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High-dimensional data from molecular biology possess an intricate correlation structure

that is imposed by the molecular interactions between genes and their products forming

various different types of gene networks. This fact is particularly well-known for gene

expression data, because there is a sufficient number of large-scale data sets available

that are amenable for a sensible statistical analysis confirming this assertion. The purpose

of this paper is two fold. First, we investigate three methods for generating constrained

covariance matrices with a biologically realistic structure. Such covariance matrices

are playing a pivotal role in designing novel statistical methods for high-dimensional

biological data, because they allow to define Gaussian graphical models (GGM) for

the simulation of realistic data; including their correlation structure. We study local and

global characteristics of these covariance matrices, and derived concentration/partial

correlation matrices. Second, we connect these results, obtained from a probabilistic

perspective, to statistical results of studies aiming to estimate gene regulatory networks

from biological data. This connection allows to shed light on the well-known heterogeneity

of statistical estimation methods for inferring gene regulatory networks and provides an

explanation for the difficulties inferring molecular interactions between highly connected

genes.

Keywords: Gaussian graphical models, network science, machine learning, data science, genomics, gene

regulatory networks, statistics

1. INTRODUCTION

High-throughput technologies changed the face of biology and medicine within the last
two decades [1–3]. Whereas traditional molecular biology focused on individual genes,
mRNAs and proteins [4], nowadays, genome-wide measurements of these entities are
standard. As an immediate consequence, transcriptomics, proteomics, and metabolomics
data are high-dimensional containing measurements of hundreds and even thousands of
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molecular variables [5–10]. Aside from the high-dimensional
character of these data, there exists a non-trivial correlation
structure among the covariates, which establishes considerable
problems for the analysis of such data sets [11–13]. The reason for
the presence of the correlation structure is due to the underlying
interactions between genes and their products. Specifically, it is
well-known that there are transcriptional regulatory, protein, and
signaling networks that represent the blueprint of biological and
cellular processes [14–20].

In order to design new statistical methods, which are
urgently needed to cope with high-dimensional data from
molecular biology, usually, simplifying assumptions are made
regarding the characteristics of the data. For instance, one of
the most frequently made assumptions is the normal behavior
of the covariates [21–24]. That means, the distribution of the
variables is assumed to follow a univariate or multivariate
normal distribution [25]. This assumption is reasonable because
by applying a z-transformation to data with an arbitrary
distribution one can obtain (standard) normal distributed data
[26]. For this reason, a z-transformation is usually applied to
the raw data as a preprocessing step. Due to the fact that
we investigate in this paper high-dimensional data with a
complex correlation structure, we focus in the following on
multivariate normal distributions, because to use a univariate
distribution in this context, it is necessary to make the additional
assumption of a vanishing correlation structure between the
covariates in order to be able to approximate the multivariate
distribution sensibly by a product of univariate distributions, i.e.,
p(x1, . . . , xp) = 5

p
i=1 p(xi).

To fully specify a multivariate normal distribution, a vector
of mean values and a covariance matrix is needed. From the
covariance matrix follows the correlation matrix that provides
information about the correlation structure of the variables.
For instance, for data from molecular biology measuring the
expression of genes, it is known that the correlation in such
data sets is neither vanishing nor random, but is imposed
by biochemical interactions and bindings between proteins
and RNAs forming complex regulatory networks [27, 28]. For
this reason, it is not sufficient to merely specify an arbitrary
covariance matrix in order to simulate gene expression data
from a norm distribution for investigating statistical methods,
because such a covariance matrix is very likely not to possess a
biologically realistic correlation structure. In fact, it is known that
biological regulatory networks have a scale-free and small-world
structure [29, 30]. For this reason, several algorithms have been
introduced that allow to generate constrained covariancematrices
that represent specific independence conditions, as represented
by a graph structure of gene networks. If, for instance, a gene
regulatory network or a protein interaction network is chosen for
such a network structure, these algorithms generate covariance
matrices that allow to generate simulated data with a correlation
structure that is consistent with the structural dependency of
such biological networks, and hence, is close to real biological
data [31, 32]. Here “consistent” means that for multivariate
normal random variables there is a well-known relation between
the components of the inverse of their covariance matrix and
their partial correlation coefficients, discussed formally in the

section 2. This relation establishes a precise connection between
a correlation structure in the data and a network structure.
As a result, such a constrained covariance matrix establishes
a Gaussian graphical model (GGM) [33, 34] that can be used
to simulate data for the analysis of, e.g., methods to identify
differentially expressed genes, differentially expressed pathways
or for the inference of gene regulatory networks [11, 35–37], to
name just a few potential areas of application.

The major purpose of this paper is to study and compare three
algorithms that have been introduced to generate constrained
covariance matrices. The algorithms we are studying are the
Iterative Proportional Fitting (IPF) algorithm [38], an orthogonal
projection method by Kim et al. [37] and an regression approach
by Hastie, Tibshirani, and Friedman (HTF) [39]. Data generated
by such algorithms can be used to simulate, e.g., gene expression
data from DNA microarrays to test analysis methods for
identifying differentially expressed genes [22, 40], differentially
expressed pathways [41–43] or to infer gene regulatory networks
[44, 45]. Furthermore, we connect these results, obtained from
a probabilistic perspective, to statistical results of studies aiming
to infer gene regulatory networks. This connection allows to
shed light on the known heterogeneity of statistical estimation
methods for inferring gene regulatory networks.

