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Compressed sensing is the art of effectively reconstructing structured n-dimensional

vectors from substantially fewer measurements than naively anticipated. A plethora of

analytical reconstruction guarantees support this credo. The strongest among them

are based on deep results from large-dimensional probability theory and require a

considerable amount of randomness in the measurement design. Here, we demonstrate

that derandomization techniques allow for a considerable reduction in the randomness

required for such proof strategies. More precisely, we establish uniform s-sparse

reconstruction guarantees for Cs log(n) measurements that are chosen independently

from strength-4 orthogonal arrays and maximal sets of mutually unbiased bases,

respectively. These are highly structured families of C̃n2 vectors that imitate signed

Bernoulli and standard Gaussian vectors in a (partially) derandomized fashion.

Keywords: compressed sensing, k-wise independence, orthogonal arrays, spherical design, derandomization

1. INTRODUCTION AND MAIN RESULTS

1.1. Motivation
Compressed sensing is the art of effectively reconstructing structured signals from substantially
fewer measurements than would naively be required for standard techniques like least squares.
Although not entirely novel, rigorous treatments of this observation [1, 2] spurred considerable
scientific attention from 2006 on (see e.g., [3, 4]) and references therein. While deterministic
results do exist, the strongest theoretic reconstruction guarantees still rely on randomness. Each
measurement corresponds to the observed inner product of the unknown vector, with a vector
chosen randomly from a fixed measurement ensemble. Broadly, these ensembles can be grouped
into two families:

(i) Generic measurements such as independent Gaussian, or Bernoulli vectors. Such an abundance
of randomness allows establishing very strong results by following comparatively simple and
instructive proof techniques. The downside is that concrete implementations do require a lot of
randomness. In fact, they might be too random to be useful for certain applications.

(ii) Structured measurements such as random rows of a Fourier, or Hadamard matrix. In contrast
to generic measurements, these feature a lot of structure that is geared toward applications.
Moreover, selecting random rows from a fixed matrix does require very little randomness.
For example, log2(n) random bits are sufficient to select a row of the DFT uniformly at
random. In contrast, generating an i.i.d. Bernoulli vector would consume n bits of randomness.
Structure and comparatively little randomness have a downside, though. Theoretic convergence
guarantees tend to be weaker than their generic counterparts. It should also not come as a
surprise that the necessary proof techniques become considerably more involved.
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Typically, results for type (i) precede the results for type (ii).
Phase retrieval via PhaseLift is a concrete example for such a
development. Generic convergence guarantees [5, 6] preceded
(partially) de-randomized results [7, 8]. Compressed sensing
is special in this regard. The two seminal works [1, 2] from
2006 provided both results almost simultaneously. This had
an interesting consequence. Despite considerable effort, to date
there still seems to be a gap between both proof techniques.

Here, we try to close this gap by applying a method
that is very well established in theoretical computer science:
partial derandomization. We start with a proof technique of
type (i) and considerably reduce the amount of randomness
required for it to work. While doing so, we keep careful
track of the amount of randomness that is still necessary.
Finally, we replace the original (generic) random measurements
with pseudo-random ones that mimic them in a sufficiently
accurate fashion. Our results highlight that this technique almost
allows bridging the gap between existing proof techniques for
generic and structured measurements: the results are still strong
but require slightly more randomness than choosing vectors
uniformly from a bounded orthogonal system, such as Fourier
or Hadamard vectors.

There is also a didactic angle to this work: within the realm of
signal processing, partial-derandomization techniques have been
successfully applied to matrix reconstruction [8, 9] and phase
retrieval via PhaseLift [7, 10, 11]. Although similar in spirit, the
more involved nature of these problems may obscure the key
ideas, intuition and tricks behind such an approach. However,
the same techniques have not yet been applied to the original
problem of compressed sensing. Here, we fill this gap and, in
doing so, provide an introduction to partial derandomization
techniques by example. To preserve this didactic angle, we try to
keep the presentation as simple and self-contained as possible.

Finally, one may argue that compressed sensing has not fully
lived up to the high expectations of the community yet (see
e.g., Tropp [12]). Arguably, one of the most glaring problems
for applications is the requirement of choosing individual
measurements at random1. While we are not able to fully
overcome this drawback here, the methods described in this
work do limit the amount of randomness required to generate
individual structured measurements. We believe that this may
help to reduce the discrepancy between “what can be proved” and
“what can be done” in a variety of concrete applications.

1.2. Preliminaries on Compressed Sensing
Compressed sensing aims at reconstructing s-sparse vectors x ∈
C
n fromm≪ n linear measurements:

y = Ax ∈ C
m.

