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Chimera states are intriguing complex spatio-temporal patterns of coexisting coherent

and incoherent domains. They can often be observed in networks with non-local coupling

topology, where each element interacts with its neighbors within a fixed range. In small-

size non-locally coupled networks, chimera states usually exhibit short lifetimes and

erratic drifting of the spatial position of the incoherent domain. This problem can be

solved with a tweezer feedback control which can stabilize and fix the position of chimera

states. We analyse the action of the tweezer control in two-layer networks, where each

layer is a small non-locally coupled ring of Van der Pol oscillators. We demonstrate that

tweezer control, applied to only one layer, successfully stabilizes chimera patterns in the

other, uncontrolled layer, even in the case of non-identical layers. These results might be

useful for applications in multilayer networks, where one of the layers cannot be directly

accessed, thus it can be effectively controlled via a neighboring layer.

Keywords: dynamical systems, synchronization, chimera states, multilayer networks, feedback control, Van der

Pol oscillators

1. INTRODUCTION

Networks of coupled oscillators are an intensively studied topic in non-linear science, they have
a wide range of applications in physics, biology, chemistry, technology, and social sciences.
Special interest has been paid to synchronization and partial synchronization of oscillators,
including chimera states which are characterized by a hybrid nature of coexisting spatially
coherent and incoherent domains [1–7]. Theoretical studies of chimera states have considered
a wide range of networks with different local dynamics and a variety of regular and irregular
coupling topologies: rings of phase oscillators with non-local coupling [8–12], interacting globally
coupled populations of phase oscillators [13, 14], non-locally coupled maps [15, 16], oscillators
with phase-amplitude dynamics [17–21], neural oscillators [22–26], two- and three-dimensional
lattices of oscillators [27–31], networks with adaptive topologies [32, 33], fractal complex
topologies [34–38], oscillators with local or global interaction [39–42], and networks with
multiple layers[43–47]. Experimentally, chimera states were demonstrated in optical [48] and
chemical [49, 50] systems, as well as in mechanical [51], electronic [52, 53], optoelectronic [54, 55],
electrochemical [56, 57] oscillator systems, and Boolean networks [58]. Possible analytical insights
and bifurcation analysis of chimera states have been obtained in the continuum limit, which
explains the behavior of very large ensembles of coupled oscillators [59–63]. In contrast, lab
experiments are commonly performed with small-size networks, where chimera states are more
difficult to observe [64–67].
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Ring networks with non-local coupling, where each element
interacts with its neighbors within a certain range, are a
prominent example of a topology allowing for the observation
of chimera states. However, the size of the network is essential.
In small-size rings of non-locally coupled oscillators, chimera
states are often short-living chaotic transients, which eventually
collapse to the synchronized state. Their mean lifetime decreases
rapidly with decreasing system size [10]. In addition to this,
chimera states exhibit a chaotic spatial motion of the position of
the coherent and incoherent domains, which ismore pronounced
with decreasing of the system size [68]. These two effects are
weakly noticeable in large networks, but they strongly impede
the observation of chimera states in small systems. Only in some
special cases beyond simple non-local topologies, chimera states
can be observed. For instance, when phase interaction involves
higher order harmonics [69, 70], or oscillators are organized in
globally coupled interacting subpopulations, the observation of
stable chimeras that are not transients is possible in small phase
oscillator networks [64, 70].

Control of non-linear systems is an important topic in
applied complex systems science [71]. Some control techniques,
which allow to stabilize chimera patterns in non-locally coupled
oscillator networks, have been proposed recently. The lifetime
of amplitude chimeras can be greatly enhanced by time-delayed
coupling [72]. For Kuramoto phase oscillators the lifetime of
chimera states can be extended by proportional feedback control
based on the measurement of the global order parameter [73].
The spatial position of the coherent and incoherent domains
of the chimera states can be fixed by a feedback loop inducing
a state-dependent asymmetry of the coupling topology [74],
defined by a finite difference derivative for a local mean field.
Moreover, in one-dimensional arrays of identical oscillators, a
self-feedback control applied to a subpopulation of the array
can be used for the stabilization of the spatial positions of the
coherent and incoherent domains of the chimeras [75]. Recently,
we introduced a tweezer control scheme for stabilization of
chimera states [76] in small-size non-locally coupled networks.
This control scheme consists of two parts, symmetric and
asymmetric, and effectively stabilizes chimera states in small
networks of oscillators exhibiting both phase and amplitude
dynamics. Note, that in contrast to pure phase oscillators, a
simple analytical study for the continuum limit (N → ∞) is
not possible for non-linear phase-amplitude oscillators, therefore
we concentrated mainly on the numerical stability analysis. In
small networks of Van der Pol and FitzHugh-Nagumo oscillators,
we demonstrated that tweezer control allows for stabilization
of variable chimera patterns with different sizes of coherent
domains [77].

