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Time delay in complex networks with multiple interacting layers gives rise to special

dynamics. We study the scenarios of time delay induced patterns in a three-layer network

of FitzHugh-Nagumo oscillators. The topology of each layer is given by a nonlocally

coupled ring. For appropriate values of the time delay in the couplings between the

nodes, we find chimera states, i.e., hybrid spatio-temporal patterns characterized by

coexisting domains with incoherent and coherent dynamics. In particular, we focus

on the interplay of time delay in the intra-layer and inter-layer coupling term. In the

parameter plane of the two delay times we find regions where chimera states are

observed alternating with coherent dynamics. Moreover, in the presence of time delay

we detect full and relay inter-layer synchronization.

Keywords: chimera states, multiplex networks, FitzHugh-Nagumo oscillator, time delay, relay synchronization

1. INTRODUCTION

During the early eighteenth century, Leonhard Euler published a paper on The Seven Bridges of
Königsberg providing a mathematical background on vertices and edges [1]. Later on, it became
the cornerstone of the field of network science. Network science presents a unique platform to
study various complex real-world systems by analyzing the interactions between its constituent
entities and collectively investigating its behaviors [2–4]. A recent addition to the network science
is the multiplex framework which incorporates multiple types of interactions among nodes by
representing them in different layers [5, 6]. For example, the neurons in the brain form different
groups consisting of the same neurons but interacting in different ways (chemical interaction
or electrical synapses) to perform different tasks [7, 8]. Multiplex framework divides these
neuronal groups into different layers based on their functionalities [9]. Similarly, transportation
networks, communication networks, social networks and a lot of other real-world networks can be
represented in a multiplex framework to understand their structural and dynamical features in a
better fashion [10].

Recently, various synchronization scenarios have been investigated in multilayer structures,
including remote and relay synchronization [11–14]. Moreover, it has been shown that
multiplexing can be used to control spatio-temporal patterns in networks [15–18]. The advantage
of control schemes based on multiplexing is that they allow to achieve the desired state in a certain
layer without manipulating its parameters, and they can work for weak inter-layer coupling. For
example, it has been found that weak multiplexing can induce coherence resonance [19] as well as
chimera states [18] in neural networks.
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Chimera state is a peculiar partial synchronization pattern that
refers to a hybrid dynamics where coherence and incoherence
emerge simultaneously in a network of identical oscillators [20–
22]. Since its inception [23, 24], chimera state has attracted
massive interest from the nonlinear community for both its
significance in understanding complex spatiotemporal patterns
and its probable applicabilities in various fields, especially in
neuroscience [25]. Here we study the role of the interplay of
intra- and inter-layer time delays for the emergence of chimera
states in a multi(tri)plex network. Time delays represent an
essential factor in real-world networks due to the finite speed of
information propagating through channels connecting the nodes.
They play a crucial role in determining the dynamical behavior
of a complex system [26–32]. Time delays have been shown to
heavily influence the parameter range for which chimera states
appear for both single and multiplex networks [14, 15, 33–35].
Moreover, recently a scheme has been proposed for engineering
chimera states using suitably placed heterogeneous delays [36].
In the present work we demonstrate that just the variation
of delay values in the intra- and inter-layer edges can lead
to various dynamical states and allows for control of spatio-
temporal patterns.

2. THE MODEL

We study amultiplex network with three layers (triplex) as shown
in Figure 1. Every single layer represents a ring of N identical
FitzHugh-Nagumo (FHN) oscillators with non-local (intra-layer)
topology. The outer layers i = 1 and i = 3 are coupled with the
middle layer i = 2, so that it acts as a relay layer. There is no direct
connection between layers 1 and 3 (so-called ordinal coupling).

