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Computational immunology studies the interactions between the components of the

immune system that includes the interplay between regulatory and inflammatory

elements. It provides a solid framework that aids the conversion of pre-clinical

and clinical data into mathematical equations to enable modeling and in silico

experimentation. The modeling-driven insights shed lights on some of the most pressing

immunological questions and aid the design of fruitful validation experiments. A typical

system of equations, mapping the interaction among various immunological entities

and a pathogen, consists of a high-dimensional input parameter space that could

drive the stochastic system outputs in unpredictable directions. In this paper, we

perform spatio-temporal metamodel-based sensitivity analysis of immune response to

Helicobacter pylori infection using the computational model developed by the ENteric

Immune SImulator (ENISI). We propose a two-stage metamodel-based procedure

to obtain the estimates of the Sobol’ total and first-order indices for each input

parameter, for quantifying their time-varying impacts on each output of interest. In

particular, we fully reuse and exploit information from an existing simulated dataset,

develop a novel sampling design for constructing the two-stage metamodels, and

perform metamodel-based sensitivity analysis. The proposed procedure is scalable,

easily interpretable, and adaptable to any multi-input multi-output complex systems of

equations with a high-dimensional input parameter space.

Keywords: computational immunology, Gaussian process regression, Helicobacter pylori, sensitivity analysis,

spatio-temporal metamodeling

1. INTRODUCTION

Computational immunology studies the interactions between various immunological elements,
including proinflammatory and regulatory components in addition to the pathogen of interest.
Understanding how these interactions affect the behavior of the complex stochastic system of
interest can shed lights on some of the most fundamental questions in the field. Computational
modeling provides a method for defining the relationships among various elements using
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the formalism of mathematics, thus analyzing
biological/immunological system data in ways that enable us to
better understand their function and make predictive insights
about their behaviors under unseen conditions. However, due to
the lack of a clear understanding about the adequate value for
an input parameter, the mathematical or computational models
built for biological/immunological systems may be biased in
their predictions. Consequently, parameter estimates made from
fitting model simulations involve uncertainty.

Helicobacter pylori (H. pylori) is the dominant member
of the gastric microbiota in more than 50% of the world’s
population. The presence of H. pylori in the stomach has been
associated with various gastric diseases. However, there is a
limited mechanistic understanding regarding H. pylori infection,
disease and the associated gastric immunopathology. Enteric
Immunity Simulator (ENISI) is an agent-based modeling (ABM)
tool developed for modeling immune responses to H. pylori
colonization of the gastric mucosa. ABMs such as ENISI are
very powerful to study large-scale interactive systems, but they
typically have complex structures and consist of a large number of
model parameters. Determining the key model parameters which
govern the outcomes of the system is very challenging.

Themajor challenges of a simulation-based study of a complex
stochastic system lie in (1) a high-dimensional input parameter
space to explore; (2) a high computational cost associated with
executing one run of the simulation model (e.g., a single run
of ENISI on a modern high-performance computing cluster of
48 nodes takes about 90 min [1]); (3) a substantial amount of
computing effort has to be expended on simulation replications
to properly address the stochastic nature of the system; and
(4) more than one system output is of interest. In fact, similar
issues arise when using a simulation-based analysis approach
to tackle problems encountered in a wide range of application
areas including healthcare [2], manufacturing [3], environmental
science [4, 5], software engineering [6, 7], and defense and
homeland security [8], among others.

Sensitivity analysis (SA) is useful for assessing such
uncertainty on the model responses, as SA helps us quantify the
uncertainty arising from different model input sources on the
variation of themodel outputs. By identifying themost influential
input parameters, we can refine our parameter estimates of the
model and hence improve its predictive power; furthermore,
we can improve our understanding of the mechanisms of
system behaviors. Existing SA techniques, however, either lack
a global perspective or are too computationally expensive to
apply to complex ABMs. In this paper, we develop a two-
stage metamodel-based SA approach to quantify the temporal
significance of each individual model parameter of large-scale
ABMs and apply it to analyze the model of immune response to
Helicobacter pylori infection.

The rest of the paper is organized as follows. In section 2,
we first review the methods for spatio-temporal metamodeling
methodology and global sensitivity analysis and then elaborate on
the experimental design of a simulation study conducted as well
as the resulting dataset generated. In section 3, we describe the
proposed two-stage metamodel-based SA procedure. Section 4
presents the sensitivity analysis results obtained. Section 5

provides a detailed discussion on the strengths and limitations of
the proposed procedure, its applications, and the future research
directions to explore.

2. BACKGROUND

In this section, we first briefly review the background of
Gaussian process regression for spatio-temporal metamodeling
in section 2.1, and then provide a review on global sensitivity
analysis methods in section 2.2. In section 2.3, we provide a
summary of a simulation study conducted by Alam et al. [1] and
the resulting dataset; this dataset will be used to demonstrate the
usefulness of the proposed metamodel-based sensitivity analysis
procedure which will be detailed in section 3.

2.1. Gaussian Process Regression for
Spatio-Temporal Metamodeling
Metamodeling is the process of developing a surrogate model
of a complex stochastic simulation model, which can “map” the
simulation model output as a function of input parameters of
interest. The resulting metamodel can be used as an accurate,
drop-in replacement for the simulationmodel as if the simulation
can be run “on demand” to support real-time decision making.
Commonly used metamodeling methods include splines, radial
basis functions, support vector machines, neural networks, and
Gaussian process regression (GPR) models, to name a few (see,
e.g., Chapter 6 of [9]). Among them, GPR models have emerged
as an effective metamodeling tool that has been successfully
applied in a variety of areas, ranging from environmental sensing,
traffic modeling, forest biomass analysis to precipitation analysis
[10–13]. The primary reason for GPR models’ popularity is that
they unite sophisticated and consistent theoretical investigations
with computational tractability. Moreover, these models enjoy
desirable properties such as being highly flexible to capture
various features exhibited by the data at hand and providing an
uncertainty measure for the resulting prediction.

