As can be seen, the algorithm proposed here does not yield
the best performance on all facets of the Hopkins155 dataset;
however, it does achieve the best overall classification result to
date with only 0.36% average classification error. As an additional
note, running Algorithm 1 with only k = 10 CUR factorizations
used for each data matrix still yields relatively good results (total
2–motion error of 0.41%, total 3–motion error of 1.21%, and
total error on all of Hopkins155 of 0.59%) while allowing for
less computation time. Preliminary tests suggest also that taking
fewer rows in the CUR factorization step in Algorithm 1 works
much better than in the version of the Proto-algorithm used in
the previous sections (for instance, taking half of the available
columns and r rows still yields <0.5% overall error). However,
the purpose of the current work is not to optimize all facets of
Algorithm 1, as much more experimentation needs to be done to
determine the correct parameters for the algorithm, and it needs
to be tested on a broad variety of datasets which approximately
satisfy the union of subspaces assumption herein considered.
This task we leave to future work.

8. CONCLUDING REMARKS

The motivation of this work was truly the realization that
the exact CUR decomposition of Theorem 1 can be used

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 January 2019 | Volume 4 | Article 65

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

for the subspace clustering problem. We demonstrated that,
on top of its utility in randomized linear algebra, CUR
enjoys a prominent place atop the landscape of solutions to
the subspace clustering problem. CUR provides a theoretical
umbrella under which sits the known shape interaction matrix,
but it also provides a bridge to other solution methods
inspired by compressed sensing, i.e., those involving the solution
of an ℓ1 minimization problem. Moreover, we believe that
the utility of CUR for clustering and other applications will
only increase in the future. Below, we provide some reasons
for the practical utility of CUR decompositions, particularly
related to data analysis and clustering, as well as some future
directions.

Benefits of CUR:

• From a theoretical standpoint, the CUR decomposition
of a matrix is utilizing a frame structure rather
than a basis structure to factorize the matrix, and
therefore enjoys a level of flexibility beyond something
like the SVD. This fact should provide utility for
applications.

• Additionally, a CUR decomposition remains faithful to the
structure of the data. For example, if the given data is sparse,
then bothC and Rwill be sparse, even ifU† is not in general. In
contrast, taking the SVD of a sparse matrix yields full matrices
U and V , in general.

• Often in obtaining real data, many entries may be missing
or extremely corrupted. In motion tracking, for example,
it could be that some of the features are obscured from
view for several frames. Consequently, some form of matrix
completion may be necessary. On the other hand, a look at
the CUR decomposition reveals that whole rows of a data
matrix can be missing as long as we can still choose enough
rows such that the resulting matrix R has the same rank
asW.

Future Directions

• Algorithm 1 and other iterations of the Proto-algorithm
presented here need to be further tested to determine the best
way to utilize the CUR decomposition to cluster subspace data.
Currently, Algorithm 1 is somewhat heuristic, so a more fully
understood theory concerning its performance is needed. We
note that some justification for the ideas of RSIM are given
in Ji et al. [33]; however, the ideas there do not fully explain
the outstanding performance of the algorithm. As commented
above, one of the benefits of the Proto-algorithm discussed
here is its flexibility, which provides a distinct advantage over
SVD based methods.

• Another direction is to combine the CUR technique with
sparse methods to construct algorithms that are strongly
robust to noise and that allow clustering when the data points
are not drawn from a union of independent subspaces.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

The research of AS and AK is supported by DoD Grant
W911NF-15-1-0495. The research of AA is supported by NSF
Grant NSF/DMS 1322099. The research of AK is also supported
by TUBITAK-2219-1059B191600150. Much of the work for
this article was done while KH was an assistant professor
at Vanderbilt University. In the final stage of the project,
the research of KH was partially supported through the NSF
TRIPODS project under grant CCF-1423411.

The authors also thank the referees for constructive comments
which helped improve the quality of the manuscript.

REFERENCES

1. Mahoney MW, Drineas P. CUR matrix decompositions for improved

data analysis. Proc Natl Acad Sci USA. (2009) 106:697–702.

doi: 10.1073/pnas.0803205106

2. Boutsidis C, Woodruff DP. Optimal CUR matrix decompositions. SIAM J

Comput. (2017) 46:543–89. doi: 10.1137/140977898

3. Drineas P, Kannan R, Mahoney MW. Fast Monte Carlo algorithms for

matrices I: approximating matrix multiplication. SIAM J Comput. (2006)

36:132–57. doi: 10.1137/S0097539704442684

4. Drineas P, Kannan R, Mahoney MW. Fast Monte Carlo algorithms for

matrices II: computing a low-rank approximation to a matrix. SIAM J

Comput. (2006) 36:158–83. doi: 10.1137/S0097539704442696

5. Drineas P, Kannan R, Mahoney MW. Fast Monte Carlo algorithms for

matrices III: computing a compressed approximate matrix decomposition.