The paper is organized as follows. In the next section, we
present the methods we are studying and necessary background
information. This includes a description of the three algorithms
IPF, Kim, and HTF to generate constrained covariance matrices
and also a brief description of the networks we are using for our
analysis. In the sections 3 and 4, we present our numerical results
and discuss the observed findings. Furthermore, we place the
obtained results into a wider context by discussing the relation
to network inference methods. This paper finishes in the section
5 with a summary and an outlook to future studies.

2. METHODS

Multivariate random variables, X ∈ R
p, from a p-dimensional

normal distribution, i.e.,X ∼ N(µ,6), with mean vectorµ ∈ R
p

and a positive-semidefinite p × p reel covariance matrix 6, have
a density function given by

p(x) = 1
(
2π
) p
2 |6| 12

exp
(
− 1

2
(x− µ)t6−1(x− µ)

)
. (1)

For such normal random variables there is a simple relation
between the components of the inverse covariance matrix,
� = 6−1, (also called “precision” or “concentration matrix”)
and conditional partial correlation coefficients [46] (chapter 5).
This relation is given by

ρij|N\{ij} = −
ωij

√
ωiiωjj

. (2)

Here ρij|N\{ij} is the partial correlation coefficient between gene
i and j conditioned on all remaining genes, i.e., N\{ij}, whereas
N = {1, . . . , p} is the set of all genes. Furthermore, ωij are
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the components of the concentration matrix �. That means, if
ρij|N\{ij} = 0 then gene i and j are independent from each other,

Xi ⊥ Xj|{all remaining genes}, (3)

if and only if ωij = 0. The relation in Equation (3) is also
known as Markov property [46] (chapter 3). In the following, we
abbreviate the notation for such partial correlation coefficients
briefly as,

ψij = ρij|N\{ij}, (4)

and denote the entire partial correlation matrix by9 .
Amultivariate normal distribution that isMarkov with respect

to an undirected network G is called a Gaussian graphical model
(GGM) [33, 34, 46], also known as “graphical Gaussian model,”
“covariance selection model,” or “concentration graph model.”
This means that all conditional independence relations that can
be found in 6−1 are also present in G [46] (chapter 3). Hence,
such a6−1 can be considered as consistent [or faithful [47]] with
all conditional independence relations in G.

2.1. Generation of a Random Covariance
Matrix Using Conditional Independence for
a Given Graphical Model
In the following, we describe briefly the three algorithms IPF,
Kim and HTF [37, 38, 46, 48], we use for generating constrained
covariance matrices that are consistent with a given graph
structure by obeying its independence relations.
Kim Algorithm:

TheKim algorithm [37] applies iteratively orthogonal projections
to generate a covariance matrix with the desired properties. A
formal description of this algorithm is as follows:

Algorithm 1 Generation of a constrained covariance matrix
using the Kim algorithm

initialize:

Let Z be a p × m (with p > m) matrix whose components are
elements-wise sampled from a standard normal distribution,
i.e., zij ∼ N(0, 1)

Let Z̃ be a p×m zero matrix
Let A(G) be the adjacency matrix of network G
z̃[,1] = z[,1]
t = 2 (iteration index)
repeat

It = {k|A(G)[k, t] = 0, with k = 1 . . . i − 1}
(indices for independent elements - non-edges)

z̃[, t] = z[, t] +
(
z̃[, It]

(
z̃[, It]

T
z̃[, It]

)−1
z̃[, It]

T

)
z[, t]

(here z[, It] is a p× |It|matrix)
t = t + 1

until t = p

6 = (̃ZTZ̃)−1 is a covariance matrix with imposed conditional
independence relations

We are providing an R package with the name mvgraphnorm
that contains an implementation of the Kim algorithm. The
package is available from the CRAN repository.

Before we continue, we would like to emphasize that in
the following, we use the notation W and V to indicate
covariance matrices. However, the important difference is that
W is unconstrained whereas V is consistent with conditional
independence relations given in a network G.
IPF Algorithm:

The working principles of the Iterative Proportional Fitting
algorithm [38] is as follows. Let us assume that X is a p-
dimensional random variables from a normal distribution with
mean µ = 0 and a covariance matrix 6. From a sample of size
m, the sample covariance matrix is estimated from a given W.
Suppose, we partition the vector X into Xa,Xb, for randomly
selected index vectors a and b. Then these vectors, Xa and Xb,
follow a normal distribution with mean µ = 0 and variance

Va∪b,a∪b =
(
Vaa Vab

V
T
ba

Vbb

)
. (5)

Furthermore, the marginal distribution of Xa is normal with
variance Vaa and the conditional distribution of Xb|a is also
normally distributed with N(Vba(Vaa)

−1xa,Vbb − VbaV
−1
aa Vab)

[46]. Let us assume that f is a given density function and g is
the density function of a Gaussian graphical model with a similar
marginal distribution as f .