We consider the following GPR model for our spatio-
temporal metamodeling purpose. Suppose that the simulation
response obtained at a design point w = (X⊤, t)⊤ ∈ X × T on
the jth simulation replication can be described as

Yj(w) = Y(w)+ εj(w)

= β0 + M(w)+ εj(w) , (1)

where Yj(w) denotes a scalar output, Y(w) represents the mean
function of Yj(w), which is the quantity of interest we intend
to estimate at a given design point w. Notice that each design
point consists of two components, i.e., the input parameter vector
X ∈ X ⊂ R

d and the time index t ∈ T ⊂ R+; and X does not
depend on t. Furthermore, β0 represents an unknown constant
trend term, and εj(w) represents the mean-zero simulation error
incurred on the jth replication and its variance may depend
on the input vector component X in w. The simulation errors
ε1(w), ε2(w), . . . are assumed to be independent and identically
distributed (i.i.d.) across replications at a given design point [14],
and we further assume that M and ε are independent.
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The term M(·) represents a stationary mean-zero Gaussian
random field [15, 16]. That is, the covariance between any two
points wl = (X⊤

l
, tl)

⊤ and wh = (X⊤
h
, th)

⊤ in the random field
can be modeled as

Cov(M(wl),M(wh)) = τ 2R(Xl − Xh; θ)R(tl − th; γ ) , (2)

whereR(Xl−Xh; θ) models the spatial correlation defined in the
input parameter space and its magnitude depends on wl and wh

only through the difference in their input parameter components
Xl and Xh. The parameter vector θ = (θ1, θ2, . . . , θd)

⊤ ∈

R
d
+ controls how quickly the spatial correlation diminishes as

the two design points become farther apart while having the
same time index. The term R(tl − th; γ ) models the temporal
correlation and its magnitude only depends on the difference
between tl and th, and the parameter γR+ controls how quickly
the temporal correlation diminishes as the two time indices
become farther apart in the time domain while having the same
input parameter vector. The parameter τ 2 can be interpreted
as the variance of the random process M(·). Commonly used
spatial correlation functions include the exponential correlation
function, the Matérn correlation function and the Gaussian
correlation function. The temporal correlation function can be
constructed in a similar fashion; see chapter 4 of Rasmussen and
Williams [9] for details. For obtaining the results presented in
section 4, we have adopted the Gaussian correlation function

in R(Xl − Xh; θ) = exp
(
−
∑d

r=1 θr(Xlr − Xhr)
2
)
and R(tl −

th; γ ) = exp
(
−γ (tl − th)

2
)
for modeling the spatial and

temporal correlation structures.
An experimental design consists of {(wi, ni)

k
i=1}, i.e., a set of

design points to run independent simulations and the number
of simulation replications to apply at each of them. Denote the
k × 1 vector of the sample averages of simulation responses by

Ȳ =
(
Ȳ(w1), Ȳ(w2), . . . , Ȳ(wk)

)⊤
, in which

Ȳ(wi) =
1

ni

ni∑

j=1

Yj(wi)

= Y(wi)+ ε̄(wi), i = 1, 2, . . . , k, (3)

where ε̄(wi) = n−1
i

∑ni
j=1 εj(wi), and following from (1),

ε̄(wi) and Y(wi) are both scalars. That is, Ȳ(wi) is the
resulting point estimate of the performance measure of interest
obtained at design point wi and ε̄(wi) is the simulation error
associated with it. We write ǭ as a shorthand for the vector(
ε̄(w1), ε̄(w2), . . . , ε̄(wk)

)⊤
.

To perform global prediction, the best linear unbiased
predictor of Y(w0) that has the minimum mean squared error
among all unbiased linear predictors at a given point w0 =

(X⊤
0 , t0)

⊤ can be given as

Ŷ(w0) = β̂0 + 6M(w0, ·)
⊤6−1

(
Ȳ− 1kβ̂0

)
, (4)

where

β̂0 =
(
1⊤6−11

)−1
1⊤6−1

Ȳ (5)

is the generalized least squares estimator of β0. The
corresponding MSE follows as

MSE(Ŷ(w0)) = 6M(w0,w0)− 6M(w0, ·)
⊤6−16M(w0, ·)

+ ζ 2(1⊤6−11)−1, (6)

where ζ = 1 − 1⊤6−16M(w0, ·), 6 = 6M + 6ε , and 1 denotes
the k×1 vector of ones; see, e.g., Appendix A.1 of Chen et al. [17]
for detailed derivations.

We now elaborate on 6M, 6M(w0, ·) and 6ε in (4) and (6).
The k × k matrix 6M records covariances across the design
points, i.e., its (l, h)th entry 6M(wl,wh) gives Cov(M(wl),M(wh))
as specified in (2) for l, h ∈ {1, 2, . . . , k}. The k × 1 vector
6M(w0, ·) contains the spatial covariances between the k design
points and a given prediction point w0. The k × k matrix 6ε is
the variance-covariance matrix of the vector of simulation errors
ǭ associated with the vector of point estimates Ȳ.

To implement the aforementioned metamodeling approach
for prediction, one has to estimate the unknown model
parameters. One first substitutes 6̂ε into 6 = 6M + 6ε , with
the ith diagonal entry of 6̂ε specified by the simulation output
sample variances for i = 1, 2, . . . , k. Prediction then follows
(4) and (6) upon obtaining the metamodel parameter estimates
through maximizing the log-likelihood function formed under

the standard assumption stipulated by GPR that (Y(w0), Ȳ
⊤
)⊤

follows a multivariate normal distribution (see e.g., [14, 18]).

2.2. Global Sensitivity Analysis
Sensitivity analysis (SA) aims to provide a detailed quantification
of the relative importance of each input parameter to the model
output. Two categories of SA methods exist: local SA and global
SA. Local SA studies how a small perturbation near an input
parameter value impacts the model output, and it involves
computing partial derivatives of the model output with respect
to the input parameters. Global SA (GSA) focuses on quantifying
how sensitive the model output is to each individual input
parameter and their interactions. GSA is the only type of methods
that provides quantitative results while incorporating the entire
range of input parameter values. Furthermore, GSA delivers the
sensitivity estimates of individual parameters while varying all
other input parameters as well. Comprehensive reviews on SA
methods are given by, e.g., [19–23]. In this work, we focus on
GSA methods.

There exist many successful applications of GSA techniques.
For instance, Makowski et al. [24] evaluated the contributions of
13 genetic parameters to the variance of the crop yield and grain
quality for a crop model prediction. Lefebvre et al. [25] identified
the most influential input for an aircraft infrared signature
dispersion simulation model. Auder et al. [26] identified the
most influential inputs on the thermo-hydraulic output in an
industrial nuclear reactor application. Iooss et al. [27] studied
the radiological impact of a nuclear facility where they studied
18 output variables under the influence of 50 uncertain input
parameters. Volkova et al. [28] studied the groundwater flow
and radionuclide transport, where they considered 20 output
variables depending on 20 uncertain input parameters. Marrel
et al. [29] investigated a real hydro-geological case in radioactive
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contamination of groundwater where they studied the impact of
20 uncertain model parameters. In spite of the many successes
achieved by GSA techniques in various areas, they have been
of relatively limited use in the field of biological sciences and
medicine in general.