FIGURE 1 | Triplex network with ordinal coupling: The middle layer i = 2 (red)

acts as relay layer between the two outer layers i = 1, 3 (blue). Black dots

indicate the nodes, solid lines represent the intra-layer connections, and

dashed lines denote the inter-layer links. The intra-layer coupling is

characterized by the strength σi and time delay τi , and the inter-layer coupling

is characterized by the strength σij and time delay τij . For example, in layer 3

the intra-layer coupling strength is given by σ3 and the intra-layer time delay is

τ3. Similarly, for the layers 1 and 2 the inter-layer coupling strength is given by

σ12 and the inter-layer time delay is τ12.

Our system is described by the following equations:

ẋ
i
k(t) = F(xik(t))+

σi

2Ri

k+Ri
∑

l=k−Ri

H[xil(t − τi)− x
i
k(t)]

+

3
∑

j=1

σijH[x
j

k
(t − τij)− x

i
k(t)], (1)

where x = (u, v)T ∈ R
2, k ∈ {1, ...,N}, i ∈ {1, ..., 3} with all

indices modulo N, describe the set of activator (u) and inhibitor
(v) variables. The intra-layer delay time is τi and the inter-layer
delay time is τij. The coupling radius in layer i is given by Ri. The
local dynamics of each oscillator is given by

F(x) =

(

ε−1(u− u3

3 − v)
u+ a

)

, (2)

where ε = 0.05 is the parameter characterizing the time
scale separation. The FHN oscillator exhibits either oscillatory
(|a| < 1) or excitable (|a| > 1) behavior depending on the
threshold parameter a. In this work we focus on the oscillatory
regime (a = 0.5). The parameter σi stands for the coupling

FIGURE 2 | Dynamical regimes in the parameter plane of intra-layer coupling

delay τi ≡ τ1 = τ2 = τ3 and inter-layer coupling delay τij ≡ τ12 = τ23: “salt &

pepper” states (green islands) occur in the region of coherent states (blue

region) as traveling waves, cluster or synchronized states. At the border

between these two regimes chimera states can be found (red color). We

distinguish between the different regions on the one hand, by analyzing the

mean phase velocity and a snapshot of variables uk , on the other hand, by

means of the Laplacian distance measure [39]. The boundaries of these

regions are fitted linearly after the (τi , τij ) plane has been sampled in steps

1τi = 0.05 and 1τij = 0.1. For all simulations of Equation (1) random initial

conditions are taken. Parameters are chosen as ε = 0.05, a = 0.5, σi = 0.2,

σij = 0.05, N = 500, Ri = 170, φ = π
2 − 0.1, and i, j = 1, 2, 3.
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FIGURE 3 | Dynamics in all three layers for different values of the inter-layer delay time τij : (A) Chimera state for τij = 0.4, (B) “salt & pepper” state for τij = 0.9, (C)

coherent state (cluster state) for τij = 1.7. The intra-layer delay time is fixed at τi = 0.8. The left column displays snapshots of variables ui
k
for the layers i = 1, 2, 3,

while the right column illustrates the mean phase velocity profile ωk (dark blue) for the individual layers and the local inter-layer synchronization error E
ij
k
(light yellow).

Other parameters as in Figure 2.

strength inside the layer (intra-layer coupling), and σij is the
inter-layer coupling. For an ordinal inter-layer coupling with
constant row sum we set σ12 = σ23, which yields the inter-layer
coupling matrix

σ =





0 σ12 0
σ12
2 0 σ23

2
0 σ23 0



 (3)

The connections between the nodes are given by the diffusive
coupling with the following coupling matrix

H =

(

ε−1 cosφ ε−1 sinφ

− sinφ cosφ

)

(4)

and coupling phase φ = π
2 − 0.1 [37]. This coupling

configuration (i.e., predominantly activator-inhibitor cross-
coupling) is similar to a phase-lag of approximately π/2 in
the Kuramoto model that ensures the occurrence of chimera
states [37].

