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Amplitude chimera (AC) is an interesting chimera pattern that has been discovered

recently and is distinct from other chimera patterns, like phase chimeras and amplitude

mediated phase chimeras. Unlike other chimeras, in the AC pattern all the oscillators

have the same phase velocity, however, the oscillators in the incoherent domain show

periodic oscillations with randomly shifted origin. In this paper we investigate the effect

of local filtering in the coupling path on the occurrence of AC patterns. Our study is

motivated by the fact that in the practical coupling channels filtering effects come into play

due to the presence of dispersion and dissipation. We show that a low-pass or all-pass

filtering is actually detrimental to the occurrence of AC. We quantitatively establish that

with decreasing cut-off frequency of the filter, an AC transforms into a synchronized

pattern. We also show that the symmetry-breaking steady state, i.e., the oscillation death

state can be revoked and rhythmogenesis can be induced by local filtering. Our study

will shed light on the understanding of many biological systems where spontaneous

symmetry-breaking and local filtering occur simultaneously.

Keywords: chimera, amplitude chimera, oscillation death, filtering, control, rhythmogenesis, all-pass filter

1. INTRODUCTION

Networks of coupled identical oscillators show various cooperative behaviors. From the symmetry
considerations they can be categorized into two broad types: (i) symmetric (or symmetry
preserving) states, like synchronization, phase locking, and amplitude death (AD) state [1, 2], and
(ii) symmetry-breaking states, such as oscillation death (OD) [2] and chimera states [3]. Among all
these cooperative behaviors, in the center of recent research is the chimera state [4, 5] discovered
by Kuramoto and Battoghtokh in 2002. Chimera is a counterintuitive spatiotemporal pattern in
which coherence and incoherence coexist in a network of identical oscillators [3, 6]. In the initial
years studies on chimeras focused on exploring several aspects of chimera theoretically (see two
recent reviews on chimeras in [3, 6] for a detailed discussion). Later on experimental observations
of chimeras established their robustness in real systems. After the first experimental evidence of
chimeras in optical systems [7] and chemical oscillators [8], they have been observed experimentally
in several other systems also, e.g., in mechanical systems [9, 10], electronic [11, 12], optoelectronic
delayed-feedback [13–16], electrochemical [17–19] oscillator systems and Boolean networks [20].
Studies on chimeras are continuing to be a vibrant area of research owing to its connection to
various natural phenomena and systems, including epileptic seizure [21], unihemispheric sleep
[22, 23], ecological synchrony [24, 25], social systems [26], and quantum systems [27].

Although chimeras were discovered in phase oscillators, later on the notion was extended to
the general class of oscillators having both phase as well as amplitude dynamics. Those oscillators
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may show amplitude mediated phase chimeras (AMC) [28],
which is the coexistence of synchrony and asynchrony in both
phase and amplitude: here in the incoherent (coherent) domain
oscillators have disparate (same) phase velocities. Recently,
a new type of chimera has been discovered by Zakharova
et al. [29] called amplitude chimera (AC), in which all the
oscillators of the network are correlated in phase, however, in
the incoherent domain nodes have uncorrelated amplitude. The
distinct signature of an AC state is that in its coherent domain
nodes oscillate around the origin and have equal amplitude,
however, nodes belonging to the incoherent domain show limit
cycles of disparate amplitude and those limit cycles are shifted
from the origin.

In contrast to other chimera patterns, AC has strong
connections to another symmetry-breaking steady state, namely
the oscillation death state (OD) [2, 30–34]. The bridge between
AC and OD is mediated by an interesting emergent spatial
pattern called chimera death [29, 35], which carries the attributes
of both AC and OD. Since AC is the coexistence of spatially
homogeneous and inhomogeneous limit cycles, therefore, it is
believed to have relevance in the underlying mechanism for
cellular differentiation [36, 37] and ecological oscillations [24, 25,
38, 39] where coexistence of inhomogeneity and homogeneity
appears naturally.