SIAM J Comput. (2006) 36:184–206. doi: 10.1137/S0097539704442702

6. Georghiades AS, Belhumeur PN, Kriegman DJ. From few to many:

illumination cone models for face recognition under variable lighting

and pose. IEEE Trans Pattern Anal Mach Intell. (2001) 23:643–60.

doi: 10.1109/34.927464

7. Basri R, Jacobs DW. Lambertian reflectance and linear subspaces.

IEEE Trans Pattern Anal Mach Intell. (2003) 25:218–33.

doi: 10.1109/TPAMI.2003.1177153

8. Kanatani K, Sugaya Y. Multi-stage optimization for multi-body motion

segmentation. In: IEICE Transactions on Information and Systems (2003). p.

335–49.

9. Aldroubi A, Zaringhalam K. Nonlinear least squares in R
n. Acta Appl Math.

(2009) 107:325–37. doi: 10.1007/s10440-008-9398-9

10. Aldroubi A, Cabrelli C, Molter U. Optimal non-linear models

for sparsity and sampling. J Four Anal Appl. (2009) 14:793–812.

doi: 10.1007/s00041-008-9040-2

11. Tseng P. Nearest q-flat to m points. J Optim Theory Appl. (2000) 105:249–52.

doi: 10.1023/A:1004678431677

12. Fischler M, Bolles R. Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Commun

ACM (1981) 24:381–95. doi: 10.1145/358669.358692

13. Silva N, Costeira J. Subspace segmentation with outliers: a Grassmannian

approach to the maximum consensus subspace. In: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. Anchorage, AK

(2008).

14. Zhang T, Szlam A, Wang Y, Lerman G. Randomized hybrid linear modeling

by local best-fit flats. In: IEEE Conference on Computer Vision and Pattern

Recognition. San Fransisco, CA (2010). p. 1927–34.

15. Zhang YW, Szlam A, Lerman G. Hybrid linear modeling via local best-

fit flats. Int J Comput Vis. (2012) 100:217–40. doi: 10.1007/s11263-012-

0535-6

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 January 2019 | Volume 4 | Article 65

https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1137/140977898
https://doi.org/10.1137/S0097539704442684
https://doi.org/10.1137/S0097539704442696
https://doi.org/10.1137/S0097539704442702
https://doi.org/10.1109/34.927464
https://doi.org/10.1109/TPAMI.2003.1177153
https://doi.org/10.1007/s10440-008-9398-9
https://doi.org/10.1007/s00041-008-9040-2
https://doi.org/10.1023/A:1004678431677
https://doi.org/10.1145/358669.358692
https://doi.org/10.1007/s11263-012-0535-6
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

16. Vidal R, Ma Y, Sastry S. Generalized Principal Component Analysis

(GPCA). IEEE Trans Pattern Anal Mach Intell. (2005) 27:1945–59.

doi: 10.1109/TPAMI.2005.244

17. Ma Y, Yang AY, Derksen H, Fossum R. Estimation of subspace arrangements

with applications in modeling and segmenting mixed data. SIAM Rev. (2008)

50:1–46. doi: 10.1137/060655523

18. Tsakiris MC, Vidal R. Filtrated spectral algebraic subspace clustering. SIAM J

Imaging Sci. (2017) 10:372–415. doi: 10.1137/16M1083451

19. Eldar YC, Mishali M. Robust recovery of signals from a structured

union of subspaces. IEEE Trans Inform Theory (2009) 55:5302–16.

doi: 10.1109/TIT.2009.2030471

20. Elhamifar E, Vidal R. Sparse subspace clustering. In: IEEE Conference on

Computer Vision and Pattern Recognition. Miami, FL (2009). p. 2790–97.

21. Elhamifar E, Vidal R. Clustering disjoint subspaces via sparse representation.

In: IEEE International Conference on Acoustics, Speech, and Signal Processing

(2010).

22. Liu G, Lin Z, Yu Y. Robust subspace segmentation by low-rank representation.

In: International Conference on Machine Learning.Haifa (2010). p. 663–70.

23. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y. Robust recovery of subspace structures

by low-rank representation. IEEE Trans Pattern Anal Mach Intell. (2013)

35:171–84. doi: 10.1109/TPAMI.2012.88

24. Luxburg UV. A tutorial on spectral clustering. Stat Comput. (2007) 17:395–

416. doi: 10.1007/s11222-007-9033-z

25. Chen G, Lerman G. Spectral Curvature Clustering (SCC). Int J Comput Vis.

(2009) 81:317–30. doi: 10.1007/s11263-008-0178-9

26. Lauer F, Schnorr C. Spectral clustering of linear subspaces for motion

segmentation. In: IEEE International Conference on Computer Vision. Kyoto

(2009).

27. Yan J, Pollefeys M. A general framework for motion segmentation:

independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In:

9th European Conference on Computer Vision. Graz (2006). p. 94–106.

28. Goh A, Vidal R. Segmenting motions of different types by unsupervised

manifold clustering. In: IEEE Conference on Computer Vision and Pattern

Recognition, 2007. CVPR ’07.Minneapolis, MN (2007). p. 1–6.

29. Chen G, Lerman G. Foundations of a multi-way spectral clustering

framework for hybrid linear modeling. Found ComputMath. (2009) 9:517–58.

doi: 10.1007/s10208-009-904

30. Vidal R. A tutorial on subspace clustering. IEEE Signal Process Mag. (2010)

28:52–68. doi: 10.1109/MSP.2010.939739

31. Aldroubi A, Sekmen A, Koku AB, Cakmak AF. Similarity Matrix Framework

for Data from Union of Subspaces. Appl Comput Harmon Anal. (2018)

45:425–35. doi: 10.1016/j.acha.2017.08.006

32. Costeira J, Kanade T. A multibody factorization method for

independently moving objects. Int J Comput Vis. (1998) 29:159–79.

doi: 10.1023/A:1008000628999

33. Ji P, Salzmann M, Li H. Shape interaction matrix revisited and robustified:

efficient subspace clustering with corrupted and incomplete data. In:

Proceedings of the IEEE International Conference on Computer Vision. Santiago

(2015). p. 4687–95.

34. Golub GH, Van Loan CF.Matrix Computations, Vol. 3. JHU Press (2012).

35. Alexeev B, Cahill J, Mixon DG. Full spark frames. J Fourier Anal Appl. (2012)

18:1167–94. doi: 10.1007/s00041-012-9235-4

36. Donoho DL, Elad M. Optimally sparse representation in general

(nonorthogonal) dictionaries via 1 minimization. Proc Natl Acad Sci

USA. (2003) 100:2197–202. doi: 10.1073/pnas.0437847100

37. Goreinov SA, Zamarashkin NL, Tyrtyshnikov EE. Pseudo-skeleton

approximations by matrices of maximal volume. Math Notes (1997)

62:515–9. doi: 10.1007/BF02358985

38. Chiu J, Demanet L. Sublinear randomized algorithms for skeleton

decompositions. SIAM J Matrix Anal Appl. (2013) 34:1361–83.

doi: 10.1137/110852310

39. Goreinov SA, Tyrtyshnikov EE, Zamarashkin NL. A theory of

pseudoskeleton approximations. Linear Algebra Appl. (1997) 261:1–21.

doi: 10.1016/S0024-3795(96)00301-1

40. Caiafa CF, Cichocki A. Generalizing the column–row matrix decomposition

to multi-way arrays. Linear Algebra Appl. (2010) 433:557–73.

doi: 10.1016/j.laa.2010.03.020

41. Gantmacher FR. Theory of Matrices. 2V. Chelsea Publishing Company (1960).

42. Penrose R. On best approximate solutions of linear matrix equations. Math

Proc Cambridge Philos Soc. (1956) 52:17–9. doi: 10.1017/S0305004100030929

43. Stewart G. Four algorithms for the the efficient computation of truncated

pivoted QR approximations to a sparse matrix. Numer Math. (1999) 83:313–

23. doi: 10.1007/s002110050451

44. Berry MW, Pulatova SA, Stewart G. Algorithm 844: computing sparse

reduced-rank approximations to sparse matrices. ACM Trans Math Soft.