3. INTERPLAY OF TIME DELAYS

Chimera states are spatio-temporal patterns where incoherent
and coherent domains coexist in space. For certain values of
coupling strength σi and coupling radius Ri one can detect
them in the ith layer [37]. Recently, the phenomenon of
relay synchronization of chimera states has been studied in a
three-layer network of FHN oscillators [38]. In more detail,
for varying the coupling delay and strength in the inter-layer
connections relay synchronization of chimera states in the outer
network layers has been reported. For appropriate parameters
the so-called “double” chimeras are possible where the coherent
parts of the chimera states are synchronized, whereas the
incoherent parts remain desynchronized. Additionally, the
transitions between different synchronization scenarios have
been studied. Moreover, time delay in the inter-layer coupling
has been shown to be a powerful tool for controlling various
partial synchronization patterns in the three-layer network [14].
Therefore, by multiplexing and introducing inter-layer time
delays it is possible to destroy or induce chimera states. Here we
study the interplay of inter- and intra-layer time delay.

To provide an overview of the patterns observed in the
network, we calculate the map of regimes in the parameter
plane of intra-layer delay time τi and inter-layer delay time τij
(Figure 2). The dominating region is the one corresponding to
coherent states (blue region in Figure 2). On the one hand, we
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FIGURE 4 | Dynamics in all three layers for different values of the intra-layer delay time τi : (A) Chimera state for τi = 2.8, (B) “salt & pepper” state for τi = 2.6, (C)

coherent state (traveling wave) for τi = 2.4. The inter-layer delay time is fixed at τij = 2.6. The left column displays snapshots of variables ui
k
for the layers i = 1, 2, 3,

while the right column illustrates the mean phase velocity profile ωk (dark blue) for the individual layers and the local inter-layer synchronization error E
ij
k
(light yellow).

Other parameters as in Figure 2.

detect the in-phase synchronization regime (see Figure 3C), on
the other hand, we also observe a region of coherent traveling
waves (see Figure 4C). By varying the delay times we can not
only switch between these states, but also adjust the speed of
traveling waves. In addition, we can observe salt and pepper states
(green region in Figure 2), where all nodes oscillate with the same
phase velocity but they are distributed between states with phase
lag π incoherently [40] (see Figures 3B, 4B). The reason for
this are strong variations on very short length scales, so that the
dynamical patterns have arbitrarily short wavelengths. Besides
these two patterns characterized by the samemean phase velocity
for all the nodes in the network, we also observe chimera states
(red region in Figure 2), where the oscillators within each layer
show a characteristic arc-shaped mean phase velocity profile.
The mean phase velocities of the oscillators are given by ωk =

2πSk/1T, k = 1, ...,N, where Sk denotes the number of complete
rotations performed by the kth oscillator during the time 1T.
The value 1T = 10, 000 is fixed throughout the paper. Because
of the delay, the system often exhibits traveling structures.
Therefore, the classical arc-shaped profile is transformed into a
wider, conical one [41] (see Figures 3A, 4A (right column)). We
distinguish between the different regions on the one hand, by
analyzing the mean phase velocity and a snapshot of variables uk,
on the other hand, by means of the Laplacian distance measure
[39]. The latter identifies strong local curvature in an otherwise
smooth spatial profile of xk by calculating the discrete Laplacian

‖(xk+1−xk)−(xk−xk−1)‖for each k. In case of coherent dynamics
we obtain low values (≈ 0) for all k, in case of salt and pepper
states we get high values (> 2). Chimera states show low and high
values for the coherent and incoherent domains, respectively. By
taking the mean over all k, we can distinguish between coherent,
chimera and “salt & pepper” states. For the numerical integration
an Euler integration method is used with a step size 1t = 0.0025
and a transient time ttrans = 2, 000. All simulations are evaluated
then after 1T = 10, 000 as mentioned above.