As amplitude chimeras are a recently discovered variant of
chimera patterns, therefore, it is less explored: the effect of
node dynamics and coupling on the occurrence of AC demands
further investigations. Specifically, in realistic networks, where
signals often suffer from time delay [40], noise, dispersion
and dissipation [41], their effect on the AC pattern will be
important to explore. Although, the effect of noise and time
delay has recently been explored in detail in Loos et al. [42]
and Gjurchinovski et al. [43], however, the effect of dispersion
and dissipation on the AC state has not been studied yet. In
the presence of dispersion, signals having different frequencies
propagate with different velocities. Whereas, dissipation causes
attenuation and signal loss. A channel having both dispersion
and dissipation is said to behave like a low-pass filter. On the
other hand, a channel having only dispersion is said to behave
as an all-pass filter [44]. Several physical and biological systems
contain inherent local low-pass filters (LPFs): For example, the
musculoskeletal system of human body acts as low-pass filter
[45], the abdominal ganglion of crayfish contains local LPFs [46],
LPF is one of the building blocks of phase-locked loops [47]. On
the other hand, in the case of electronic communications and
neuronal systems the presence of local amplifiers or ion channels
[48], respectively, compensate for the dissipation, however, in
those systems signals still suffer dispersions making the coupling
path to behave as an all-pass filter (APF). The effect of low-pass
filtering was studied before in the context of synchronization
[49, 50] and rhythmogenesis from an amplitude or oscillation
death state [41] (by rhythmogenesis we mean the process by
which the rhythmic behavior of individual nodes in a network
of coupled oscillators is restored from the state of suppressed
oscillations without changing the intrinsic parameters associated
with the individual nodes); Banerjee et al. [51] reported a novel
transition from homogeneous to inhomogeneous limit cycle as a

consequence of low-pass or all-pass filtering. However, hitherto
the effect of filtering on the chimera state in coupled oscillators
has not been explored.

Motivated by the above discussion, in this paper we study
the effect of local filtering on the occurrence of amplitude
chimera (AC) in a network of nonlocally coupled Stuart-Landau
oscillators. By local filtering we mean that the filtering effect is
considered in the self-feedback path only. We consider local low-
pass and all-pass filters in the network and for the first time we
show that both types of filtering have a detrimental effect on
the occurrence of amplitude chimeras: filtering always suppresses
amplitude chimeras. With the variation of a filtering parameter
(namely, the corner or cut-off frequency) we observe transitions
from the oscillation death and amplitude chimera state to the
globally synchronized state.

2. WITHOUT FILTERING

We consider N = 200 Stuart-Landau oscillators interacting
through nonlocal symmetry-breaking coupling (i.e., only
through the x-variable). The mathematical model of the coupled
system is given by,

ẋi = (1− x2i − y2i )xi − yiω + ε

2P

i+P∑
j=i−P

(xj − xi), (1a)

ẏi = (1− x2i − y2i )yi + xiω, (1b)

with i = 1 · · · 200. The individual Stuart-Landau oscillators
have unit amplitude and eigenfrequency ω. Here ε denotes
the coupling strength and P is the coupling range of the
nonlocal coupling.

To explore the dynamics of the coupled network we
numerically solve Equation (1) using the fourth-order Runge-
Kutta method (step size = 0.01). Throughout this paper we
consider ω = 2 and use the following initial conditions [29]:
xi = 1 and yi = −1 for 1 ≤ i ≤ N

2 and xi = −1 and yi = 1

for N
2 < i ≤ N.
Figure 1A shows the phase diagram in the P − ε space: we

can see that the amplitude chimera (AC) state is interspersed in
between the completely synchronized oscillation zone (Sync) and
the oscillation death (OD) zone. This is in accordance with the
results of Zakharova et al. [29], Schneider et al. [52], Zakharova
et al. [53], and Tumash et al. [54] where this system was studied
in detail. Figures 1B–D illustrate the spatiotemporal evolution
of the synchronized state (ε = 5), AC pattern (ε = 20) and
multicluster OD state (ε = 30) at P = 10. Figure 2 depicts the
manifestation of AC and OD in the phase space for an exemplary
coupling range P = 10. Figure 2 (Left panel) shows AC for
ε = 20: here the small amplitude and shifted-origin limit cycles
represent incoherent nodes and those having large amplitude
oscillating around the origin represent the coherent nodes (for
clarity only a few nodes from coherent and incoherent domains
are shown). For higher coupling strengths a symmetry-breaking
steady state (OD state) emerges, which is shown in Figure 2
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FIGURE 1 | Without filtering: (A) phase diagram in the P− ε space for

N = 200 nonlocally coupled Stuart-Landau oscillators (ω = 2). Sync,

synhronized state; AC, amplitude chimera; OD, oscillation death. (B–D) The

spatiotemporal plots at P = 10 for three different coupling strengths ε: (B)

synchronized state for ε = 5 [shown by � in (A)], (C) AC for ε = 20 [shown by

⋆ in (A)] and (D) multicluster OD for ε = 30 [shown in N in (A)].