The iterative proportional fitting (IPF) algorithm [38] adjusts
iteratively the joint density function of Xa and Xb. This can be
written in general form as,

gt+1
ab

= gtb|a fa, (6)

corresponding to the (t+1)th iteration step. In this notation, the
expectation value of X, for gt+1

ab
, is given by,

E[X|gt+1
ab

] = 0, (7)

which remains zero for all iteration steps t. For this reason, we do
not need to consider update equations for this expectation value.
In contrast, the variance of X, for gt+1

ab
, is given by

Vt+1 =


 V

f
aa V

f
aa(B

t
b|a)

T

B
t
b|aV

f
aa

(
V
t
bb|a + B

t
b|aV

f
aa(B

t
b|a)

T
)

 , (8)

with B
t
b|a = V

t
ba

(
V
f
aa

)−1
[46].

The IPF algorithm, formalized in Algorithm 2, provides
iterative updates for the components of the covariance matrix
Vt+1, given by Equation (8). In this algorithm, the first step is
to generate a sample covariance matrix W and V is initialized as
identity matrix with the same number of rows and columns as
W. In the second step, the maximal cliques of a given graph G are
identified. Here a clique is defined as a fully connected subgraph
of G. Next, the components of the partitioned covariance matrix
are iteratively updated, in order to become consistent with the
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independence relations in G. This is accomplished by utilizing
the identified cliques. This procedure is iterated for all cliques,
until the algorithm converges, as specified by a scalar threshold
parameter δ, with δ≪ 1.

Algorithm 2 Generation of a constrained covariance matrix
using the IPF algorithm

initialize:

W is a p× p sample covariance matrix
G is an undirected graph with p nodes
clqi is a vector that contains vertices of the i

th clique of given
graph G called clique object
Let CL = (clq1 ∪ . . . clqn) be the set of clique objects of size
k = |CL| which contains maximal cliques of graph G
Let V t=0 be the p× p identity matrix
δ is a precision threshold
repeat

Vold = V
t−1

for t = 1 to k do
a = clqi indices of nodes in clique i
b = {1, . . . , p}\a indices of nodes not in clique i

V
f
aa =Waa

B
t
b|a = V

t−1
ba

(V
f
aa)

−1

V
t
bb|a = V

t−1
bb

− V
t−1
ba

(V
f
aa)

−1
V
t−1
ab

V
t
aa = V

f
aa

V
t
ba

= B
t
b|a V

f
aa

V
t
ab

= V
T
ba

V
t
bb

= V
t
bb|a + B

t
b|aV

f
aa(B

t
b|a)

T

end for

P = maxij{‖V t − Vold‖ij}
until P > δ {return V

t}

HTF Algorithms:

We call the following algorithm HTF because it has been
proposed by Hastie, Tibshirani, and Friedman [39]. In
Algorithm 3 we show pseudocode for this algorithm.

Let us assume, we have a p-dimensional random variable,
X ∈ R

p, sampled from a normal distribution with mean µ and
covariance matrix6, and a sample covariance matrix S estimated
from m samples. The log likelihood for the (unconstrained)
concentration matrix� is given by,

L(�) = log det2− trace(S�), (9)

which is maximized for� = 6−1.
The HTF method uses a regression approach for each

node by selecting its neighbors as predictor variables, utilizing
model based estimates of predictor variables. For this approach,
Lagrange constants are included in Equation (9) for the non-edge
components of a given graph structure,

L(�) = log det�− trace(S�)+6j,k/∈E γjkωjk. (10)

Algorithm 3 Maximum likelihood estimation of independence
of a sample covariance matrix for a given graph using HTF
algorithm.

Initialize:
S is a p× p sample covariance matrix
G is an input graph
A(G) is a p× p adjacency matrix of G
δ is a precision threshold
W = S

repeat

Wprev =W

for t = 1 to p do
a = [1, 2, . . . , p]\t {indices of all variables except t}
W

′ = Wa×a

S
′ = Sa×t

β = [0, 0, . . . 0]p−1 {initializing an array with 0s of size p-1}

i = [At×p 6= 0]\t {indices for edge component of tth row

and excluding tth indices}

β[i] = W
′−1
i×i S

′
i.

w = W
′
β

updateW:W[−t, t] = W[t,−t] = w

end for

P =maxij{||W −Wprev||}
until P > δ

returnW

Here j, k 6∈ E means that there is no edge between these two
variables, i.e., Aij = 0. We maximize this likelihood by taking
the first derivative with respect to�, which gives

�−1 − S− Ŵ = 0. (11)

HereŴ is thematrix of Lagrange parameters with non-zero values
for the non-edge components of a given graph structure.

Because one would like to obtainW = �−1, we can write this
identify separated into two major components,

(
W11 w12

w
T
21 w22

)(
�11 ω12

ωT
21 ω22

)
=
(

I 0

0T 1

)
. (12)

Here the first component consists of p − 1 dimensions and the
second component of just one. That means, e.g., W12 and I are
(p − 1) × (p − 1) matrices, w12 and ω12 are (p-1)-dimensional
vectors and w22 and ω22 are scalar values.