The next two subsections provide a brief review of variance-
based and regression-based GSA methods, which will be applied
and compared in our study.

2.2.1. Variance-Based Global Sensitivity Analysis
Themain idea of the variance-based SAmethods is to decompose
the variance of the output as a sum of contributions of each input
parameter. Consider the following model:X 7→ Y = f (X), where
f (·) is the model function, and X = (X1,X2, . . . ,Xd)

⊤ is the
d × 1 input vector with a known sampling distribution on the d-
dimensional unit cube Cr = {X :Xr ∈ [0, 1], r = 1, 2, . . . , d}; and
Y represents the system output. As the underlying relationship
f between the input parameters and model output is non-linear
and non-monotonic, the impact of input parameters on the
output can be estimated by the following functional variance
decomposition [23]:

Var(Y) =

d∑

r=1

Vr(Y)+
∑

1≤r<s≤d

Vrs(Y)+ . . . + V12...d(Y) (7)

where Vr(Y) = Var[E(Y|Xr)],Vrs(Y) = Var[E(Y|Xr ,Xs)] −
Vr(Y)− Vs(Y), Vrst(Y) =
Var[E(Y|Xr ,Xs,Xt)]−Vr(Y)−Vs(Y)−Vt(Y)−Vrs(Y)−Vrt(Y)−
Vst(Y), and so on for higher order interactions.

The Sobol’ indices are defined as Si1 ,...,is = Vi1 ,...,is (Y)/Var(Y).
Each index Si1 ,...,is represents the share of total variance of the
output Y that is due to the uncertainty in the set of input
parameters {Xi1 , . . . ,Xis}. Therefore the Sobol’ indices can be
used to rank the importance of input variables. By definition,
all the Sobol’ indices sum up to 1. The first-order indices
Sr ’s describe the impact of each input parameter taken alone,
while the higher order indices account for possible interaction
influence of input parameters. As the number of indices grows
exponentially with the dimension of the input parameter space d
which sometimes can be considerably large, the “total sensitivity
indices” [30] are proposed to measure sensitivities relating to
the rth input parameter Xr , i.e., STr =

∑
t∈Jr

St , where Jr =

{(i1, . . . , is) : ∃ℓ, 1 ≤ ℓ ≤ d, iℓ = r}. Monte Carlo sampling based
methods are typically used for estimating Sobol’ indices [23, 31];
however, these methods are rather computationally expensive in
terms of the Monte Carlo sample size required to get precise
estimates of sensitivity indices. Methods such as polynomial
chaos expansion [32] and Fourier amplitude sensitivity test [33,
34] are also proposed for fast computation of the Sobol’ indices.

Recent developments related to variance-based SA have been
focused on improving sampling and estimation efficiencies for
approximating the Sobol’ indices [35–39] and metamodel-based
indices estimation [40–42]. Generalizations of the Sobol’ indices
for SA of multivariate outputs have been investigated empirically
in Campbell et al. [43] and Lamboni et al. [44]. Recently,
generalized Sobol’ indices have been proposed and theoretically
studied in Gamboa et al. [45].

2.2.2. Regression Analysis-Based Global Sensitivity

Analysis
If the relationship between the output and the inputs is non-
linear but monotonic, SA methods based on rank transforms
such as the Spearman rank correlation coefficient (RCC) and
partial rank correlation coefficient (PRCC) methods can apply
and may perform well. The PRCC method has been successfully
applied for sensitivity analysis in various fields, e.g., radioactive
waste management [46], analysis of disease transmission [47],
and systems biology [48].

A correlation coefficient is a measure to quantify the strength
of linear correlation between a given input and the output of
interest. Specifically, the correlation coefficient between Xj and
Y can be calculated as

ρXj ,Y =

∑k
i=1(Xij − X̄)(Yi − Ȳ)√∑k

i=1(Xij − X̄)2
∑k

i=1(Yi − Ȳ)2
, j = 1, 2, . . . , d,

(8)
where d denotes the number of input parameters under
consideration, and X̄ and Ȳ denote the respective sample
means. The value of ρXj ,Y varies from −1 to +1, with +1,

−1, and 0 respectively indicating the presence of the strongest
linear agreement, the strongest disagreement, and the absence
of a linear relationship. If the inputs and the output are
rank transformed, the corresponding measure becomes the
Spearman’s rank correlation coefficient (RCC), which can be
used to measure the strength of linear correlation between the
rankings of the two variables.

Similar to the correlation coefficient, a partial correlation
coefficient is a measure of strength and direction of the linear
association between a given input Xj and the output Y with the
linear effects of a set of controlling inputs on Y being removed.
The partial correlation coefficient (PCC) between Xj and Y is the
correlation coefficient between the two residuals (Xj − X̂j) and
(Y− Ŷ), where

X̂j = c0 +

d∑

ℓ=1,ℓ6=j

cℓXℓ, and Ŷj = b0 +

d∑

ℓ=1,ℓ6=j

bℓXℓ

with c0 and b0 being the intercept terms and the cℓ’s and bℓ’s
being the regression coefficients. If the input Xj and the output Y
are rank-transformed, the resulting measure becomes the partial
rank correlation coefficient (PRCC), which is a robust sensitivity
measure for quantifying non-linear but monotonic relationship
between Xj and Y.

To assess if a PRCC is significantly different from zero, a
significance test can be performed based on the following test
statistic:

T = γ

√
N − 2− ℓ

1− γ 2
∼ tN−2−ℓ (9)

where γ denotes the PRCC value obtained,N denotes the sample
size, and ℓ represents the number of controlling inputs whose
effects are removed when calculating the PRCC value (ℓ =

d − 1 in our context). The test statistic T follows a student’s t
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TABLE 1 | Model states and their respective description (adapted from

([1, 49, 50]).