FIGURE 2 | Without filtering: Phase-space plot of a few nodes of the network

from the coherent and incoherent domains (Left panel) AC (ε = 20, ⋆ point

in Figure 1A), and (Right panel) OD (ε = 30, N point of Figure 1A). Other

parameter values are P = 10, ω = 2, N = 200.

(Right panel) for ε = 30. In the next section we will explore how
filtering affects this dynamical landscape in parameter space.

3. EFFECT OF LOW-PASS FILTERING

3.1. Mathematical Model
We consider N = 200 Stuart-Landau oscillators interacting
through nonlocal symmetry-breaking coupling as in
Equation (1), but here we consider local low-pass filter in
the coupling path. The mathematical model of the coupled
system is given by,

ẋi = (1− x2i − y2i )xi − yiω + ε

2P

i+P∑
j=i−P

(xj − zi), (2a)

ẏi = (1− x2i − y2i )yi + xiω, (2b)

żi = α(−zi + xi). (2c)

Equation ((2c)) is the mathematical equation of a low-pass filter
whose input is xi and output is zi. This zi is fed to the coupling
part of Equation (2a). Here α represents the corner or cut-off
frequency of the LPF: the lower is the value of α, the higher is
the effect of filtering. For larger α, filtering effects become lesser:
if we put α → ∞ in Equation (2a), it simply gives zi = xi, i.e., no
filtering effect is present and Equation (2) reduces to the original
Equation (1). Since in the literature of filters we are conversant
with the frequency domain representation, therefore, at first it
is difficult to realize the role of α in Equation (2c). However, a
close inspection reveals that α controls both phase and amplitude
of the output signal zi by the following way: the phase shift
between input and output is given by φi = arctan(ωα−1), the
ratio of output and input (called gain of the filter) is G =

1√
1+ω2α−2

(see [51] for details). Another equivalent form is

the representation of Equation (2c) as a distributed delayed
coupling term in Equation (2a) with an exponential delay kernel
exp(−ατ ) [55, 56].

3.2. Results
We investigate the effect of local low-pass filtering on the
occurrence of amplitude chimera. Since α is the only control
parameter, we will explore the effect of α on the dynamics of
the network. We keep all the parameters and initial conditions
the same as in the unfiltered case; the initial conditions for
the filter variable zi are chosen the same as those of xi for the
unfiltered case.

Figures 3A,B demonstrate the phase diagram of the network
in the P − ε space for three different (decreasing) values
of α. It can be observed from Figure 3 that the smaller the
value of α is, the more the network dynamics deviates from
the original scenario shown in Figure 1A. It is apparent from
Figure 3 that with decreasing α (i.e., increasing filtering effect)
the synchronized portion dominates and therefore suppresses the
AC and OD regions: a lower α shifts the AC and OD zone to a
higher P region and also quenches the area of the AC and OD
zone. Eventually, below a critical value of α (say αc) the AC and
OD state disappear and only the synchronized state prevails in
the whole P − ε space. This suppression of the AC and OD zone
is shown in Figure 3C for α = 10.

The scenario can be understood more clearly in the ε − α

space for a fixed P. Figure 4A shows this for P = 10: we can
observe that for comparatively high values of α the dynamics
of the system remains unchanged. However, as the value of α is
decreased the system goes to a synchronized state irrespectively
of ε. It also shows that there exists a critical value αc of α,
below which the synchronized state is the only possible state.
Figures 4B–D illustrate how decreasing α leads to the transition
from OD to synchrony via AC (ε = 25 and P = 10): for α = 45
the network shows a multi-clustered OD state (Figure 4B), and
the AC state is shown for α = 35 (Figure 4C), and finally global
synchrony (a coherent traveling wave or a splay state) appears for
further lowering of α (Figure 4D for α = 25). It is noteworthy
that in a range of lower ε, no OD state occurs and in this zone a
decreasing α leads to a direct transition from AC to synchrony.