The iterative algorithm of HTF repeats the steps given in
Equations (11–18). At each step, one selects one of the p variables
randomly for the partitioning given in Equation (12). This
variable defines w12 and ω12, whereas the remaining variables
define W11 and �11. For reasons of simplicity, we select in the
following the last variable.

From Equation (12), we obtain the following expression

w12 = W11ω12/ω22. (13)
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Setting β = ω12/ω22 and placing w12 into the right block of
Equation (11), namely,

w12 − s12 − γ 12 = 0, (14)

leads to

W11β − s12 − γ 12 = 0. (15)

This system is solved only for the q components in β that are not
equal to zero, i.e., q = |{i|βi 6= 0}, which can be written as

W11
∗β∗ − s∗12 = 0 (16)

Here it is important to note that β∗, s∗12 ∈ R
q andW11

∗ is a q×q

matrix. From this, β̂
∗
is given by

β̂
∗ = W∗

11
−1

s
∗
12 (17)

and the overall solution follows from padding β̂
∗
with zeros in

the q components given by Ip = {i|βi = 0} is β ′. Finally, this is
used to update w12 in Equation (13) leading to

w
′
12 = W11β

′. (18)

The above steps are iterated, for each variable, until the estimates
for w12 converge.

The qpgraph package by [48] provides an implementation of
the IPF and HTF algorithm.
Common Step of IPF and HTF:

The IPF and HTF algorithm have in common that they are
based on the random initialization of a covariance matrix W

that is obtained from a (parametric) Wishart distribution [49].
More precisely, assume X1,X2, . . .Xm are m samples from a
p-dimensional normal distribution N(0,6), then

W = X
T
X ∼ Wishartp(6, n) (19)

is from a Wishart distribution. Here n is the degrees of freedom
and6 is a p× pmatrix. The expectation value ofW is given by,

E[W] = n 6. (20)

In order to obtain a covariance matrix W from a Wishart
distribution given byWishartp(

1
n6, n), the Bartlett decomposition

can be utilized given by [49–51],

W(r) = L(r)AATL(r)T . (21)

Here L(r)L(r)T is obtained from a Cholesky decomposition of
1
n6(r) and A is defined by,

A =




√
c1 0 . . . . . 0

n21
√
c2 . . . . . 0

n31 n32
√
c3 . . . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .
np1 np2. . . . . .

√
cp




(22)

Here the nij ∼ N(0, σ ), for i ∈ {2, . . . , p} with i > j, and
ci ∼ χ2(p+1− i), Chi-squared distribution with p+1− i degrees
of freedom, with i = 1 . . . p. For reasons of simplicity, 6(r) can
be defined as

6(r) =




1 r . . . . . r
r 1 . . . . . r
r r 1 . . . . r
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
r r. . . . . . 1




(23)

which results in a constant correlation coefficient r, with 0 ≤ r ≤
1, between all variables. For this reason, we write the covariance
matrix, and the resulting L(r) and W(r) matrices, explicitly as a
function of the parameter r.

The IPF and the HTF algorithm use a randomly generated
W(r) covariance matrix, as shown above, as initialization matrix.
Due to the fact that this matrix is a function of r, with 0 ≤ r ≤ 1,
both algorithms depend on this parameter in an intricate way. In
the results section, we will study its influence.

2.2. Generating Networks
For reasons of comparison, we are studying in this paper three
different network types. Specifically, we use scale-free networks,
random networks and small-world networks [52, 53] for our
analysis. Because there are various algorithms that allow the
generation of each of the former network types [54, 55], we select
three network models that have been widely adopted in biology:
(1) The preferential attachment model from Barabasi and Albert
(Ba) [56] to generate scale-free networks, (2) the Erdös-Rényi
(ER-RN) model [57, 58] to generate random networks, and
(3) the Watts-Strogats (WS) model [59, 60] to generate small-
world networks. A detailed description how such networks are
generated can be found in [15].

Due to the fact that the reason for generating these networks
is only to study the characteristics and properties of the three
covariance generating algorithms, the particular choice of the
network generation algorithms is not crucial. Each of these
algorithms results in undirected, unweighted networks that are
sufficiently distinct from each other that allows to study the
influence of these structural differences on the generation of the
covariance matrices.

Specifically, we added random networks for a baseline
comparison because this type of networks is classic having been
studied since the 1960s [57, 58]. In contrast, scale-free networks
and small-world networks are much newer models [61] that have
been introduced to mimic the structure of real world networks
more closely. For our study, it is of relevance that various types of
gene networks, e.g., transcriptional regulatory networks, protein
networks, or metabolic networks, have been found to have a
scale-free or small-world structure [29, 30]. That means in order
to produce simulated data with a realistic biological correlation
structure an algorithm should be capable to produce data with
such a characteristic.
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Furthermore, each algorithm allows to generate networks of
a specific size (number of nodes) to study the effect of the
dimensionality.

