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In this paper, we propose a fractional generalization of the well-known Laguerre

differential equation. We replace the integer derivative by the conformable derivative

of order 0 < α < 1. We then apply the Frobenius method with the fractional power

series expansion to obtain two linearly independent solutions of the problem. For certain

eigenvalues, the infinite series solution truncate to obtain the singular and non-singular

fractional Laguerre functions. We obtain the fractional Laguerre functions in closed forms,

and establish their orthogonality result. The applicability of the new fractional Laguerre

functions is illustrated.

Keywords: fractional differential equations, Laguerre equation, conformable fractional derivative, series solution,

Frobenius method

1. INTRODUCTION

In recent years, there are interests in studying fractional Sturm-Liouville eigenvalue problems.
For instance, the fractional Bessel equation with applications was investigated in Okrasinski and
Plociniczak [1, 2], where the fractional derivative is of the Riemann-Liouville type. In AbuHammad
and Khalil [3] the authors solved the fractional Legendre equation with conformable derivative and
established the orthogonality property of the fractional Legendre functions. The applications of
the fractional Legendre functions in solving fractional differential equations, were illustrated in
Kazema et al. [4] and Syam and Al-Refai [5]. In this project we propose the following fractional
generalization of the well-known Laguerre differential equation

xαDα
0D

α
0 y+ (1− xα)Dα

0 y+ λy = 0,
1

2
< α < 1, x > 0, (1.1)

where Dα
0 is the conformable derivative of order α. The conformable derivative was introduced

recently in Khalil et al. [6], and below are the definition and main properties of the derivative.

Definition 1.1. For a function f :(0,∞) → R, the conformable derivative of order 0 < α ≤ 1 of f
at x > 0, is defined by

(Dα
0 f )(x) = lim

ǫ→0

f (x+ ǫx1−α)− f (x)

ǫ
,

and the derivative at x = 0 is defined by (Dα
0 f )(0) = limx→0+ (D

α
0 f )(x).

The conformable derivative is a local derivative which has a physical and a geometrical
interpretations and potential applications in physics and engineering [7, 8]. It satisfies the nice
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properties of the integer derivative such as, the product rule, the
quotient rule, and the chain rule, and it holds that

1. Dα
0C = 0, C ∈ R,

2. Dα
0 x

p = p xp−α ,
3. Dα

0 sin(
1
α
xα) = cos( 1

α
xα),

4. Dα
0 cos(

1
α
xα) = − sin( 1

α
xα),

5. Dα
0 e

1
α
xα

= e
1
α
xα

.
6.

∫ a
0 f (x)dα(x) =

∫ a
0 xα−1f (x)dx.

For more details about the conformable derivative we refer the
reader to Abdeljawad [9] and Khalil et al. [6]. We mention here
that even though the conformable is a nonlocal derivative (see
[10, 11]), the simplicity and applications of the derivative make
it of interests. Also, the applications of the obtained Fractional
Leguerre functions are indicated in this manuscript. The rest
of the paper is organized as follows: In section 2, we apply the
Frobenius method together with the fractional series solution to
solve the above equation and to obtain the fractional Laguerre
functions. In section 3, we establish the orthogonality result of the
fractional Laguerre functions and present the fractional Laguerre
functions for several eigenvalues. Finally, we close up with some
concluding remarks in section 4.

2. THE SERIES SOLUTION

The series solution is commonly used to solve various types of
fractional differential equations (see [12–16]). Since x = 0, is α-
regular singular point of Equation (1.1), see [17], we apply the
well-known Frobenius method to obtain a solution of the form

y =

∞
∑

n=0

anx
α(n+r),

where the values of r will be determined. We have

Dα
0 y =

∞
∑

n=0

α(n+ r)anx
α(n+r−1),

= αa0rx
α(r−1) +

∞
∑

n=0

α(n+ r + 1)an+1x
α(n+r),

xαDα
0 y =

∞
∑

n=0

α(n+ r)anx
α(n+r),

Dα
0D

α
0 y =

∞
∑

n=0

α2(n+ r)(n+ r − 1)anx
α(n+r−2),

xαDα
0D

α
0 y =

∞
∑

n=0

α2(n+ r)(n+ r − 1)anx
α(n+r−1),

= α2r(r − 1)a0x
α(r−1)

+

∞
∑

n=0

α2(n+ r + 1)(n+ r)an+1 x
α(n+r).

By substituting the above results in Equation (1.1) we have

0 = α2r(r − 1)a0x
α(r−1) +

∞
∑

n=0

α2(n+ r + 1)(n+ r)an+1 x
α(n+r)

+ αa0rx
α(r−1) +

∞
∑

n=0

α(n+ r + 1)an+1x
α(n+r)

−

∞
∑

n=0

α(n+ r)anx
α(n+r) + λ

∞
∑

n=0

anx
α(n+r).