Figure 4E shows the scenario in the P − α space (ε = 35):
here also we can see that at lower α values the completely
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FIGURE 3 | With local low-pass filtering: Phase diagram in the P vs ε space (N = 200, ω = 2) for (A) α = 50 and (B) α = 20. (C) shows complete suppression of AC

for α = 10.

synchronized state emerges out of either AC or OD. From
Figures 4A,E we see that OD state is predominant for higher
coupling strength (ε) and near-global coupling range (i.e., P →
N/2): it is interesting to note that a suitably chosen filtering
parameter α can suppress the steady state and therefore results
in rhythmogenesis in the network. In Zou et al. [41] and Banerjee
et al. [51] filtering-induced rhythmogenesis in coupled oscillators
was reported, however, in contrast to Zou et al. [41] and Banerjee
et al. [51] here we show the existence of a broad parameter
zone where OD does not transform into oscillation (SYNC)
directly, but another symmetry-breaking emergent state, i.e., an
amplitude chimera, mediates the transition. Therefore, filtering
plays an important role in networks of physical, biological,
and physiological systems where the occurrence of oscillation
suppression often leads to a fatal system degradation and an
irrecoverable malfunctioning [57–59]. A similar enhancement of
the stability domain of the synchronized solutions for small α
was found for distributed delayed coupling with an exponential
kernel [56].

In the above results we use suitable measures, such as the
measure of spatial correlation (g0) and the center of mass (ycmi ) to
ensure the occurrence of the synchronized state and AC state and
also to distinguish them (distinction of the OD state is relatively
simple as we have to check whether a steady state is reached or
not). According to Kemeth et al. [60], the measure of spatial
correlation is defined in terms of the normalized probability
density function g as

g0(t) ≡
δth∑

|L̂ψi(t)|=0

g(|L̂ψi(t)|). (3)

Here L̂ψi(t) represents the local curvature at each node i at time
t given by

L̂ψi(t) = ψ(i−1)(t)− 2ψi(t)+ ψ(i+1)(t), (4)

where L̂ is the discrete Laplacian operator on each snapshot
{ψi}. In our present case the state variable ψi(t) = yi (one can
use xi as well). In Equation (3) we consider a threshold value
δth = 0.01Lmax, where Lmax is the maximum curvature in the

network [60]. The measure of spatial correlation g0(t) = 1 for
a fully synchronized network and g0(t) = 0 for a completely
unsynchronized network. Therefore, 0 < g0(t) < 1 represents
partial synchronization ensuring the occurrence of chimera state.
Although g0(t) can ensure the occurrence of a chimera state, it
cannot distinguish between phase and amplitude chimeras. To
ensure that AC indeed emerges in the network, we compute the
center of mass of each oscillator defined by [29]

ycmi =
1

T

∫ T

0
yidt, (5)

where yi represents the state of the i-th oscillator and T is a
sufficiently large time. The quantity ycmi gives a measure of the
shift of a limit cycle from the origin. Therefore, it can distinguish
the homogeneous limit cycles from inhomogeneous ones.

Figures 5A,C, respectively, show g0(t) and ycmi of each
oscillator corresponding to the synchronized state of Figure 4D
(α = 25): we observe that all the oscillators in the network
have g0(t) = 1 and ycmi = 0 indicating that the whole network
is synchronized. On the other hand, Figures 5B,D, respectively,
show g0(t) and ycmi corresponding to the AC state of Figure 4C
(α = 35): we can see that 0 < g0(t) < 1 indicating the occurrence
of chimeras and at the same time ycmi in the incoherent region
exhibits a random sequence of shifts to positive and negative
values, however, in the coherent region ycmi = 0 indicating that
the resulting chimera is indeed an AC pattern.