Model

states

Description

dDC Effector dendritic cell

EC Healthy epithelial cell

iDCs Immature dendritic cell

Commensal

Bacteria

H. pylori plays the role of the commensal bacteria in this

model

iTreg Induced T regulatory cells

M0 Undifferentiated macrophage

M1 Activated inflammatory macrophage

M2 Activated regulatory macrophage

nTreg Active natural T regulatory cell

pECell Damaged or pro-inflammatory epithelial cell

tDC Tolerogenic dendritic cell

Th Active CD4+ T helper cell

Th1 Active T helper-1 cell

Th17 Active T helper-17 cell

distribution with (N−2−ℓ) degrees of freedom. Based on (9), one
can obtain the corresponding p-value associated with the value of
γ calculated for a given input Xj. If the p-value is less than the
significance level pre-specified, then one can conclude that the
impact of Xj on Y is statistically significant.

2.3. The Simulation Model, Experimental
Design, and Corresponding Dataset
Helicobacter pylori (H. pylori) is a Gram-negative
microaerophilic bacterium that dominates the gastric microbiota
in over half of the human population [51, 52]. Approximately
5–15% of the cases develop gastritis or gastric malignancies
[53, 54]. However, there are reports regarding the role of H.
pylori as a beneficial organism and experimental data suggests
protection from esophageal cancer, asthma, obesity-induced
insulin resistance, and inflammatory bowel disease [55–60].
Whether H. pylori exerts a protective effect or whether it
contributes to immunopathology, cell damage, and malignant
transformation are dependent on host-pathogen interactions
[61]. Mathematical modeling can be used to investigate this
complex interplay. Computational and mathematical models
can aid the understanding of the immunological mechanisms
underlying the initiation, progression, and outcome of H.
pylori infection. These methods have been previously utilized
to gain knowledge regarding the mucosal immune system
response and the cross-protective effects in immune-mediated
diseases, such as the inflammatory bowel diseases and obesity
[50, 61].

The ENteric Immunity Simulator (ENISI) is a simulator of
the gastrointestinal tract mucosal immune responses [49, 50,
62–65]. ENISI can be used to design in silico experiments to
test the hypothesis of mechanisms of immune regulation in
response to bacteria such as H. pylori [1, 64, 65]. The model
of immune response to H. pylori infection, developed using

TABLE 2 | System input parameters (adapted from [1]).

Notation Parameter Description

X1 αT Probability of resting T cell stimulation

X2 p17 Probability of resting T cell stimulation to

Th1 vs. Th17 by eDC or M1

X3 αnTreg Probability of resting nTreg stimulation

X4 vT Fraction of active T cells that become

memory T cells

X5 a1 Co-efficient of

v12 =
(

a1R
a1R+i1N

)y1
(Pr(M1 → M2)) for

activators

X6 i1 Co-efficient of v12 for inhibitors

X7 y1 Exponent of v12

X8 a2 Co-efficient of

v21 =
(

a2R
a2R+i2N

)y2
(Pr(M2 → M1)) for

activators

X9 i2 Co-efficient of v21 for inhibitors

X10 y2 Exponent of v21

X11 ar Co-efficient of

vr17 =
(

arN
irR+arN

)yr
(Pr(iTreg → Th17)) for

activators

X12 ir Co-efficient of vr17 for inhibitors

X13 yr Exponent of vr17

X14 a17 Co-efficient of

v17r =
(

a17R
a17R+i17N

)y17
(Pr(Th17 → iTreg))

for activators

X15 i17 Co-efficient of v17r for inhibitors

X16 y17 Exponent of v17r

X17 vBM Probability that commensal bacteria

induces inflammatory phenotype in

macrophages

X18 vBD Probability that commensal bacteria

induces inflammatory phenotype in

dendritic cells

X19 vBs Probability that commensal bacteria

induces inflammatory phenotype in

‘sampling’ dendritic cells

X20 vEC Probability that EC transitions to pEcell

upon contact with inflammatory factors

X21 vEB Probability that EC is damaged by

microbial toxins

X22 βr Ability of commensal or inflammatory

bacteria to induce chemoattractant

expression in epithelial cells

X23 µce Probability that pEcell is killed by

inflammatory factors

X24 βd Relative amount of microbicide secreted

by pECell, pEC_noR in response to

commensal or inflammatory bacteria

X25 µM1 Ability of M1 to eliminate bacteria

the ENISI toolbox, involves 25 modeling/input parameters [1],
see Tables 1, 2 for a detailed description of model states and
input parameters with their corresponding notation used in this
work.

H. pylori is mainly found in the mucus layer lining the
epithelial cells, and a small fraction is present in the lamina
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FIGURE 1 | State transition functions for macrophages (adapted from [49]).

TABLE 3 | Simulation output variables of interest.

State Description

M0_LP Undifferentiated macrophage in lamina propria

M1_LP Activated inflammatory macrophage in lamina

propria

M2_LP Activated regulatory macrophage in lamina

propria

propria (LP). The immune cells participating in the immune
response to H. pylori infection, including the T cells and
macrophages, are found in the LP. The immune cells in the
gastric lymph nodes (GLN) also play an important role in
response to infection. As a proof of concept, in this study,
we focus on the three types of macrophages M1 (classically
activated, prone to promote inflammation), M2 (alternatively
activated with regulatory, and pro-resolutory functions) and
M0 (precursor of M1 and M2 macrophages) in the LP
as the output variables. Figure 1 shows the state transition
describing interactions among macrophages in Lamina Propria.
The reader is referred to Bisset et al. [49] and Wendeldorf
et al. [66] for details on the state transition functions for
the remaining cell types. We denote these three outputs as
M1_LP, M2_LP, and M0_LP respectively; see Table 3 for a brief
description.

The ENISI-based model of H. pylori is unique in the sense
that it incorporates regulatory mechanisms of both adaptive
and innate immunity, multi-location cell migration as well as
cross talk between various cell types. In addition, this modeling
framework is designed to represent each participating cell of
the immune pathway which facilitates mapping of the model
parameters to experimentally-driven predictions and therefore
provides solid translational utility.

The ENISI-based model of H. pylori can be viewed as
an extension of an agent-based model as it incorporates a
procedural and interactive view of the underlying systems where
components of the system interact locally with each other and
the behavior of individual objects is described procedurally
as a function of the internal state and the local interactions.
This approach allows incorporation of both spatial effects and
randomness of cell-cell and cell-bacteria contact. Furthermore, in
the case of colonic inflammation spawned by a small number of
pathogens, this randomness can significantly affect the outcome
of the system as we have previously described [49]. However,
scalability due to limitation of computational power is the
main drawback of using this approach. The goal of the present
work is to address this limitation by providing venues to draw
conclusions based on multi-resolution SA where the number of
simulation runs required to generate plausible hypotheses can be
reduced and the simulation experiment can be better designed
based on experts’ prior knowledge.