2.3. Implementation
We performed our analyses using the statistical programming
language R [62]. For the IPF and HTF algorithms we used the
qpgraph package [48] and for the Kim algorithm we developed
our own package called mvgraphnorm (available from CRAN).
The networks were generated using the R package igraph [63] and
the networks were visualized with NetBioV [64].

3. RESULTS

3.1. Consistency of Generated Covariance
Matrices With G
We begin our analysis by studying the overall quality of
the algorithms IPF, Kim, and HTF by testing how well the
independence relations in a given graph, G, are represented
by the generated covariance matrices, respectively the partial
correlation matrices.

In order to evaluate this quantitatively, we generate a network,
G, that we use as an input for the algorithms. Then each of the
three algorithms results in a constructed covariance matrix6IPF ,
6Kim and 6HTF from which the corresponding concentration
matrices are obtained by,

�IPF(G) = 6−1
IPF(G), (24)

�Kim(G) = 6−1
Kim(G), (25)

�HTP(G) = 6−1
HTP(G). (26)

The partial correlation matrices9IPF(G),9Kim(G), and9HTF(G)
follow from the concentration matrices and Equation (2). Here
we included the dependency of the concentration and partial
correlation matrices on G explicitly to emphasize this fact.
However, in the following, we will neglect this dependency for
notational ease.

We use the partial correlation matrices and compare them
with G to check the consistency of the constructed structures.
In order to do this, we need to convert a partial correlation
matrix into a binary matrix, because G is binary. However, due
to numerical reasons, all three algorithms do, usually, not result
in components of the partial correlation matrices that are exactly
zero, i.e., ψij = 0, but result in slightly larger values. That means,
we cannot just filter a partial correlation matrix by

ψ ′
ij =

{
0
∣∣ψij

∣∣ ≤ θ

1
∣∣ψij

∣∣ > θ
(27)

with θ = 0 but a threshold that is slightly larger than zero, i.e.,
θ > 0, is needed. For this reason, we use the following procedure
to assess the compatibility of9 with G:

1. Obtain the indices from the adjacency matrixA(G) of G for all
edges and non-edges, i.e.,

Ie = {(i, j)|A(G)ij = 1}, (28)

Ine = {(i, j)|A(G)ij = 0}. (29)

2. Identify the sets of all element of 9 that belong to edges and
non-edges, i.e.,

‖9(edge)‖I = {
∣∣ψm

∣∣ ∣∣m ∈ Ie}, (30)

‖9(non-edge)‖I = {
∣∣ψm

∣∣ ∣∣m ∈ Ine}. (31)

Here ‖X‖I is the set of absolute values of X and ‖9(edge)‖I
and ‖9(non-edge)‖I are the sets of such elements.

3. Calculate a score, s, as the difference between the minimal
element in ‖9(edge)‖I and the maximal element in
‖9(non-edge)‖I , i.e.,

s = min
(
‖9(edge)‖I

)
−max

(
‖9(non-edge)‖I

)
. (32)

4. If the score s is larger than zero, i.e., s > 0, then 9 is
consistent with all independence relations in G. In this case
we can set θ = max

(
‖9(non-edge)‖I

)
to filter the partial

correlation matrix.

We want to remark that for s ≤ 0 the algorithm would result
in false positive edges and hence, would indicate an imperfect
result. In general, the larger s the further is the distance between
the edges and non-edges and the better is their discrimination.

We studied a large number of BA, ER-RN, and WS networks
with different parameters and different sizes. For all networks,
we found that all three algorithms represent the independence
relations in G perfectly, which means that for all three algorithms
we find FP = FN = 0 (results not shown) and

min
(
‖9(edge)‖I

)
−max

(
‖9(non-edge)‖I

)
> 0. (33)

In Figure 1, we show exemplary results for a BA network of size
100. More precisely, we show the distribution of the absolute
partial correlation values for the three different methods and
different parameter settings (see x-axis). In this figure, an “e”
corresponds to the partial correlation values for edges, i.e.,
‖9(edge)‖I , and “ne” for non-edges, i.e., ‖9(non-edge)‖I .

We would like to emphasize that the algorithm by Kim is
parameter free, whereas IPF and HTP depend on a parameter
r (see section 2). Interestingly, for IPF/e and HTF/e with r =
0.6 the median partial correlation values are larger than 0.3. In
contrast, these methods result for r = 0.0 in median partial
correlation values around 0.05. Hence, this parameter allows to
influence the correlation strength.

Furthermore, for all three algorithms one can see that the
maximal partial correlation values for non-edges are close
to zero.