(2005) 31:252–69. doi: 10.1145/1067967.1067972

45. Wang S, Zhang Z. Improving CUR matrix decomposition and the

Nyström approximation via adaptive sampling. J Mach Learn Res. (2013)

14:2729–69. Available online at: http://www.jmlr.org/papers/volume14/

wang13c/wang13c.pdf

46. Drineas P, Mahoney MW, Muthukrishnan S. Relative-error CUR

matrix decompositions. SIAM J Matrix Anal Appl. (2008) 30:844–81.

doi: 10.1137/07070471X

47. Voronin S, Martinsson PG. Efficient algorithms for cur and interpolative

matrix decompositions. Adv Comput Math. (2017) 43:495–516.

doi: 10.1007/s10444-016-9494-8

48. Wang S, Zhang Z, Zhang T. Towards more efficient SPSD matrix

approximation and CUR matrix decomposition. J Mach Learn Res. (2016)

17:1–49. Available online at: http://www.jmlr.org/papers/volume17/15-190/

15-190.pdf

49. Oswal U, Jain S, Xu KS, Eriksson B. Block CUR: decomposing large distributed

matrices. arXiv [Preprint]. arXiv:170306065. (2017).

50. Li X, Pang Y. Deterministic column-based matrix decomposition. IEEE Trans

Knowl Data Eng. (2010) 22:145–9. doi: 10.1109/TKDE.2009.64

51. Yip CW, Mahoney MW, Szalay AS, Csabai I, Budavári T, Wyse RF, et al.

Objective identification of informative wavelength regions in galaxy spectra.

Astron J. (2014) 147:110. doi: 10.1088/0004-6256/147/5/110

52. Yang J, Rubel O, Mahoney MW, Bowen BP. Identifying important

ions and positions in mass spectrometry imaging data using CUR

matrix decompositions. Anal Chem. (2015) 87:4658–66. doi: 10.1021/ac50

40264

53. Xu M, Jin R, Zhou ZH. CUR algorithm for partially observed matrices. In:

International Conference on Machine Learning. Lille (2015). p. 1412–21.

54. Li C, Wang X, DongW, Yan J, Liu Q, Zha H. Joint active learning with feature

selection via CUR matrix decomposition. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence (2018). doi: 10.1109/TPAMI.2018.2840980

55. Halko N, Martinsson PG, Tropp JA. Finding structure with

randomness: probabilistic algorithms for constructing approximate

matrix decompositions. SIAM Rev. (2011) 53:217–88. doi: 10.1137/0907

71806

56. Muhammad N, Bibi N. Digital image watermarking using partial pivoting

lower and upper triangular decomposition into the wavelet domain. IET

Image Process. (2015) 9:795–803. doi: 10.1049/iet-ipr.2014.0395

57. Muhammad N, Bibi N, Qasim I, Jahangir A, Mahmood Z. Digital

watermarking using Hall property image decomposition method. Pattern

Anal Appl. (2018) 21:997–1012. doi: 10.1007/s10044-017-0613-z

58. Otazo R, Candès E, Sodickson DK. Low-rank plus sparse matrix

decomposition for accelerated dynamic MRI with separation of background

and dynamic components. Magn Reson Med. (2015) 73:1125–36.

doi: 10.1002/mrm.25240

59. Candes EJ, Plan Y. Matrix completion with noise. Proc IEEE. (2010) 98:925–

36. doi: 10.1109/JPROC.2009.2035722

60. Wei S, Lin Z. Analysis and improvement of low rank representation for

subspace segmentation. arXiv [Preprint]. arXiv:1107.1561 [cs.CV] (2011).

61. Meka R, Jain P, Caramanis C, Dhillon IS. Rank minimization via online

learning. In: Proceedings of the 25th International Conference on Machine

Learning. Helsinki (2008). p. 656–63.

62. Recht B, Xu W, Hassibi B. Necessary and sufficient conditions for success of

the nuclear norm heuristic for rank minimization. In: 47th IEEE Conference

on Decision and Control, 2008. CDC 2008. Cancun (2008). p. 3065–70.

63. Recht B, Xu W, Hassibi B. Null space conditions and thresholds

for rank minimization. Math Programm. (2011) 127:175–202.

doi: 10.1007/s10107-010-0422-2

64. Kanatani K, Matsunaga C. Estimating the number of independent motions

for multibody motion segmentation. In: 5th Asian Conference on Computer

Vision. Melbourne, VIC (2002). p. 7–9.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 January 2019 | Volume 4 | Article 65