In our previous work, we performed an ANOVA-based
sensitivity analysis for the ENISI-based model of H. pylori
infection [1]. The simulation model has the 25 input parameters
listed in Table 2 (respectively denoted by X1,X2, . . . ,X25); and
the value of each input parameter is assumed to vary among 4
different levels [1]. A full factorial design containing all possible
combinations of the respective 4 levels of all 25 factors requires
425 = 1.126 × 1015 experiment runs; moreover, each simulation
replication performed at a given input parameter combination
takes about 90 min to execute. It is therefore impractical to
perform simulation runs at all input parameter combinations
specified by the full factorial design. As a remedy, we adopted
an orthogonal array of 128 distinct combinations of the 25 input
parameters with strength 2 [1]; let us denote the resulting 128×25
design matrix by D. Such a design has the following desirable
properties: (i) projecting the input combinations onto any input
dimension, there are 16 replications for each level; (ii) projecting
the input combinations onto any two input dimensions (i.e.,
any two columns of D), it is a full factorial (4 × 4) with
8 replications for each level combination; (iii) projecting the
input combinations onto a three-dimension subspace (labeled
as X1, X2, and X3), the projected points contain a full factorial
design in any two-dimensional space of (X1,X2), (X1,X3), and
(X2,X3). Therefore, the 128 distinct input combinations specified
by D are spread out in a 25-dimensional input parameter space;
and simulation experiments are only required to be performed
with these 128 combinations of input parameter levels. As
the simulation outputs tend to be highly variable, replicated
simulations are required at each input parameter combination
to assess the uncertainty exhibited by each output of interest.
We used 15 replications when simulating at each of the 128
input parameter combinations [1]. As a result, the resulting
dataset contains outputs generated from a total number of 128×
15 = 1, 920 simulation replications, with which sensitivity
analysis was performed. As it is computationally prohibitive to
perform simulation-based sensitivity analysis using ENISI, we
consider developing a two-stage metamodel-based SA procedure
to analyze the existing dataset fromAlam et al. [1] for the purpose
of studying the time-varying impact of each input parameter.
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3. TWO-STAGE METAMODEL-BASED
SAMPLING DESIGN AND SENSITIVITY
ANALYSIS

In this section, we first describe the sampling design for
constructing the two-stage metamodels, then we provide details
on the metamodel-based sensitivity analysis.

3.1. Sampling Design for the Two-Stage
Metamodel Construction
In this subsection, we provide details on how to construct the
two-stage metamodels with an increased temporal resolution
using the existing dataset that we have previously created [1].
Besides the details given in section 2.3 about the experimental
design and the resulting dataset, we note that for the sample path
generated by each simulation replication run at a given input
combination, four observations of each output variable are made
per day; this amounts to 28 observations made per week and
therefore 250 observations made over a 9-week period (all the
time units are given in terms of equivalent lab experiment days).
That is, each simulation replication at a given input parameter
combination generates 250 observations of an output variable at
250 time steps.

In the first stage, we divide the entire dataset into three smaller
datasets corresponding to the three time periods T1, T2, and T3

as shown in Table 2, and we construct the first-stage metamodel
using the three smaller datasets. In the second stage, we focus
on investigating the T2 period by dividing its corresponding
dataset further into ten subsets in accordance with ten time
segments as shown in Table 2. Such a study of the second stage
will help investigate the time-varying impact of input parameters
in a higher resolution, which enables us to focus on the peak of
infection, occurring around week 3 post-infection [67].

Specifically, in the first stage, we group the observations of
each output variable into three time periods, i.e., period 1 (T1)
consisting of week 1, period 2 (T2) consisting of weeks 2–6,
and period 3 (T3) consisting of weeks 7–9, see Figure 2 for
details. The sampling design we use for constructing the first-
stage metamodel for a given output variable is obtained by
crossing the original orthogonal array D with the time-period
index set T1 = {1, 2, 3}; hence, the resulting design includes
128 × 3 distinct design points, with its ith design point given by

w
(1)
i = (X⊤

i , t
(1)
i )⊤ ∈ D × T1 for i = 1, 2, . . . , 384; we obtain the

corresponding point estimate of a given output variable at design

point w
(1)
i , Ȳ(w

(1)
i ), by averaging the observations collected at all

time steps included in the time period indicated by t
(1)
i .

The second-stage analysis focuses on the T2 period, i.e., weeks
2–6. We group the observations of each output variable in
this period into 10 shorter segments, i.e., observations #29–42,
#43–56, #57–70, #71–84, #85–98, #99–112, #113–126, #127–140,
#141–154, and #155–168; see Figure 2 for details. The sampling
design we use for constructing the second-stage metamodel for
a given output variable is obtained by crossing the original
orthogonal array D with the time-segment index set T2 =

{1, 2, . . . , 10}. The resulting design therefore includes 128 ×

10 distinct design points, with its ith point given by w
(2)
i =

FIGURE 2 | Time segments for the first- and second-stage analyses.

(X⊤
i , t

(2)
i )⊤ ∈ D× T2, for i = 1, 2, . . . , 1, 280. As in the first stage,

we obtain the corresponding point estimate of a given output

variable at design pointwi, Ȳ(w
(2)
i ), by averaging the observations

collected at all time steps included in the time segment indicated

by t
(2)
i .
With the resulting dataset obtained by regrouping

observations according to the aforementioned first-stage
(respectively, second-stage) sampling design, we can construct a
first-stage (resp., second-stage) metamodel following section 2.1
for each of the three output variables of interest (i.e., M1_LP,
M2_LP and M0_LP). As values of the outputs are in unit of cell
counts, which range from zero to a few thousand, to facilitate
the use of GPR modeling, we transformed the values of the

outputs from Ȳ(w
(1)
i ) into log(Ȳ(w

(1)
i ) + 1) prior to constructing

the first-stage metamodel; a similar practice is adopted in the
second-stage metamodel construction as well. The metamodel
fitting was carried out using the R packagemlegp [68].

The goodness of fit of the resulting first- and second-stage
metamodels can be assessed via the normal quantile plots
shown in Figure 3; see more details from Figures S1, S2 in the
Supplementary Material. We note that all plots shown in this
paper involve cross-validated predictions and/or cross-validated
standardized residuals. Using cross-validation means that for
predictions made at a design point w, all observations at w

are removed from the training set. In brief, we remark that
the first-stage metamodels constructed for outputs M1_LP and
M2_LP are more adequate as compared to those constructed for
the other cases; a more detailed discussion on the metamodel
fitting is provided in section 5. It is worth noting, however, that
the simulated dataset we used were obtained according to the
experimental design intended for an earlier study [1]; hence,
though the metamodel fitting using this existing dataset does not
appear ideal, we expect that the fit could be further improved
by expanding the dataset using a more dedicated experimental
design.