According to Tumash et al. [54], a strong measure that
distinguishes an AC state from the synchronized state is the
Floquet exponent. We study the stability of the periodic solution
of nonlocally coupled Stuart-Landau oscillators given by (2)
using Floquet theory [54]. We rewrite (2) as

ẋ = f (x(t)), (6)

with x(t) ∈ Rn and also consider that a periodic solution ψ(t) =
ψ(t + T) exists. In our case, we have three equations, therefore,
n = 3N. The linearized equation is written as,

δẋ(t) = J(ψ(t))δx(t), (7)
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FIGURE 4 | With local low-pass filtering: (A) phase diagram in the ε − α space for P = 10 (ω = 2). Three points at three α values at a particular ε = 25 are marked by

• (α = 45), H (α = 35) and � (α = 25). (B–D) spatiotemporal plots corresponding to those three points (decreasing α): (B) multicluster OD, (C) AC, (D) synchronized

state (coherent traveling wave or splay state). (E) phase diagram in the P− α space for ε = 35.

FIGURE 5 | With local low-pass filtering: (A,B) The time evolution of g0
corresponding to the synchronized (A) and AC (B) state as marked in

Figure 4A by (�) (α = 25) and (H) (α = 35), respectively. (C,D) The

corresponding center of mass (ycmi
) for the above two points, showing

synchronized (C) and AC (D) states, respectively. Other parameters are

P = 10, ε = 25 and ω = 2.

where J(ψ(t)) is the Jacobianmatrix evaluated atψ(t) and has the
following solution:

δx(t) = M(t)δx(0). (8)

Here δx(0) is the initial condition. The fundamental matrixM(t)
obeys the equation,

Ṁ(t) = J(ψ(t))M(t), (9)

where M(0) = 1, and M(t + T) = M(t)M(T). M(T) is
the monodromy matrix whose eigenvalues are called Floquet
multipliers (µk). Each Floquet multiplier can be expressed as
µk = exp((3k + i�k)T), where (3k + i�k) is the Floquet
exponent. The stability of the periodic orbit can be analyzed
by determining the sign of the real part of these exponents.

FIGURE 6 | With local low-pass filtering: Phase diagram of the periodic

solutions (Sync and AC) in ε−α space based on the Floquet exponent. For the

synchronized region (black), at each point, the largest real part of the Floquet

exponents (3max ) is negative (for the Goldstone mode it is approximately

equal to zero). For the AC region (orange) at each point it is greater than zero

(i.e., 3max > 0). Other parameters are P = 10, ω = 2, N = 200.

When the real parts of all the Floquet exponents are less than
zero (i.e., 3k < 0) except the Goldstone mode (which is
equal to zero) then the periodic solution is stable indicating a
synchronized solution [54]. But according to Tumash et al. [54]
when at least one or two of them are greater than zero (3k >

0), then the solution becomes unstable indicating a saddle
cycle in phase space which corresponds to an AC state. In
our computation we average the exponents over 200T (where
T = π). Figure 6 shows the zone in black where all the
exponents are negative (except the Goldstone mode), which
indicates the synchronized state; Again, at every point in the
orange region, a few 3ks have small (< 0.5) positive values,
which means that the system is in the AC state. Note the
agreement between Figure 4A and Figure 6, which confirms
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FIGURE 7 | With all-pass filtering: Phase diagram in the P− ε space for (A)

α = 50 and (B) α = 20. (C) spatiotemporal plot of AC corresponding to

α = 50 (shown by H in A). (D) spatiotemporal plot of the synchronized state

(coherent traveling wave) corresponding to α = 20 (shown by � in B). In both

(C,D) ε = 12, P = 15, ω = 2.

that a transition from AC to synchrony indeed occurs with
decreasing α.

4. EFFECT OF ALL-PASS FILTERING

Next we consider the effect of all-pass filtering (APF) in the
network of Stuart-Landau oscillators described in Equation (1).
The mathematical model of the coupled system is given by

ẋi = (1− x2i − y2i )xi − yiω + ε

2P

i+P∑
j=i−P

(xj − Ui) (10a)

ẏi = (1− x2i − y2i )yi + xiω (10b)

żi = α(−zi + xi) (10c)

Ui = 2zi − xi (10d)

Equations (10c, 10d) jointly represent the differential algebraic
equation of an all-pass filter, whose input is xi and output is Ui

[51]. In this case α has the same meaning as in Equation (2c),
but the effect of α is different on Ui: Here α does not affect the
amplitude of Ui, it only affects the phase part by introducing
a phase shift between the input and output signals, given by
θ = 2arctan(ωα−1). Note that for the same α the phase shift
introduced by a LPF (i.e., φ) is half of that of an APF (i.e., θ).