https://doi.org/10.1109/TPAMI.2005.244
https://doi.org/10.1137/060655523
https://doi.org/10.1137/16M1083451
https://doi.org/10.1109/TIT.2009.2030471
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11263-008-0178-9
https://doi.org/10.1007/s10208-009-904
https://doi.org/10.1109/MSP.2010.939739
https://doi.org/10.1016/j.acha.2017.08.006
https://doi.org/10.1023/A:1008000628999
https://doi.org/10.1007/s00041-012-9235-4
https://doi.org/10.1073/pnas.0437847100
https://doi.org/10.1007/BF02358985
https://doi.org/10.1137/110852310
https://doi.org/10.1016/S0024-3795(96)00301-1
https://doi.org/10.1016/j.laa.2010.03.020
https://doi.org/10.1017/S0305004100030929
https://doi.org/10.1007/s002110050451
https://doi.org/10.1145/1067967.1067972
http://www.jmlr.org/papers/volume14/wang13c/wang13c.pdf
http://www.jmlr.org/papers/volume14/wang13c/wang13c.pdf
https://doi.org/10.1137/07070471X
https://doi.org/10.1007/s10444-016-9494-8
http://www.jmlr.org/papers/volume17/15-190/15-190.pdf
http://www.jmlr.org/papers/volume17/15-190/15-190.pdf
https://doi.org/10.1109/TKDE.2009.64
https://doi.org/10.1088/0004-6256/147/5/110
https://doi.org/10.1021/ac5040264
https://doi.org/10.1109/TPAMI.2018.2840980
https://doi.org/10.1137/090771806
https://doi.org/10.1049/iet-ipr.2014.0395
https://doi.org/10.1007/s10044-017-0613-z
https://doi.org/10.1002/mrm.25240
https://doi.org/10.1109/JPROC.2009.2035722
https://doi.org/10.1007/s10107-010-0422-2
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Aldroubi et al. CUR Decompositions and Subspace Clustering

65. Sekmen A, Aldroubi A, Koku AB, Hamm K. Matrix reconstruction: skeleton

decomposition versus singular value decomposition. In: 2017

International Symposiu on Performance Evaluation of Computer

and Telecommunication Systems (SPECTS). Seattle, WA (2017).

p. 1–8.

66. Muhammad N, Bibi N, Jahangir A, Mahmood Z. Image denoising with

norm weighted fusion estimators. Pattern Anal Appl. (2018) 21:1013–22.

doi: 10.1007/s10044-017-0617-8

67. Tron R, Vidal R. A benchmark for the comparison of 3-D motion

segmentation algorithms. In: IEEEConference on Computer Vision and Pattern

Recognition.Minneapolis, MN (2007). p. 1–8.

68. Sekmen A, Aldroubi A, Koku AB, Hamm K. Principal coordinate clustering.

In: 2017 IEEE International Conference on Big Data (Big Data). Boston, MA

(2017). p. 2095–101.

69. Cho K, Chen X. Classifying and visualizing motion capture sequences

using deep neural networks. In: 2014 International Conference on

Computer Vision Theory and Applications (VISAPP), Vol. 2. Lisbon (2014).

p. 122–30.

70. Khan MA, Akram T, Sharif M, Javed MY, Muhammad N, Yasmin M.

An implementation of optimized framework for action classification using

multilayers neural network on selected fused features. Pattern Anal Appl.

(2018) 1–21. doi: 10.1007/s10044-018-0688-1

71. Arn R, Narayana P, Draper B, Emerson T, Kirby M, Peterson C. Motion

Segmentation via Generalized Curvatures. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence (2018).

72. Aldroubi A, Sekmen A. Nearness to local subspace algorithm for subspace

and motion segmentation. IEEE Signal Process Lett. (2012) 19:704–7.

doi: 10.1109/LSP.2012.2214211

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Aldroubi, Hamm, Koku and Sekmen. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 January 2019 | Volume 4 | Article 65

https://doi.org/10.1007/s10044-017-0617-8
https://doi.org/10.1007/s10044-018-0688-1
https://doi.org/10.1109/LSP.2012.2214211
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	CUR Decompositions, Similarity Matrices, and Subspace Clustering
	1. Introduction
	1.1. Paper Contributions
	1.2. Layout

	2. Preliminaries
	2.1. Definitions and Basic Facts
	2.2. Assumptions

	3. CUR Decomposition
	4. Subspace Clustering via CUR Decomposition
	5. Special Cases
	5.1. Shape Interaction Matrix
	5.2. Low-Rank Representation Algorithm
	5.3. Basis Framework of Aldroubi et al. Akram16

	6. Proofs
	6.1. Some Useful Lemmata
	6.2. Proof of Theorem 3
	6.3. Proof of Theorem 2
	6.4. Proofs of Corollaries

	7. Experimental Results
	7.1. A Proto-Algorithm for Noisy Subspace Data
	7.2. Simulations Using Synthetic Data
	7.3. Motion Segmentation Dataset: Hopkins155
	7.4. Discussion
	7.5. Robust CUR Similarity Matrix for Subspace Clustering

	8. Concluding Remarks
	Author Contributions
	Acknowledgments
	References