The coefficients of xα(r−1) will lead to

a0αr

(

α(r − 1)+ 1

)

= 0. (2.1)

Because α 6= 0, and a0 = 0, will lead to the zero solution, we have

r = 0, r = 1−
1

α
. (2.2)

We start with r = 0, we have

α2n(n+ 1)an+1 + α(n+ 1)an+1 − αnan + λan = 0,

or

an+1 =
αn− λ

α(n+ 1)(αn+ 1)
an, n ≥ 0. (2.3)

Lemma 2.1. The coefficients an in Equation (2.3) satisfy

an+1 =

n
∏

j=0
(jα − λ)

αn+1(n+ 1)!
n
∏

j=0
(jα + 1)

a0, n ≥ 0. (2.4)

Proof: The proof can be easily obtained by iterating the recursion
in (2.3) and applying induction arguments.

Remark 2.1. For α = 1, the recursion relation in (2.4) will
reduce to

an+1 =
−λ(1− λ)(2− λ) · · · (n− λ)

[(n+ 1)!]2
a0, (2.5)

which is exactly the recursion relation that has been obtained in
solving the Laguerre equation with integer derivative.

For r = − 1
α
+ 1, we have for n ≥ 0,

an+1 =
α(n+ r)− λ

α(n+ r + 1)(α[n+ r]+ 1)
an,

=
α(n+ 1)− (λ + 1)

α(n+ 1)(α[n+ 2]− 1)
an. (2.6)

By iterating the recursion in (2.6) and applying induction
arguments, we have
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Lemma 2.2. The coefficients an in Equation (2.6) satisfy

an+1 =

n+1
∏

j=1
(jα − [λ + 1])

αn+1(n+ 1)!
n+2
∏

j=2
(jα − 1)

a0, n ≥ 0. (2.7)

Remark 2.2. By applying the Frobenius method to the regular
Laguerre equation with integer derivative α = 1, we obtain only
one value of r = 0, which produces only one solution. Here with
the fractional case, we obtain two values of r = 0, 1 − 1

α
, that will

produce two linearly independent solutions of the problem as we
will see later.

Now, in Equation (2.4), if we choose α = αm and λ = λm

such that

mαm = λm,

for some integerm, then

am+1 = am+2 = · · · = 0,

and the infinite series solution will truncate to obtain the
finite sum

u(x) =

m
∑

n=0

anx
nαm = a0

(

1+

m
∑

n=1

n−1
∏

j=0
(jαm − λm)

αn
mn!

n−1
∏

j=0
(jαm + 1)

xnαm
)

= a0L
0
m,αm

(x),

where L0m,αm
(x) is the non-singular fractional Laguerre function

of orderm. Since

n−1
∏

j=0

(jαm − λm) =

n−1
∏

j=0

(jαm −mαm) =

n−1
∏

j=0

αm

n−1
∏

j=0

(j−m)

= αn
m

n−1
∏

j=0

(j−m),

then

L0m,αm
(x) = 1+

m
∑

n=1

n−1
∏

j=0
(j−m)

n!
n−1
∏

j=0
(jαm + 1)

xnαm . (2.8)

Analogously, in Equation (2.7), if we choose α = αm and λ = λm

such that

mαm = λm + 1,

then

am = am+1 = · · · = 0,

and the infinite series solution will truncate to obtain the solution

u(x) =

m−1
∑

n=0

anx
αm(n−

1

αm
+1)

= x−1
m−1
∑

n=0

anx
αm(n+1)

= a0L
1
m−1,αm

(x),

where

L1m−1,αm
(x) = x−1

(

xα
m +

m−1
∑

n=1

n
∏

j=1
(jαm − (λm + 1))

αn
mn!

n+1
∏

j=2
(jαm − 1)

xαm(n+1)

)

,

= xαm−1

(

1+

m−1
∑

n=1

n
∏

j=1
(jαm −mαm)

αn
mn!

n+1
∏

j=2
(jαm − 1)

xαmn

)

,

= xαm−1

(

1+

m−1
∑

n=1

n
∏

j=1
(j−m)

n!
n+1
∏

j=2
(jαm − 1)

xαmn

)

, (2.9)

is the fractional singular Laguerre function of orderm− 1.

Remark 2.3. If we substitute αm = 1, then

L0m,1(x) = L1m,1(x) = 1+

m
∑

n=1

n−1
∏

j=0
(j−m)

n!
n−1
∏

j=0
(j+ 1)

.

Since
n−1
∏

j=0
(j+ 1) = n!, and

n−1
∏

j=0
(j−m) = (−1)n m!

(m−n)!
, we have

L0m,1(x) = L1m,1(x) = 1+

m
∑

n=1

(−1)mm!

(n!)2(m− n)!
,

which is the expansion of the Laguerre polynomial Lm(x).

3. THE FRACTIONAL LAGUERRE
FUNCTIONS

We start with the orthogonality property of the fractional

Laguerre functions

(

Lm,αm (x)

)

,m = 0, 1, 2, · · · . Here by

Lm,αm (x) we mean the non-singular and singular Laguerre
functions obtained in (2.8) and (2.9).