Current research in the field of complex systems is moving
beyond simple network structures to more complicated, realistic
topologies. One of them are multilayer networks, which find
a wide range of applications in nature and technology, such
as neuronal and genetic networks, social networks, power
grids, transportation networks [78–91]. Recent studies have
been focused on various synchronization scenarios in multilayer
structures, including remote and relay synchronization [92–94].
Moreover, it has been reported that multiplexing can be used

to control spatio-temporal patterns in networks [86, 88, 95].
The advantage of control schemes based on multiplexing is
that they allow to achieve the desired state in a certain layer
without manipulating its parameters, and they can work for
weak inter-layer coupling. For example, it has been shown that
weak multiplexing can induce coherence resonance [96] as well
as chimera states and solitary states [95] in neural networks.
However, multiplexing has not been previously combined with
tweezer control.

In many real multi-layer networks some of the layers cannot
be easily accessed. An urgent issue, therefore, is the question
whether it is possible to control or stabilize spatio-temporal
patterns in one layer of the network by applying control to
the other layer. We aim to answer this question by an analysis
of a simple two-layer network of Van der Pol oscillators. We
demonstrate that chimera states which are not observable in
small isolated networks, can be efficiently stabilized by the
combined action of multiplexing and tweezer control.

2. TWEEZER CONTROL IN TWO-LAYER
NETWORK OF VAN DER POL
OSCILLATORS

We consider a network of 2N coupled Van der Pol oscillators,
organized in two layers, each of which contains N oscillators,
with non-local ring topology within each layer:
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− (ẋ(i)

k−j
− ẋ
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where x(i)
k

∈ R, i = 1, 2 denotes the layer number, k = 1, ...,N is
the oscillator index within each layer. The scalar parameter ε > 0
determines the internal dynamics of the individual elements. For
small ε the oscillation of a single element is sinusoidal, while
for large ε it is a strongly non-linear relaxation oscillation. Each
element is coupled with Ri nearest neighbors to the left and
to the right, we assume that the oscillators within the layers
are arranged on a ring (i.e., periodic boundary conditions). The
coupling term inside each layer consists of two parts: the coupling
constants with respect to position and velocity to the left and to

the right are denoted as a(i)− , a(i)+ and b
(i)
− , b(i)+ , respectively. Such a

coupling scheme can be associated with biological [97, 98] and
technological applications [99]. Interaction between the layers
consists of one-to-one bidirectional connections between the
corresponding pairs of oscillators x(1)

k
and x

(2)
k
, with inter-layer

coupling strength ainter and binter . Figure 1 shows schematically
the topology of the considered network: both layers consist of
non-locally coupled rings of oscillators, corresponding pairs of
oscillators in each layer are connected by inter-layer links shown
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FIGURE 1 | Schematic structure of the two layer networks: red dots denote

the oscillators, blue planes correspond to the two layers. Solid lines

show intra-layer couplings, dashed lines represent pairwise inter-layer

couplings between the oscillators. Tweezer control is applied to layer 1.

by dashed lines. This network structure can also be referred to as a
multiplex, since only one-to-one inter-layer connections between
the layers exist.

For the sake of simplicity we assume
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with rescaled coupling parameters a(i), σ (i)
− , and σ
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+ .

In order to introduce the tweezer control [76], we define two
complex order parameters within each network layer i

Z
(i)
1 (t) =

1

[N/2]

[N/2]
∑

k=1

eiφ
(i)
k
(t) (3)

Z
(i)
2 (t) =

1

[N/2]

[N/2]
∑

k=1

eiφ
(i)
N−k+1(t), (4)

where φ
(i)
k
(t) is the geometric phase of the k-th oscillator

computed from

eiφ
(i)
k
(t) =

(

(x(i)
k
)2(t)+ (ẋ(i)
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The tweezer feedback control [76] for the non-locally coupled
ring of oscillators is defined as
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The control term has two parts referred to as symmetric and
asymmetric controls, with corresponding control gainsKs andKa.