Since m ≪ n, the matrix A is singular and there are infinitely
many solutions to this equation. A convex penalizing function
is used to promote sparsity among these solutions. Typically, this

1Existing deterministic constructions (see e.g., Bandeira et al. [13]), do not (yet)

yield comparable statements.

penalizing function is the ℓ1-norm ‖z‖ℓ1 =
∑n

i=1 |zi|:

minimize
z∈Cn

‖z‖ℓ1 (1)

subject to Az = y

Strong mathematical proofs for correct recovery have been
established. By and large, these statements require randomness
in the sense that each row ai ∈ C

n of A is an independent copy of
a random vector a ∈ R

n. Prominent examples include

(1) m = Cs log(n/s) standard complex Gaussian measurements:
ag ∼ N (0, I/

√
2)+ iN (0, I/

√
2),

(2) m = Cs log(n/s) signed Bernoulli (Rademacher)
measurements: asb ∼ {±1}n,

(3) m = Cs log4(n) random rows of a DFT matrix: af ∼
{f1, . . . , fn},

(4) for n = 2d: m = Cs log4(n) random rows of a Hadamard
matrix: ah ∼ {h1, . . . , hn}.

A rigorous treatment of all these cases can be found in Foucart
and Rauhut [3]. Here, and throughout this work, C > 0
denotes an absolute constant whose exact value depends on the
context but is always independent of the problem parameters n, s,
and m. It is instructive to compare the amount of randomness
that is required to generate one instance of the random vectors
in question. A random signed Bernoulli vector asb ∈ R

n

requires n random bits (one for each coordinate), while a
total of log2(n) random bits suffice to select a random row
ah ∈ R

n of a Hadamard matrix. A comparison between
complex standard Gaussian vectors ag ∈ C

n and random
Fourier vectors af ∈ C

n indicates a similar discrepancy. In
summary: highly structured random vectors, like af , ah require
exponentially fewer random bits to generate than generic random
vectors, like ag , asb. Importantly, this transition from generic
measurements to highly structured ones comes at a price. The
number of measurements required in cases (3) and (4) scales
poly-logarithmically in n. More sophisticated approaches allow
for converting this offset into a poly-logarithmic scaling in s
rather than n [14, 15]. Another, arguably even higher price, is
hidden in the proof techniques behind these results. They are
considerably more involved.

The following two subsections are devoted to introducing
formalisms that allow for partially de-randomizing
signed Bernoulli vectors and complex standard Gaussian
vectors, respectively.

1.3. Partially De-randomizing Signed
Bernoulli Vectors
Throughout this work, we endow C

n with the standard inner
product 〈x, y〉 =

∑n
i=1 x̄iyi. We denote the associated (Euclidean)

norm by ‖z‖2ℓ2 = 〈z, z〉. Let asb = (ǫ1, . . . , ǫn)
T be a

signed Bernoulli vector with coefficients ǫi ∼ {±1} chosen
independently at random (Rademacher random variables). Then,

E
[

ǫiǭj
]

= E
[

ǫiǫj
]

= δij. (2)
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This feature is equivalent to isotropy of signed Bernoulli vectors:

E
[

|〈z, asb〉|2
]

=
n
∑

i,j=1

E
[

ǫiǭj
]

z̄izj =〈z, z〉 = ‖z‖2ℓ2 . (3)

for all z ∈ C
n.

Independent sign entries are sufficient, but not necessary for
this feature. Indeed, suppose that n = 2d is a power of two.
Then, the rows of a Sylvester Hadamard matrix correspond to a
particular subset of n sign vectors that are also proportional to an
orthonormal basis. The orthonormal basis property ensures that
a randomly selected Hadamard row ah ∈ R

n is also isotropic.
In turn, the coordinates ai ∈ {±1} of ah also obey (2), despite
not being independent instances of random signs. This feature is
called pairwise independence and naturally generalizes to k ≥ 2:

Definition 1. (k-wise independence.) Fix k ≥ 2 and let ǫi denote
independent instances of a signed Bernoulli random variable. We
call a random sign vector a ∈ {±1}n k-wise independent, if its
components a1, . . . , an obey

E





k
∏

i=1

aik



 = E





k
∏

i=1

ǫik



 (4)

for all k-tuples of indices 1 ≤ i1, . . . , ik ≤ n.

For k = 2, this defining property reduces to Equation (2)
and is equivalent to demanding isotropy of the distribution.
Random rows of Hadamard matrices form a concrete example
for pairwise independence.