In Figure 7 the effect of an all-pass filter is shown in the
P − ε space for two α values: Figure 7A is for α = 50 and
Figure 7B is for α = 20. Figures 7C,D show the spatiotemporal
representation of AC (for α = 50) and synchronized state
(coherent traveling wave for α = 20), respectively: it shows that
α acts as an efficient control parameter for the suppression of AC.
Here it is evident that local all-pass filtering can also suppress AC
(and OD) and gives rise to the synchronized state. Comparing
Figures 7A,B of the low-pass filtering case with Figures 7A,B,
respectively, it is interesting to note that for the same α an APF is
more effective than a LPF as far as the suppression of amplitude
chimeras (and OD) is concerned: see for example at α = 20, low-
pass filtering only quenches the AC and OD zone in P − ε space
(Figure 3B), however, all-pass filtering completely suppresses the
AC and OD zone (Figure 7B). We ensure that αc, the critical
value below which AC and OD are completely suppressed, is
much higher for an APF compared to that of a LPF (not shown
here): therefore even a relatively weak all-pass local filtering
is equivalent to a stronger local low-pass filtering, as far as
suppressing AC and OD is concerned. This is the consequence of
the fact that at a particular value of α, the phase shift introduced
by an APF is twice of that of a LPF [51]. Therefore, all the results
suggest that α which is the control parameter of local filters, also
controls the dynamics of the whole network.

5. CONCLUSION

In this paper, we have revealed that the presence of local
filtering (either low-pass or all-pass) suppresses the amplitude
chimera state and therefore gives rise to global synchrony
(coherent traveling waves). Further, it has been shown that local
filtering causes rhythmogenesis by suppressing the steady state
behavior (i.e., OD state), which has immense importance in
many biological and engineering systems [58, 61]. Collectively,
our study has a broad significance: it establishes that local
filtering is detrimental for the symmetry-breaking states
(AC and OD) and favors restoration of the symmetry in
the network.

Our study reveals that the cut-off frequency α of the local
filter acts as an efficient control parameter of the network that
can be tuned to achieve a desired symmetry-breaking state
or synchronized state without changing coupling strength or
range. Several control methods to stabilize phase or amplitude
mediated phase chimeras have recently been proposed [62–64].
In Gjurchinovski et al. [43] it has been shown that a constant
time delay in the coupling path can stabilize amplitude chimeras.
In contrast, here we established that the local filtering has a
destabilizing effect on the occurrence of amplitude chimeras. In
the case of rhythmogenesis, the value of α that suppresses the
steady state depends upon the system and coupling parameters
in a nontrivial manner (see [51] for two mean-field coupled
oscillators). It has been observed that if one wants to ensure
rhythmogenesis (irrespectively of other parameters) the typical
value of α is of the order of the intrinsic frequency of an
individual oscillator (here ω). However, depending upon system
and coupling parameters, α (filtering) need not be so small
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(strong): rhythmogenesis appears much before that, i.e., for
α > ω.

From the perspective of dynamical systems the role of α
can be understood in the following way: α actually controls the
dissipative property of the whole network by controlling the
dissipation and dispersion in the coupling path; a smaller α
imposes a larger filtering effect and therefore smaller dissipation,
which favors synchrony and rhythmogenesis. In this context we
observe that filtering does not affect the pattern of phase chimera
appreciably. This may be due to the fact that additional phase
shift and/or attenuation caused by filtering has lesser effect on the
mean frequency than on the amplitude dynamics (note that in the
phase chimera the mean frequency is the determining factor that
distinguishes the coherent and incoherent domains, whereas in
the amplitude chimera, the amplitude of the nodes matters).

In this paper we have considered a network of Stuart-
Landau oscillators. However, we verified that the filtering affects
the amplitude chimera in a similar way in other systems
also, for example, in a network of Rayleigh oscillators [65]

(results not shown). Since the Stuart-Landau oscillator is

a generic model for systems near a Hopf bifurcation and
since filtering naturally arises in many biological and physical
systems, we believe that our results can also be extended to
those systems.
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