3.2. Global Structure of Covariance
Matrices and Influence of Network
Structures
Next, we zoom into the structure of the generated covariance
matrices and the resulting concentration and partial
correlation matrices in more detail. For this reason, we
study distances between elements in these matrices. More
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FIGURE 1 | Distribution of absolute partial correlation values, ‖9‖, for different methods. For G, we used a BA network of size 100. An “e” corresponds to the partial

correlation values for edges and “ne” for non-edges.

precisely, we define the following measures to quantify
such distances,

da(1;�) = min
(
‖�a(edges)‖I

)

− max
(
‖�a(non-edges‖I)

)
, (34)

da(2;�) = median
(
‖�a(edges‖I)

)

− median
(
‖�a(non-edges‖I)

)
, (35)

da(1;9) = min
(
‖9a(edges)‖I

)

− max
(
‖9a(non-edges‖I)

)
, (36)

da(2;9) = median
(
‖9a(edges‖I)

)

− median
(
‖9a(non-edges‖I)

)
. (37)

Here an “a” means either the algorithm IPF, Kim, or HTF.
The first measure, da(1;�), gives the distance between the

smallest element in ‖�a(edges)‖I and the largest element in
‖�a(non-edges)‖I , whereas, e.g., ‖�a(edges)‖I corresponds to all
elements in the concentrationmatrix that belong to an edge in the
underlying network, as given by G [see the similar definition for
the partial correlation matrix in Equations (30, 31)]. That means,
formally,

‖�(edge)‖I = {|ωm|
∣∣m ∈ Ie}, (38)

‖�(non-edge)‖I = {|ωm|
∣∣m ∈ Ine}. (39)

In Figures 2–4 we show results for the algorithms IPF, Kim, and
HTF for BA, ER-RN, andWS networks of different sizes, ranging
from 25 to 500 nodes. Due to the fact that all three algorithms
result in a perfect reconstruction of the underlying networks,
as discussed at the beginning of the results section, the entities
da(1;�), da(2;�), da(1;9), and da(2;9) are always positive (as
can be seen from the figures).

Asymptotically, for large network sizes, the values of the four
measures decrease monotonously, except for the Kim algorithm

for dKim(2;�) (Figure 3B). Furthermore, the structure of the
underlying network has for the Kim algorithm a larger influence
than for the IPF and HTF algorithms, because the values for
dKim(1;�) and dKim(2;�) do not overlap for the three different
network types.

The results from this analysis show clearly that the three
algorithms have different working characteristics. First, the IPF
and HTF algorithms are only weakly effected by the topology
of the underlying network and this effect is even decreasing
for larger network sizes; see, e.g., Figures 2, 4. In contrast,
the Kim algorithm shows a clear dependency on the network
topology, because all three curves for BA, ER-RN, and WS
networks are easily distinguishable from each other within, at
least, one standard error; see Figure 3. Second, the distances
between the median values of the concentration matrix, given by
da(2;�), show a different behavior, because they are increasing.
This is a reflection of the different scale of the elements of the
concentration matrix generated by the IPF and HTF algorithm
on one side and the Kim algorithm on the other.

In order to clarify the latter point, we show in Figure 5 the
possible range of these values. Specifically, we show normalized
results for edges,

ra(edge) = max
(
‖�a(edges‖I)

)
−min

(
‖�a(edges‖I)

)
, (40)

as a function of the network size n, i.e., ra(edge, n). The
results are normalized, because we divide ra(edge, n) by the
maximal value obtained for all studied network sizes, i.e.,
ra(edge, n)/maxn

(
ra(edge, n)

)
, to show the curves for all three

algorithms in the same figure. One can see that the range of
possible values in r(edge, n) increases for the Kim algorithm but
decreases for IPF and HTF.

The situation becomes different when one uses values of the
control parameter r of the IPF andHTF algorithms that are larger
than zero. In order to investigate this quantitatively, we repeat
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FIGURE 2 | Effect of size differences in the elements of concentration and partial correlation matrices for the IPF algorithm. Shown are differences between values for

edges and non-edges in dependence on the network size and network type. All values are averaged over 50 independent runs.

the above analysis for the IPF and HTF algorithm, however, now
we set r = 0.3 and r = 0.6. The results of this analysis are
shown in Figure 6. The first two columns show results for r = 0.3
whereas the third column presents results for the IFP algorithm
for r = 0.6. For these parameters, da(2,�) and da(2,9) (see
Figures 6D–F,J–L) are nearly constant, even for small network
sizes. Furthermore, these distances are much larger than for r =
0.0 (see Figures 2–4). Another difference is that the distances
da(1,�) and da(1,9) (see Figures 6A–C,G–I) are increasing for
increasing sizes of the networks, except for the BA networks (red
curves). This indicates also that for r > 0 the topology of the
underlying network G has a noticeable effect on the resulting
concentration and partial correlation matrices, in contrast to the
results for r = 0.0 (see Figures 2–4). Overall, the parameter
r gives the IPF and HTF algorithms an additional flexibility
that allows to increase the observable spectrum of behaviors
considerably.

3.3. Local Structure of Covariance Matrices
and Heterogeneity of Its Elements
Finally, we investigate the local structure of covariance matrices.
In Figures 7A–C we show a BA network with 100 nodes. The
color of the edges codes the value of the elements of the
(normalized) concentration matrices, obtained for IPF, Kim,
and HTF. Specifically, we map these values from low to high

values to the colors blue, green, and red. From the shown three
networks one can see that the coloring is quite different implying
a significant difference in the rank order of the elements of the
concentration matrices.