What is more, explicit constructions for k-wise independent
vectors inRn are known for any k and n. In this work we focus on
particular constructions that rely on generalizing the following
instructive example. Fix n = 3 and consider the M = 4 rows of
the following matrix:









1 1 1
1 −1 −1

−1 1 −1
−1 −1 1









The first two columns summarize all possible tuples (k =
2 combinations) of ±1. The coefficients of the third column
correspond to their entry-wise product. Hence, the third column
is completely characterized by the first two and therefore three
components of a selected row are not mutually independent.
Nonetheless, each subset of two coordinates does mimic
independent behavior: all possible length-two combinations of
±1 occur exactly once in these two columns. This ensures that
a randomly selected row obeys Equation (4) for k = 2 (pairwise
independence). The concept of orthogonal arrays [16] generalizes
this simple example.

Definition 2. (Orthogonal array) A (binary) orthogonal array of
strength k with M rows and n columns is a M×n sign matrix such
that every selection of k columns contains all elements of {±1}k an
equal number of times.

The example from above is an 4 × 3 orthogonal array of
strength 2. Strength-k orthogonal arrays are closely related to
the concept of k-wise independence. The following implication
is straightforward.

Lemma 1. Selecting a row of an M × n orthogonal array of
strength k uniformly at random produces k-wise independent
random vectors in n dimensions.

This correspondence identifies orthogonal arrays as general-
purpose seeds for pseudo-random behavior. What is more,
explicit constructions of orthogonal arrays are known for any k
and any n. In contrast to the “full” array that lists all 2n possible
elements of {±1}n as its rows, these constructions typically only

require M ≥ O

(

nk/2
)

rows. This fundamental restriction is

called Rao’s bound and only scales polynomially in the dimension
n. Choosing a random row from such an array only requires
log2(M) = O(k log2(n)) random bits and produces a random
vector that is k-wise independent.

1.4. Partially Derandomizing Complex
Standard Gaussian Vectors
Let us now discuss another general-purpose tool for (partial)
de-randomization. Concentration of measure implies that n-
dimensional standard complex Gaussian vectors concentrate
sharply around the complex sphere of radius

√
n. Hence, they

behave very similarly to vectors as ∈ C
n chosen uniformly from

this sphere. For any k ∈ N, such spherical random vectors obey

E

[

|〈z, as〉|2k
]

=nk
∫

w∈Sn−1
|〈z,w〉|2kdw=nk

(

n+k−1

k

)−1

‖z‖2kℓ2 .

for all z ∈ C
n.

Here, dw denotes the uniform measure on the complex unit
sphere Sn−1 =

{

x ∈ C
n
: ‖x‖ℓ2 = 1

}

. This formula characterizes
evenmoments of the uniform distribution2 on Sn−1. The concept
of k-designs [17] uses this moment formula as a starting point for
partial de-randomization. Roughly speaking, a k-design is a finite
subset of

√
n-length vectors such that the uniform distribution

over these vectors reproduces the uniform measure on
√
nSn−1

up to k-th moments. More precisely:

Definition 3. A set of N vectors {wi}Ni=1 ⊂
√
nSn−1 is called a

(complex projective) k-design if, for any l ∈
[

k
]

=
{

1, . . . , k
}

, a
randomly selected element a(k) obeys

E

[

|〈z, a(k)〉|2l
]

= nl
(

n+ l− 1

l

)−1

‖z‖2lℓ2 for all z ∈ C
n.

(Spherical) k-designs were originally developed as cubature
formulas for the real-valued unit sphere [17]. The concept has
since been extended to other sets. A generalization to the complex
projective space CPn−1 gives rise to Definition 3. Complex
projective k-designs are known to exist for any k and any

2For comparison, a complex standard Gaussian vector obeys E

[

|〈z, ag 〉|2k
]

=
k!‖z‖2kℓ2 instead.
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dimension n (see e.g., [18–20]). However, explicit constructions
for k ≥ 3 are notoriously difficult to find. In contrast, several
explicit families of 2-designs have been identified. Here, we will
focus on one such family. Two orthonormal bases {bi}ni=1 and
{ci}ni=1 of C

n are calledmutually unbiased if

∣

∣〈bi, cj〉
∣

∣

2 =
1

n
for all i, j ∈ [n] . (5)

A prominent example for such a basis pair is the standard basis
and the Fourier, or Hadamard, basis, respectively. One can show
that at most n+1 different orthonormal bases may exist that have
this property in a pairwise fashion [21, Theorem 3.5]. Such a set
of n + 1 bases is called a maximal set of mutually unbiased bases
(MMUB). For instance, in n = 2 the standard basis together with

1
√
2

(

1
1

)

,
1
√
2

(

1
−1

)

,
1
√
2

(

1
i

)

,
1
√
2

(

1
−i

)

forms a MMUB. Importantly, MMUBs are always (proportional
to) 2-designs [22]. Explicit constructions exist for any prime
power dimension n and one can ensure that the standard basis
is always included. Here we point out one construction that is
particularly simple if the dimension n ≥ 5 is prime [23]: The
standard basis vectors e1, . . . , en ∈ C

n together with all vectors
whose entry-wise coefficients correspond to

[

bα,λ
]

k
=

1
√
n
ω(k+α)3+λ(k+α)
n (6)

form a MMUB. Here ωn = exp
(

2π i
n

)

is a n-th root of unity.
The parameter α ∈ [n] singles out one of the n different
bases, while λ ∈ [n] labels the n corresponding basis vectors.
Excluding the standard basis, this set of n2 vectors corresponds
to all time-frequency shifts of a discrete Alltop sequence [f]k =
ωk3
n [24].