The idea of the symmetric proportional control was suggested for
phase oscillators in Sieber et al. [73]. It is defined as a feedback

loop between coupling parameters σ
(i)
± and the global Kuramoto

order parameter of the oscillators within one layer |Z
(i)
s | =

|Z
(i)
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2 |

2 . This feedback loop aims to suppress the collapse of
small-size chimera states and extend their lifetime.

The asymmetric control part is realized as a second feedback

loop between coupling parameters σ
(i)
± and the difference Z(i)

a =
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2 |. It indicates a relative spatial shift of the chimera’s

incoherent domain with respect to the center of the oscillator
array 1, ...,N. If the incoherent domain of the chimera state is

shifted toward larger indices (|Z(i)
1 | > |Z

(i)
2 |), then the difference

is positive, and as a result σ
(i)
+ > σ
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− . In the opposite case,

when the incoherent domain of the chimera state is shifted
toward smaller indices (|Z(i)

1 | < |Z
(i)
2 |), we will obtain σ

(i)
+ <

σ
(i)
− . A discrepancy between σ

(i)
+ and σ

(i)
− introduces asymmetry

in the coupling term, and induces the counterbalancing lateral
motion of a chimera state toward dynamically preferable centered
position.

In Omelchenko et al. [76, 77] we have demonstrated the
effective action of the tweezer control in small rings of non-
locally coupled Van der Pol and FitzHugh-Nagumo oscillators.
When both the symmetric and asymmetric parts of the control
are acting (the control gains Ks and the Ka are positive), a stable
chimera state can be observed in the system. When we switch off
the asymmetric part of the control, Ka = 0, and keep a positive
symmetric gain Ks > 0, the chimera state starts to drift on the
ring. Its motion becomes stronger for decreasing system size. To

switch off both parts of the control, we keep σ
(i)
+ and σ

(i)
− constant,

and after a short transient time the chimera state collapses to the
completely synchronized state.

In the present work, the tweezer control acts in the first layer
of our network (1) only, while in the second layer the coupling
strength is constant. We will compare patterns obtained in both
layers in a network of relatively small size. The characteristic
signature of a chimera state is a pronounced difference of the
average frequencies for oscillators belonging to the coherent
and incoherent domains, respectively. The oscillators from the
coherent domain are phase-locked having equal frequencies,
while the oscillators from the incoherent domain have different
average frequencies which typically form an arc-like profile. The
mean phase velocities are obtained as

ω
(i)
k
(t) =

1

T0

∫ T0

0
φ̇
(i)
k
(t − t′)dt′, k = 1, . . . ,N, i = 1, 2, (7)

averaged over the time window T0. To visualize the temporal
dynamics of the oscillators we plot their mean phase velocities
defined by Equation (7) with T0 = 50 for each layer. Throughout
this work in our numerical simulations we use random initial
conditions.

Figure 2 shows the mean phase velocities for a two-layer
network of Van der Pol oscillators with N = 48 oscillators within
each layer, coupled to their R1 = R2 = 16 nearest neighbors.
Such an intermediate coupling range is the prerequisite of the
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FIGURE 2 | Mean phase velocities for a two-layer system of N = 48 oscillators in each layer with R1 = R2 = 16, ε = 0.2, a(1) = a(2) = 0.02, ainter = 0.002,

binter = 0.001. Layer 1 is controlled with Ka = 2, Ks = 0.5, layer 2 is uncontrolled with b
(2)
− = b

(2)
+ = 0.0027. Oscillators k = 1...48 represent the first layer, k = 49...96

the second layer; (A) space-time plot; (B) mean phase velocity profile averaged over 25,000 time units for the first layer (red dots) and the second layer (blue

diamonds) (top panel); snapshot of variables xk (middle panel) and snapshot in the (xk; ẋk ) phase space at t =25,000 (bottom panel).