Next, we study the heterogeneity of the elements in the
concentration and partial correlation matrices. More precisely,
we are aiming for a quantification of the values of the elements
of the concentration/partial correlation matrices that belong to
edges with a certain structural property. For reasons of simplicity,
we are using the degree (deg) of the nodes that enclose an edge
to distinguish edges structurally from each other. Specifically, we
calculate for each edge an integer value, v, given by

v(i, j) = deg(i)+ deg(j). (41)

Here deg(i) is the degree of node i, corresponding to the number
of (undirected) connections of this node. This allows us to obtain
the expectation value of the concentration/partial correlation
elements in a network with a particular value of v, e.g., for v = d,

E
[
‖�(edges)‖I

∣∣for edges with v = d
]
, (42)

E
[
‖9(edges)‖I

∣∣for edges with v = d
]
. (43)

In Figures 7D–G we show results for BA and ER-RN networks
with 100 nodes. The results are averaged over 50 independent
runs. For reasons of representability, we normalize the results
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FIGURE 3 | Effect of size differences in the elements of concentration and partial correlation matrices for the Kim algorithm. Shown are differences between values for

edges and non-edges in dependence on the network size and network type. All values are averaged over 50 independent runs.

FIGURE 4 | Effect of size differences in the elements of concentration and partial correlation matrices for the HTF algorithm. Shown are differences between values for

edges and non-edges in dependence on the network size and network type. All values are averaged over 50 independent runs.
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FIGURE 5 | Range of (normalized) values of concentration matrices for the three methods IPF (red), Kim (green), and HTF (blue). All values are averaged over 10

independent runs.

for the IPF, Kim, and HTF algorithm independently from each
other, by division with the maximal values obtain for different
network sizes. This allows a representation of all three algorithms
in the same histogram, despite the fact that the algorithms result
in elements on different scales. Overall, we observe that edges
with a higher degree-sum are systematically associated with lower
expectation values of the elements of the concentration/partial
correlation matrix. Due to the fact that all three algorithms, even
for different values of the parameter of r, lead to similar results,
our findings hint that this is a generic behavior that does not
depend on the underlying network topology or algorithm. In
summary, these results reveal a heterogeneity of the values of the
concentration/partial correlation matrices.

4. DISCUSSION

4.1. Origin of Inferential Heterogeneity of
Gene Regulatory Networks
It is interesting to note that the presented results in Figure 7

follow a similar pattern as results for the inference of gene
regulatory networks from gene expression data. More precisely,
in previous studies [65–68] it has been found that inferring
gene regulatory networks from gene expression data leads to a
heterogeneity with respect to the quality (true positive rate) of
the inferred edges. That means it has been shown that edges
that are connecting genes with a high degree are systematically
more difficult to infer than edges connecting genes with a low
degree. This has been demonstrated for a number of different
popular network inference methods and different data sets and,
hence, is method independent [65–68]. In addition, more general
structural components of networks have been investigated, e.g.,

network motifs by using local network-based measures [65, 68].
Also for these measures a heterogeneity in the inferability of
edges has been identified.

The important connection between these results and our
study is that the results presented in Figures 7D–G provide
a theoretical explanation for the heterogeneity in the network
inference. In order to understand this connection, we would like
to emphasize the double role of the covariance matrix in this
context. Suppose, there is a GGM with a multivariate normal
distribution given by N(µ,6) consistent with a network G.
Then, by sampling from this distribution, we create a data set,
D(m) = {X1, . . . ,Xm}, with Xi ∼ N(µ,6), consisting of m
samples. The data set D(m) can then be used for estimating the
covariance matrix of the distribution, from which the data have
been sampled, resulting in

S(D(m)) = 1

m− 1

m∑

i=1

(
Xi − X̄

)(
Xi − X̄

)T
, (44)

with X̄ = 1/m
∑

i Xi. Asymptotically, i.e., for a large number of
samples, we clearly obtain

6 = lim
m→∞

S(D(m)), (45)

as a converging result.
The double role of the covariance matrix is that it is a (1)

population covariance matrix for generating the data, and its is
a (2) sample covariance matrix estimated from the data. Both will
in the limit coincide, but not in reality when the samples m are
finite. For this reason, asymptotically, i.e., form → ∞, there is no
heterogeneity in the inference of edges with respect to the error
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FIGURE 6 | Effect of size differences in the elements of concentration and partial correlation matrices. (A–L) Differences between values for edges and non-edges in

dependence on the network size and network type. All values are averaged over 50 independent runs.

rate, because, as we saw at the beginning of the results section in
this paper,6 allows a perfect (error free) inference of the network
G, due to the fact that 6 is the population covariance matrix of a
GGM consistent with G. However, for a finite number of samples
this is not the case, as we know from a large number of numerical
studies [e.g., [69]] due to the fact that for finite data sets, we
will not be able to estimate 6 without errors. Hence, the results
of gene regulatory network inference studies mirror the results
shown in Figures 7D–G because the decaying normalized mean
values of ‖�(edges)‖I , respectively ‖9(edges)‖I , are indicative of
a decaying signaling strength whereas smaller signals are more

difficult to infer in the presence of noise (measurement errors)
than larger signals.