It is worthwhile explaining the rationale behind constructing
the aforementioned two-stage metamodels and performing
the subsequent sensitivity analysis. A more direct route may
appear as to construct a single metamodel without binning
the 250 time steps at all; yet this choice amounts to
constructing a GP model using k = 128 × 250 = 32,000
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FIGURE 3 | Normal quantile plots obtained for the fitted metamodels with respect to outputs M0_LP, M1_LP, and M2_LP in the first stage analysis (three time periods,

i.e., T1, T2, and T3) and in the second stage high-resolution analysis (10 time segments in T2).

design points, a computationally intensive task itself as the
computational time for training and prediction scales in O(k3),
without taking into account the computational load due to
sensitivity analysis yet. In contrast, with the first-stage analysis
performed using the dataset in terms of three segments, we
can construct a much more computationally efficient metamodel
which facilitates sensitivity analysis to learn a rough trend of
importance exhibited by the input parameters. This enables us
to focus on the period to the domain experts’ interest most
and perform a more refined second-stage metamodel-based
sensitivity analysis accordingly. We emphasize that our interest

is in reusing an existing dataset to verify some conjectures and/or
propose new hypotheses for the next rounds of experiments
to test, hence the key is to develop an adaptive approach
to exploit the dataset as much as possible, while striking a
good balance between statistical and computational efficiency
achieved.

3.2. Metamodel-Based Spatio-Temporal
Sensitivity Analysis
Upon obtaining the first- and second-stage GPR models, we
apply the Monte Carlo estimators of the first-order and total
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TABLE 4 | Notation used for estimating Sobol’ indices.

Symbol Description

N The total number of input combinations used for Sobol’

index estimation

Xi The ith input parameter

X∼i All input parameters except for the ith one

A,B,C Independently generated N× 25 sample matrices of

input factor combinations

Aw,Bw,Cw The wth row of matrices A,B, and C

A
(i)
B

An N× 25 matrix whose ith column comes from matrix B

except that all the other columns are the same as matrix

A’s

B
(i)
A

An N× 25 matrix whose ith column comes from matrix A

except that all the other columns are the same as matrix

B’s

Ŷ(·, t) Predicted value of an output at a given input parameter

combination at time t

V̂i (·) Estimated variance of a given random quantity

calculated with respect to the uncertainty associated

with the ith input parameter

Ê∼i (·) Estimated expectation of given random value calculated

with respect to uncertainty linked to all input parameters

except for ith one

Sobol’ indices proposed in Saltelli et al. [38] for metamodel-
based sensitivity analysis. A summary of the notation used in this
section is presented in Table 4.

Following [38], we first generate three independent N ×

25 sampling matrices A, B, and C from the 25-dimensional
input parameter space via Latin hypercube sampling, each of
which contains N distinct input combinations specified by their
respective row; in our implementation N = 10,000 is used. Then
the predicted values were obtained using the input combinations
specified by the rows of A and B and the GPR models fitted. We
then estimate the total variance of a given output variable by the
following estimator:

V̂ar(Ŷ(C, t)) =
1

N

N∑

w=1

(Ŷ(Cw, t)
2)−

(
1

N

N∑

w=1

Ŷ(Cw, t)

)2

, (10)

where Ŷ(Cw, t) denotes the predicted value at the prediction
point (Cw, t) using the first-stage (respectively, second-stage)
GPR model following (4), with Cw representing the input
combination specified by thewth row ofmatrixC and t ∈ {1, 2, 3}
denoting the three time periods (resp., t ∈ {1, 2, . . . , 10} denoting
the ten time segments in the second period).

The estimated variance-based first-order effect for the ith
input parameter for i = 1, 2, . . . , 25 can be given as

V̂i

(
E∼i

(
Ŷ(C, t)|Xi

))
= V̂ar(Ŷ(C, t))

−
1

2N

N∑

w=1

(
Ŷ(Bw, t)− Ŷ((A

(i)
B )w, t)

)2
,

(11)

FIGURE 4 | A figure by courtesy of Saltelli et al. [38] showing the relationships

between sampling matrices. The wth row of matrix A and the wth row of of

matrix A
(i)
B
are considered being separated by a step in the direction of Xi .

Similarly, the wth row of matrix A
(i)
B
and the wth row of matrix B are considered

separated by a step along the direction of X∼i . Finally, the wth row of matrix

A
(i)
B
and the wth row of matrix A

(j)
B
are separated by a step along the direction

of Xij , i.e., the directions of both inputs Xi and Xj .

where Ŷ(Bw, t) and Ŷ((A
(i)
B )w, t) are as similarly defined as

Ŷ(Cw, t), with A
(i)
B denoting the N × 25 matrix whose ith column

comes frommatrix B and all the remaining columns are the same

as matrix A’s; and Bw and (A
(i)
B )w are as similarly defined as Cw.

In fact, transforming from (B)w into (A
(i)
B )w can be seen as a step

in the direction along all the input parameters except for the ith
one; see Figure 4 for an illustration.

Finally, the estimated first-order Sobol’ index for the ith input
parameter in tth time period with t ∈ {1, 2, 3} (respectively, in the
tth time segment of the second period with t ∈ {1, 2, . . . , 10}) can
be obtained using the first-stage (resp., second-stage) GPRmodel
as

Ŝi(Xi, t) =
V̂i

(
E∼i(Ŷ(C, t)|Xi)

)

V̂ar(Ŷ(C, t))
, i = 1, 2, . . . , 25. (12)

In addition, we can obtain the estimated total sensitivity index
for the ith input parameter in tth time period with t ∈ {1, 2, 3}
(respectively, in the tth time segment of the second period with
t ∈ {1, 2, . . . , 10}) using the first-stage (resp., second-stage) GPR
model as

ŜT(Xi, t) =
Ê∼i

(
V̂i(Ŷ(C, t)|X∼i)

)

V̂ar(Ŷ(C, t))
, i = 1, 2, . . . , 25, (13)

where

Ê∼i

(
V̂i(Ŷ(C, t)|X∼i)

)
=

1

2N

N∑

w=1

(
Ŷ(Aw, t)− Ŷ((A

(i)
B )w, t)

)2
.