existence of chimera patterns in non-locally coupled rings. In our
earlier work [21] we have demonstrated analytically that in the
ring of non-locally coupled Van der Pol oscillators the ratio of

the coupling constants of position and velocity (in our case a(i)±
and b

(i)
± ) can be associated with the phase lag parameter for a

reduced phase oscillator network. In order to observe chimera
states, the coupling constant of position should be chosen larger
than the coupling constant of velocity. In the following, we will
use this property for both intra- and inter-layer couplings. As
a first step, we consider very weak inter-layer coupling with
constants ainter = 0.002, binter = 0.001 approximately ten times
smaller than intra-layer coupling strengths. Figure 2A shows,
that in this case the intra-layer coupling dominates, and the two
layers perform different dynamics: in the first layer we observe
a stable chimera state due to the action of the tweezer control,
while in the second, uncontrolled layer after short transient time
all oscillators synchronize. Figure 2B shows the mean phase
velocities of the oscillators averaged over large time interval
T0 =25,000 (upper panel). In the first layer the typical arc-shape
profile is formed (shown red), which is one of the prominent
features of chimera states. In the second layer, all oscillators are
frequency-locked (shown blue). The middle panel demonstrates
snapshots for both layers at fixed time, and the bottom panel
depicts the same snapshots in the phase space, where the limit
cycle of one uncoupled Van der Pol unit is shown in black. The
oscillators from the incoherent domain of the chimera state are
scattered around this limit cycle.

With increasing inter-layer coupling strength, we observe
successful stabilization of the chimera state in the second layer
shown in Figure 3 for ainter = 0.011, binter = 0.0025. Due to
the fact that our layers are identical, the mean phase velocities

profiles have the same shape, and coherent/incoherent domains
of chimera states are synchronized spatially in both layers.
Figure 4 presents a diagram in the parameter plane of inter- and
intra-layer coupling constants. When the interlayer coupling is
too weak, chimera states in the second layer can not be stabilized
(blue region). In the red region synchronization of both layers,
and thus successful control of the chimera state in the second
layer via multiplexing is observed. In the thin hatched region our
numerical evidence shows a sensitive dependence on the initial
conditions. However, system (1) has numerous parameters which
should also be fixed appropriately. For instance, the control gains
Ks and Ka can influence the shape of the controlled chimera
pattern and the size of its coherent domain [77]. Moreover, in
the examples demonstrated in the present manuscript, the non-
linearity parameter ε of the individual Van der Pol oscillator is
chosen to be small, corresponding to sinusoidal oscillations. The
tweezer control acts successfully also in the case of relaxation
oscillations when ε is large [76].

Figure 5 demonstrates the behavior of chimera patterns
within two layers under the action of each part of the
control (6) separately. When the asymmetric part is deactivated,
Ka = 0, the lifetime of the chimera state is still extended,
but it starts to drift, as shown in Figure 5A. The coherent
and incoherent domains of the chimera state in the second
layer drift along with the chimera in the controlled layer.
Thus, extending of lifetime without position control in both
layers is possible as well. When we stop to control the
lifetime of chimeras, by keeping the coupling coefficients
constant in the first layer, after some transient time we observe
simultaneous chimera collapse in both layers as depicted in
Figure 5B.
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FIGURE 3 | Same as Figure 2 for ainter =0.011, binter = 0.0025.

FIGURE 4 | Diagram in the plane of inter-layer ainter and intra-layer a coupling

constants for a two-layer system of N = 48 oscillators in each layer with

R1 = R2 = 16. The red region corresponds to the successful stabilization of

chimera states in both layers, the blue region depicts chimera collapse in the

uncontrolled layer. In the hatched region only part of the numerical realizations

indicated successful control. Points A and B denote parameter values

corresponding to Figures 2 and 3, respectively. Other parameters as in

Figure 2.

Hence, the combination of tweezer control and multiplexing
allows for efficient control of chimera states in multiple
layers, with the control applied directly to only one
layer.

3. ROBUSTNESS OF THE TWEEZER
CONTROL IN TWO-LAYER NETWORKS

In real-world networks non-identical layers are more common.
Therefore, the analysis of the robustness of the tweezer control
in two-layer networks is an important issue. In the following
we will consider the topological inhomogeneity of the layers

in the network by introducing a coupling range mismatch
R1 6= R2. In non-locally coupled rings the coupling range
is one of the essential parameters for the observation of
chimera states. An intermediate coupling range is usually
favorable, while too small or too large numbers of coupled
neighbors prevent the formation of chimera states. Furthermore,
within intermediate values, smaller coupling ranges can cause
multiple coherent and incoherent domains of the chimera
state. Thus, considering different coupling ranges in two layers
will result in competitive patterns formed in each layer. As
before, the tweezer control acts only in the first layer of our
network.