Theorem 3.1. The fractional Laguerre functions
(

Lm,αm (x)
)

,m =

0, 1, 2, · · · are orthogonal on (0,∞) with respect to the weight

function µ(x) = e−
xα

α ,i.e.,

∫ ∞

0
e−

xα

α Lm,αm (x)Ln,αn (x)dx = 0, m 6= n.
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Proof: One can easily prove that Equation (1.1) can be
written as

Dα
0

(

xe−
xα

α Dα
0 y

)

= −λx1−αe−
xα

α y. (3.1)

Thus, the equation is of a special type of the fractional Sturm-
liouville eigenvalue problem

Dα
0

(

p(x)Dα
0 y

)

+ q(x)y = −λw(x)y,

FIGURE 1 | A plot of L00,α , L
0
1,α , L

0
2,α , L

0
3,α for α = 0.8.

FIGURE 2 | A plot of L10,α , L
1
1,α , L

1
2,α , L

1
3,α for α = 0.8.

FIGURE 3 | A plot of L02,α , for α = 0.8, 0.9, 0.99, 1.
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where p(x) = xe−
xα

α , q(x) = 0 and w(x) = x1−αe−
xα

α . Using the
fractional Lagrange Identity obtained in Al-Refai and Abdeljawad
[18], we have

− (λm − λn)

∫ ∞

0
w(x)Lm,αmLn,αndα(x)

= p(x)

(

Ln,αnD
α
0Lm,αm − Lm,αmD

α
0Ln,αn

)∣

∣

∣

∣

∞

0

. (3.2)

We have p(0) = 0, and

lim
x→∞

x1−αe−
xα

α

(

Ln,αnD
α
0Lm,αm − Lm,αmD

α
0Ln,αn

)

(x) = 0.

Thus the right hand side of Equation (3.2) equals zero which
together with λm 6= λn will lead to

∫ ∞

0
w(x)Lm,αmLn,αndα(x) =

∫ ∞

0
x1−αe−

xα

α Lm,αm (x)Ln,αn (x)x
α−1dx

=

∫ ∞

0
e−

xα

α Lm,αm (x)Ln,αn (x)dx = 0,

(3.3)

and hence the result.

Remark 3.1. Since the fractional Laguerre functions are
orthogonal, they can be used as a basis of the spectral method
to study fractional differential equations analytically and
numerically. They also can be used as a basis of the fractional
Gauss-Laguerre quadrature for approximating the value of
integrals of the form

∫ ∞

0
e−

xα

α f (x)dx.

Remark 3.2. New types of improper integrals are determined
using the orthogonality property which are not known before,
such as

∫ ∞

0
(1− xα)e−

xα

α dx = 0, L00,α0 (x) = 1, L01,α1 (x) = 1− xα1 ,

∫ ∞

0
x2(α−1)(1−

1

2α − 1
xα)e−

xα

α dx = 0,

L10,α0 (x) = xα0−1, L11,α1 (x) = xα1−1(1−
1

2α1 − 1
xα1 ),

In the following we present the singular and non-singular
fractional Laguerre functions of several orders.

L00,α0 (x) = 1,

L01,α1 (x) = 1− xα1

L02,α2 (x) = 1− 2xα2 +
1

α2 + 1
x2α2

L03,α3 (x) = 1− 3xα3 +
3

α3 + 1
x2α3 −

1

(α3 + 1)(2α3 + 1)
x3α3 .

L10,α0 (x) = xα0−1,

L11,α1 (x) = xα1−1(1−
1

2α1 − 1
xα1 ),

L12,α2 (x) = xα2−1(1−
2

2α2 − 1
xα2 +

1

(2α2 − 1)(3α2 − 1)
x2α2 ),

L13,α3 (x) = xα3−1

(

1−
3

2α3 − 1
xα3 +

3

(2α3 − 1)(3α3 − 1)
x2α3

−
1

(2α3 − 1)(3α3 − 1)(4α3 − 1)
x3α3

)

.

Figures 1, 2 depict the non-singular and singular fractional
Laguerre functions of several orders for α = 0.8. Figure 3 depicts
L02,α for several values of α. One can see that, as α approaches
1, the non-singular fractional Laguerre functions approach the
Laguerre polynomial of degree 2.

4. CONCLUSION

We have considered the fractional Laguerre equation with
conformable derivative. We obtained two linearly independent
solutions using the fractional series solution and Frobenius
method. The first non-singular solution is analytic on (0,∞),
and the second singular solution has a singularity at x = 0.
For certain eigenvalues, these infinite solutions truncate to obtain
the fractional Laguerre functions. Because of the orthogonality
property of the fractional Laguerre functions, they can be used
as a basis of the spectral method to study fractional differential
equations, or as a basis of the Gauss-Laguerre quadrature for
evaluating certain integrals. The obtained results coincide with
the ones of the regular Laguerre polynomials as the derivative
α approaches 1.
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