(14)
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FIGURE 5 | Heatmaps of estimates of Sobol’ total and first-order indices for the 25 input parameters with respect to outputs M0_LP, M1_LP, and M2_LP. In each plot,

the vertical axis denotes the 25 inputs and the horizontal axis denotes the three time periods T1 to T3, with T2 being further divided into 10 time segments.

4. RESULTS

We first provide a detailed discussion on the multi-resolution
sensitivity analysis results obtained by the two-stage metamodel-
based procedure in section 4.1, then we compare these results
with those obtained by the PRCC method in section 4.2.

4.1. Results Obtained by the Two-Stage
Metamodel-Based Procedure
The resulting estimates of the Sobol’ total indices for the 25 input
parameters with respect to each output in periods 1 to 3 (T1,

T2 with ten time segments, and T3) are shown in Figure 5. We
summarize the observations as follows.

First, for M0_LP, the precursor of M1 and M2 macrophages
in the LP, we observe that in the T1 period, only X21,X22, which
are related to the initiation of infection, had the most impact on
M0_LP. As time progressed, X1 and X20 gradually became the
most important input parameters (these parameters are related
to the response to infection), whereas X21, X22 became less
and less important. In the T2 period with ten time segments,
X12 had the most impact, and the importance of X7,X4,X20,
and X1 largely increased as time proceeded. During the early
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T2 period, we observe the first wave of activities, including an
increase in activated inflammatory macrophages M2 → M1,
through parameter X10 which diminishes as the time progresses
during the peak of infection. During the same T2 period, we
also observe a second phase of activities, which were low and
steadily increased over this period, including a shift from M1
to M2 (through parameters X7,X5, and X9), and an increase
in iTreg from Th17 (through parameter X16). During the T3

period, we observe an increase in pEcell and resting T cells
simulations during the recovery stage, which started during the
second half of the T2 period. These observations are aligned with
our understanding of themodel dynamics and interacting entities
in the model.

Second, for M1_LP, classically activated macrophages that are
prone to promote inflammation, we observe thatX1 had the most
impact in all three time periods, which indicates the importance
of resting T cells. The parameter X10 seemed to be higher during
the peak of infection (around week 3), followed by the recovery
stage, which indicates a higher probability of M1 → M2, a
transition that is aligned with recovery and increase in immune
regulation. X20 (vEC) was observed at its highest level around
week 3. We note that the importance of this specific parameter
was observed in our earlier study [1] and it is interesting to
observe this trend using a different approach to SA. In fact,
the importance of this parameter increases over time during
the second stage (infection stage) and peaks at third week post
infection and stabilizes afterwards. In our previous work [1],
we had observed that the importance of parameter vEC peaks
at third week as well which further corroborates our previous
observation. Using metamodeling approach, we observe that the
importance of parameter 20 peaks towards the end of week 2
and slowly decrease over time reaching a stable level towards
the recovery stage. The peak of importance and stabilizing of
the impact of vEC is smoother when analyzing the results using
total indices as compared to first order indices that is when
accounting for possible interaction influence of input parameters.
This further highlights the robustness of this observation and
further corroborates on the findings indicating that a regulator
of gastric epithelial cell differentiation and function which is
increased after H. pylori infection can be critical for macrophage
recruitment to the stomach LP early after H. pylori infection
[1, 58, 67, 69].

Third, for M2_LP, an alternatively activated macrophage with
regulatory and pro-resolutory functions, we observe that X20

had the most impact for this cell type throughout the different
stages. The parameter X20 (vEC) is generally important for both
M1 and M2 cell types. In three independent studies, using
metamodeling, ANOVA based SA [1] as well as using PRCC
method, we see very similar trends in terms of the importance
of the parameter vEC (parameter 20, the probability that an
epithelial cell transitions into a proinflammatory state) with
respect to M2 macrophages. In all three cases, we observe that
vEC is a highly important parameter in themodel. In our previous
reported study we noted that the peak of importance is after
week 2, using PRCC we find that the peak of importance is
toward the end of week 2 (second time segment at week 2)
while using metamodeling approach, we note that the peak

of importance ranges from end of week 2 to week 3, slowly
decreasing after week 3. These results suggest that PRCC and
ANOVA based techniques are better aligned as we would expect,
given their underlying assumption and their implementation.
The metamodeling provides a more computationally expensive
alternative that could have higher resolution with respect to
interaction influence of other parameters. However, overall
these SA approaches are reproducible with slight variation in
observation. Further experimental validation will be needed
to corroborate the temporal prediction of these models.
The parameter X22 captured the ability of commensal or
inflammatory bacteria to induce chemoattractant expression in
epithelial cells and its importance for the M2 macrophages was
higher during the first phase of the infection (until week 3)
and it slowly decreased as time progressed. There were also
a number of parameters (X15,X4,X3,X2 and X23) that became
more significant during the second half of the T2 period. For
example, X3 captured the stimulation of resting nTreg and it
is expected to be more important during the initiation of the
recovery stage. Overall, these findings capture the dynamics of
the system and highlight the importance of model parameters
during the various stages of immune response to H. pylori
infection. This is highly valuable, as the importance of a given
input parameter over time can help us identify key elements that
are time sensitive and also facilitate the identification of key input
parameters for complex dynamic systems, such as the time to
recovery or the recovery duration among others.

4.2. Comparison With Results Obtained by
the PRCC Method
In this subsection, by focusing on the second-stage dataset,
we compare the SA results obtained by the PRCC and Sobol’
index methods for the top five most important input parameters
identified for M0_LP, M1_LP, and M2_LP. The comparison
results are shown in Figure 6, and the full analysis is available in
the Github repository.

Specifically, we compare the change in the value of (1 −

p) given by PRCC (p denotes the p-value obtained based on
Equation 9) and that in the total Sobol’ indices obtained by the
Sobol’ index method. We use “1” to label those cases where
the two methods indicate a consistent trend (either increasing
or decreasing) in the importance of a given input parameter,
or cases where both methods report an absolute change in the
level of importance that is smaller than 0.01. We use “−1” to
label the cases where the twomethods indicate inconsistent levels
of importance, namely, one indicates an increasing trend yet
the other indicates the opposite, or vice versa. Finally, the label
“0” is used to denote those cases where one method reports an
absolute change in the level of importance that is smaller than
0.01 whereas the other method reports an absolute change that is
greater than 0.01.