Figure 6 depicts the stabilization of chimera states
in system (1) with N = 48 oscillators in each layer,
and slightly inhomogeneous topologies with coupling
ranges R1 = 16 and R2 = 18. After a short transient
time, the interplay of the tweezer control and inter-layer
coupling results in the successful spatial alignment of the
coherent and incoherent domains, and their mean phase
velocity profiles have similar shapes as well, as shown in
Figure 6B.

As a next step, we increase the layer mismatch and choose
R1 = 16, R2 = 12. In the isolated case, the second layer would
exhibit a chimera state with multiple incoherent domains [21],
which collapses to the completely synchronized state. Figure 7
demonstrates that by controlling the first layer, we successfully
suppress the collapse, and synchronize the chimera states in both
layers. However, due to the bidirectional inter-layer interaction,
the dynamics of the second layer has indeed an influence on
the first one. The chimera states shown in Figure 7 have larger
incoherent domains induced by the smaller coupling range in the
second layer. It is worth to note that to stabilize their position,
the asymmetric control gain had to be increased (Ka = 6). We
have shown numerically that we can stabilize the chimera states
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FIGURE 5 | Space-time plot of the mean phase velocities for a two-layer network with one part of the control switched off; (A) drifting chimera state in both layers

with Ka = 0; (B) collapse of the uncontrolled chimera state in both layers, with constant coupling coefficients σ
(1)
± = 0.14. Other parameters as in Figure 3.

FIGURE 6 | Mean phase velocities for a two-layer system of N = 48 oscillators in the layers and non-identical coupling ranges: R1 = 16, R2 = 18, other

parameters:ε = 0.2, a(1) = a(2) = 0.02, ainter = 0.009, binter = 0.0023, Ka = 2, Ks = 0.5, b
(2)
− = b

(2)
+ = 0.0027. Oscillators k = 1...48 represent the first layer,

k = 49...96 the second layer; (A) space-time plot; (B) mean phase velocity profile averaged over 25,000 time units for the first layer (red dots) and the second layer

(blue diamonds) (top panel); snapshot of variables xk (middle panel) and snapshot in the (xk; ẋk ) phase space at t =25,000 (bottom panel).

in two layers for an even larger topology mismatch, however, the
coupling parameters and control gains had to be tuned.

4. CONCLUSION

In the present manuscript, we have demonstrated that the
combination of the tweezer control for chimera states and
multiplexing allows for successful stabilization of chimera states
in both layers of two-layer networks of Van der Pol oscillators.

Considering a ring topology with non-local interaction between
the oscillators within each layer, and one-to-one connections
between the corresponding oscillators from the two layers, we
have focused on networks of relatively small size, where chimera
states are usually hard to observe. Tweezer control, consisting of
two parts, extends the lifetime of chimera states, and fixes their
spatial position on the ring.

In two-layer networks we have applied the tweezer control
to one layer only, and have shown that for sufficiently strong
inter-layer coupling the action of the control is transferred to
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FIGURE 7 | Same as Figure 6 with R1 = 16, R2 = 12, and Ka = 6.

the second layer, where the lifetime of the chimera state is
increased and its spatial position if fixed. Without the inter-layer
connections, or if their strength is too weak, after a short transient
time the chimera state collapses and all oscillators in the second
layer synchronize.

We have demonstrated that the combination of tweezer
control and multiplexing is robust with respect to the topological
inhomogeneity of the layers, and chimera states can be
successfully stabilized even in the case of large coupling range
mismatch between the layers. Previously, we have demonstrated
that tweezer control acts efficiently in non-locally coupled rings
consisting of inhomogeneous oscillators [76], therefore the
stabilization of chimera states in the two-layer networks with
inhomogeneous nodes is plausible as well.

Our results can be useful in real multilayer networks, where
the access to some layers is not possible, but there is need
to control spatio-temporal patterns. Combination of tweezer

control and multiplexing appears to be a powerful and robust
tool to solve this problem even for small networks with
inhomogeneous layers.
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