Based on the results of our paper (especially those in
Figures 7D–G), we can provide an answer to the fundamental
question, if the systematic heterogeneity observed for the
inference of gene regulatory networks is due to the imperfection
of the statistical methods employed for estimating the sample
covariance matrix S, or is this systematic heterogeneity already
present in the population covariance matrix 6. Our results
provide evidence that the latter is the case because our study
did not rely on any particular network inference method.
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FIGURE 7 | Local structure and heterogeneity of concentraton/partial correlation matrices. Top: In (A–C) estimates of the concentration matrix are shown for a BA

network with 100 nodes. The color of the edges corresponds to the value of the elements of the (normalized) concentration matrices, obtained for IPF, Kim, and HTF.

The colors blue, green, and red correspond to low, average and high values. Bottom: Normalized mean values of � (D,E) and 9 (F,G) for BA and ER-RN networks of

sizes 100. All values are averaged over 50 independent runs.

Hence, this provides a probabilistic explanation for the statistical
observations from numerical studies.

4.2. Computation Times
Finally, we present information about the time it takes to
generate constrained covariance matrices that are consistent with
a given graph structure. The following execution times have been
obtained with a 1.6 GHz Intel Core i5 processor with 8 GB RAM.

In Table 1, we show the execution time for the algorithms
IPF, Kim, and HTF. We would like to emphasize that the
shown execution times refer only to the generation of one
constrained covariance matrix and do not include any other
analysis component. One can see that there are large differences

between the three algorithms and HTF is considerable faster than
the other algorithms. For instance, for generating a constrained
covariance matrix of dimension m = 500, HTF is almost
12-times faster than Kim and 3-times faster than IPF.

The parameter r has also an influence on the execution time.
For instance, for HTF it takes 2.6-times longer to generate a
constrained covariance matrix of dimension m = 500 with r =
0.3 than with r = 0.0. For r = 0.6 this effect is even increased by
a further factor of 3.5. Hence, utilizing the additional flexibility of
this parameter increases the computation times significantly.

In summary, the three simulation algorithms are sufficiently
fast to study problems up to a dimension of D ∼ O(103 −
104). Considering that essentially all simulation studies for the
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TABLE 1 | Average computation times for the algorithms IPF, Kim, and HTF.

Method Parameter r n = 100 n = 200 n = 500 n = 1,000 n = 1,500

IPF 0.0 0.085 s 0.483 s 0.181 min 2.96 min 13.31 min

IPF 0.3 0.101 s 0.548 s 10.98 s 4.94 min 14.95 min

Kim – 0.267 s 1.668 s 58.78 s 20.64 min 107.16 min

HTF 0.0 0.10 s 0.27 s 4.91 s 45.48 s 2.91 min

HTF 0.3 0.14 s 0.45 s 12.66 s 2.45 min 16.13 min

HTF 0.6 0.22 s 1.35 s 41.64 s 7.73 min 82.00 min

The time unit is either seconds (s) or minutes (min). All values are averaged over 10

independent runs.

inference of gene regulatory networks are performed for such
dimensions, e.g., [70–72], because it has been realized that
such network sizes are sufficient in order to study the ocurring
problems in high-dimensions, all three algorithms can be used
for this analysis.

Beyond this application domain, it is interesting to note that
also in general GGM are numerically studied up to a dimension
of D ∼ O(103 − 104), see e.g., [73, 74]. Hence, for essentially all
application domains the three algorithms can be used to study
high-dimensional problems but the HTF algorithm could be
favored for reason of computational efficiency.

5. CONCLUSION

In this paper, we investigated three different methods for
generating constrained covariance matrices. Overall, we found
that all methods generate covariance matrices that are consistent
with a given network structure, containing all independence
relations among the variables. For a parameter of r = 0.0 for
the IPF and HTF algorithms, we found that the Kim algorithm
leads to favorable results. However, for r > 0 for the IPF and
HTF algorithms, these two methods are resulting in a broader
spectrum of possible distributions that is considerably larger than
that of the Kim algorithm. This extra flexibility could be an
advantage for simulation studies.

Regarding computation times of the algorithms, we found
that KIM performs slowest. For the IPF algorithm the execution

times can be extended due to some outliers that can considerably
slow down the execution. The HTF and IPF algorithm perform
similarly with slight advantages for HTF, which is overall fastest.
Taken together, the HTF algorithm is the most flexible and fastest
algorithm that should be the preferred choice for applications.

Aside from the technical comparisons, we found that
the generated concentration and partial correlation matrices
possess a systemic heterogeneity, independent of the algorithm
and the underlying network structure used to provide the
independence relations, which is similar to the well-known
systematic heterogeneity in studies inferring gene regulatory
networks via employing statistical estimators for the covariance
matrix [65–67]. Hence, the empirically observed higher error
rates for molecular interactions connecting genes with a high
node-degree seem not due to deficiencies of the inference
methods but the smaller signaling strength in such interactions,
as measured by the components of the concentration matrix
(�) or the partial correlation matrix (9). The implication
from this finding is that perturbation experiments are required,
instead of novel inference methods, to transform an interaction
network into a more amenable form that can be measured.
To accomplish this, the simulation algorithms studied in this
paper could be utilized for setting up an efficient experimental
analysis design.
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