In many systems with time delays resonance effects can be
expected if the delay time is an integer or half-integer multiple
of the period in the uncoupled system [42–44]. Regarding the
inter-layer delay time τij we can observe this effect for half-
integer multiples of the period T = 2.3 of a uncoupled FHN
oscillator (see Figure 2 for τi ≈ 2.5). Concerning the intra-layer
delay time τi we find a resonance effect in the case of integer
multiple of the delay. For greater values of the delay times τi
and τij the dynamical regions are becoming curved (see green
islands in Figure 2 at τi ≈ 2.5). This can be explained by the
fact that branches of periodic solutions, which are reappearing for
integer multiples of the intrinsic period, are becoming stretched
with increasing delay time [41]. In comparison to the almost
vertical shape at τi ≈ 0.5, the green islands at τi ≈ 2.5 are
rotated clockwise by approximate π/8. The consequence is an
overlapping of the delay islands for small intra-layer delay time
τi, whereas for larger delays the islands become separated.
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4. RELAY SYNCHRONIZATION

Networks with multiple layers demonstrate remote
synchronization of distant layers via a relay layer. Regarding the
inter-layer synchronization, two synchronization mechanisms
are conceivable in a triplex network:

• full inter-layer synchronization when synchronization is
observed between all the layers and

• relay inter-layer synchronizationwhen synchronization occurs
exclusively between the two outer layers.

A useful measure for synchronization between two layers i, j is
given by the global inter-layer synchronization error Eij [14, 45]:

Eij = lim
T→∞

1

NT

∫ T

0

N
∑

k=1

∥

∥

∥
x
j

k
(t)− x

i
k(t)

∥

∥

∥
dt, (5)

where ‖·‖ denotes the Euclidean norm. One can distinguish
between the two synchronization mechanisms by measuring the
global inter-layer synchronization error between the first and
second layer E12 and between the first and third layer E13: In the
case of full inter-layer synchronization E12 = 0 as well as E13 = 0,
while in the case of relay inter-layer synchronization E12 6= 0 and
E13 = 0.

To provide more insight into the synchronizability of patterns
between two layers i, j, the local inter-layer synchronization error
in dependence of every single node k can be used [14]:

E
ij

k
= lim

T→∞

1

T

∫ T

0

∥

∥

∥
x
j

k
(t)− x

i
k(t)

∥

∥

∥
dt. (6)

The local inter-layer synchronization error is convenient for
detecting the synchronized nodes between two layers. In

Figures 3, 4 (right column) E
ij

k
is plotted (light yellow) together

with the mean phase velocity (blue): Depending on the delay
times τi and τij we can find full inter-layer synchronization
(see Figure 3C) as well as relay inter-layer synchronization (see
Figures 3A,B, 4A,C). These synchronization scenarios can be
found for both coherent and incoherent dynamics. An additional
effect is the partial relay synchronization scenario in Figure 4B:
In all three layers “salt & pepper” dynamics can be observed. The
nodes in the outer layers are almost all synchronized, but a small
part of them destroys the relay synchronization. On the other

hand a few oscillators in the relay layer are synchronized with
the outer layers.

5. CONCLUSION

In conclusion, we have studied chimera states in a three-
layer network of FitzHugh-Nagumo oscillators, where each
layer has a nonlocal coupling topology. Focusing on the role
of time delays in the coupling terms and their influence
on chimera states, we have performed a numerical study
of complex spatio-temporal patterns in the network. In the
parameter plane of the intra-layer τi and the inter-layer τij
time delay, we have determined the regions where chimera
patterns occur, alternating with regimes of coherent states. A
proper choice of time delay allows to achieve the desired state
of the network: chimera state or coherent pattern, full or relay
inter-layer synchronization.

Combining the delayed interactions with the multiplex
framework considered in this work can provide additional
insight into the formation of the complex spatio-temporal
patterns in real-world systems. Specifically, in brain networks
where EEG patterns are recently reported to display chimera-
like behavior at the onset of a seizure [46–48]. Inducing
the chimera states by tuning the inter- and intra-layer
delay values provides us with a powerful tool to control
chimera states.
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