For all three macrophages related outputs, we observe
from Figure 6 that only a very small number of cases under
consideration are labeled by “−1.” This indicates that the SA
results given by the PRCC and Sobol’ index methods are
consistent in general; and this observation is especially true for
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FIGURE 6 | Comparison heatmaps of the PRCC and total indices obtained in

the second-stage analysis focusing on the 10 time segments.

the output M1_LP. It is worth noting that there are regions
labeled with “0.” A closer examination of the corresponding
cases reveals that the PRCC method tends to declare the input
parameter under consideration significant while the Sobol’ index
method does not. This is consistent with the finding of Marino
et al. [48] that the Sobol’ index method tends to be more
conservative as compared to the PRCC method; the Sobol’ index
method typically returns a smaller subset of input parameters
with significant total index estimates when compared to the set
of parameters with significant PRCC. We will provide further
comments on these two methods in section 5.

5. DISCUSSION

In this paper, we proposed a two-stage metamodel-based SA
procedure to analyze the model of immune response to H.
pylori infection. The first stage is based on three separate time
periods (namely, infection initiation, infection stage and recovery
stage), and the second stage focuses on ten time segments of the
infection stage. Specifically, we fit the GPRmodels for each of the
three outputs of interest (namely, M0_LP, M1_LP, and M2_LP)
using the sampling matrix augmented with appropriate temporal
index variables. We then obtain estimates of the Sobol’ total and

first-order indices for each input parameter using the fitted GPR
models. These estimates of Sobol’ indices enable us to efficiently
quantify the time-varying significance of each parameter on each
of the three system outputs of interest.

5.1. Pros and Cons of the PRCC and Sobol’
Index Methods
In general, the PRCC method is a computationally efficient and
reliable SA method in that it gives similar results as the Sobol’
index method for a majority of the cases investigated. However,
PRCC stipulates the restrictive assumption that a monotonic
relationship exists between the output and each input parameter
of interest, which is often violated by the underlying input-
output relationship exhibited by the stochastic system of interest.
Furthermore, as PRCC tends to return a larger set of input
parameters identified as significant, it can lead to difficulty
in identifying those few important input parameters from a
large set [48]. The Sobol’ index method, on the other hand,
does not stipulate any restrictive assumption on the input-
output relationship. Based on functional analysis of variance
decomposition, it is able to apportion the variance of the
output and quantify the effect of high-order interactions between
input parameters. The Sobol’ index method tends to produce
relatively conservative SA results by returning a smaller set of
important input paramters. In addition, the Sobol’ index method
is computationally more expensive than the PRCC method.

5.2. Strengths and Limitations
This study highlights the robustness and flexibility of our novel
approach, as it was efficiently used in an experimental design and
the resulting dataset that were created for an earlier SA study [1].
The fitting of the GPR models could be further improved with a
larger training dataset dedicated to the proposed approach. The
plots of observed vs. standardized residuals obtained for the fitted
metamodels shown in Figure S2 indicate that the metamodel’s
fitting is better for M1_LP and M2_LP in the first-stage analysis
as compared to the remaining cases. In particular, we observe
some outliers in cross-validated predictions for M0_LP using the
first- and second-stage GPR models constructed, and for M1_LP
and M2_LP using the second-stage metamodels constructed.
These findings again suggest that the original dataset may be
too sparse to be used for building robust metamodels here. It is
important to point out that given an existing dataset containing
a fixed number of observations, the higher temporal resolution
we look into, the less accurate the point estimates of an output
variable we get; subsequently, the resulting higher-resolution
spatio-temporal metamodel constructed based on these point
estimates becomes less accurate.

It is valuable to emphasize that despite the lack of accuracy
of some of the metamodels constructed, the SA results obtained
using the proposed approach are aligned with those previously
reported [1]. For instance, the trend of an important parameter
X20 (vEC) observed here echoes the previously reported
observations via amore traditional SA approach [1]; this provides
a further support to the conclusion reached. Hence, given that the
experimental design and the simulated dataset used here are not
specifically intended for the metamodel-based SA approach, we
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argue that the SA results obtained seem reasonable and relevant,
making the proposed approach adaptable to existing datasets. In
brief, given an existing dataset to use, choosing an appropriate
level of temporal resolution to perform a metamodel-based
sensitivity analysis is a delicate issue. The two-stage procedure
is proposed to proceed adaptively and has successfully confirmed
the results by our earlier study [1].

5.3. Future Direction
For future research directions, we will explore the effect of
time resolution for a given dataset and study the impact on
the model outputs. This systematic analysis will help us better
understand the limitations of our approach for sparser datasets,
including situations where one is not able to generate more
data (simulated or experimental). In addition, given customized
designs and resulting datasets, we will conduct an in-depth
study of interaction effects and higher-order effects associated
with each input parameter under consideration. In particular,
alternative SA methods will be considered, e.g., the sensitivity
index maps method that examines the model behavior at each
point of a spatio-temporal output domain, the block sensitivity
indices method that summarizes the influence of the input
parameters on the average value of the system output over a
subset of the domain [70], and the generalized sensitivity analysis
method that analyzes the influence of each input parameter over
the entire output domain [45]. However, the aforementioned
methods require collecting more data during each time period
of interest. To the best of our knowledge, even with an adequate
dataset available, the GPR modeling approach adopted in this
paper can become too computationally expensive to apply for
obtaining more refined spatio-temporal SA results. One potential
way to address this challenge is to conduct functional principal
component analysis (fPC) or proper orthogonal decomposition
[71]. Each time-dependent output can be expanded in an
appropriate functional coordinate system, and the metamodel-
based generalized SA can be applied to the vector of fPC
coefficients, such that the impact of each input parameter on the
generation of different dynamic features exhibited by each system
output of interest can be quantified efficiently. This research is
currently underway.

5.4. Potential Applications
The metamodel-based SA approach can be applied to analyze
other simulated stochastic systems, such as geologic computer
models, as well as rich longitudinal datasets obtained from
different fields, including financial, medical, literature, and social
data sources. Examples of such sources include (1) social

networks; (2) preclinical and clinical laboratory measures, to
study health outcome and predict disease onset; (3) in silico
clinical trials [72]; (4) electronic health records at large, which
could link health information to socioeconomic status and
physical activity as well as food environment; (5) wearable
electronics (for monitoring health conditions or physical
activities); and finally (6) unstructured text data from various
sources including scientific literature. In all these cases, it is
important to quantify the time-varying significance of a large

number of parameters on the system outputs in a statistically and
computationally efficient fashion.
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