1.5. Main Results
In the following c̃ > 0, likeC, denotes an absolute constant whose
precise value may depend on the context.

Theorem 1. (CS from orthogonal array measurements.) Suppose
that a matrix A contains m ≥ Cs log(2n) rows that are
chosen independently from strength-4 orthogonal array. Then,
with probability at least 1 − 2e−c̃m, any s-sparse x ∈ C

n can
be recovered from y = Ax by solving the convex optimization
problem (1).

Theorem 2. (CS from time-frequency shifted Alltop sequences.)
Let n ≥ 5 be prime and suppose that A contains m ≥ Cs log(2n)
rows that correspond to random time-frequency shifts of the n-
dimensional Alltop sequence (6). Then, with probability at least
1 − 2e−c̃m, any s-sparse x ∈ R

n can be recovered from y = Ax

by solving (1).

This result readily generalizes to measurements that are
sampled from a maximal set of mutually unbiased bases
(excluding the standard basis). Time-frequency shifts of the

Alltop sequence are one concrete construction that applies to
prime dimensions only.

Note that the cardinality of all Alltop shifts is n2. Hence,
2 log2(n) random bits suffice to select a random time-frequency
shift. In turn, a total of

2 log2(n)m ≃ 2Cs log2(n) (7)

random bits are required for sampling a complete measurement
matrix A. This number is exponentially smaller than the number
of random bits required to generate a matrix with independent
complex Gaussian entries. A similar comparison holds true for
random signed Bernoulli matrices and columns sampled from a
strength-4 orthogonal array.

Highly structured families of vectors – such as rows of a
Fourier, or Hadamard matrix – require even less randomness to
sample from: only log2(n) bits are required to select such a row
uniformly at random. However, existing recovery guarantees are
weaker than the main results presented here. They require an
order of Cspolylog(s) log(n) random measurements to establish
comparable results. Thus, the total number of random bits
required for such a procedure scales like Cspolylog(s) log2(n).
Equation (7) still establishes a logarithmic improvement in terms
of sparsity.

The recovery guarantees in Theorem 1 and Theorem 2 can
be readily extended to ensure stability with respect to noise
corruption in the measurements and robustness with respect
to violations of the model assumption of sparsity. We refer to
section 3 for details.

We also emphasize that there are results in the literature
that establish compressed sensing guarantees with comparable,
or even less, randomness. Obviously, deterministic constructions
are the extreme case in this regard. Early deterministic
results suffer from a “quadratic bottleneck.” The number of
measurements must scale quadratically in the sparsity: m ≃ s2.
Although this obstacle was overcome, existing progress is still
comparatively mild. Bourgain et al. [25], Mixon [26], Bandeira
et al. [27] establish deterministic convergence guarantees for
m ≃ s2−ǫ , where ǫ > 0 is a (very) small constant.

Closer in spirit to this work is Bandeira et al. [28]. There, the
authors employ the Legendre symbol – which is well known for
its pseudorandom behavior – to partially derandomize a signed
Bernoulli matrix. In doing so, they establish uniform s-sparse
recovery from m ≥ Cs log2(s) log(n) measurements that require
an order of s log(s) log(n) random bits to generate. Compared
to the main results presented here, this result gets by with
less randomness, but requires more measurements. The proof
technique is also very different.

To date, the strongest de-randomized reconstruction
guarantees hail from a close connection between s-sparse
recovery and Johnson-Lindenstrauss embeddings [29, 30].
These have a wide range of applications in modern data
science. Kane and Nelson [31] established a very strong
partial de-randomization for such embeddings. This result
may be used to establish uniform s-sparse recovery for
m = Cs log(n/s) measurements that require an order of
s log

(

s log(n/s) log(n/s)
)

random bits. This result surpasses
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the main results presented here in both sampling rate and
randomness required.

However, this strong result follows from “reducing” the
problem of s-sparse recovery to a (seemingly) very different
problem: find Johnson-Lindenstrauss embeddings. Such a
reduction typically does not preserve problem-specific structure.
In contrast, the approach presented here addresses the problem
of sparse recovery directly and relies on tools from signal
processing. In doing so, wemaintain structural properties that are
common in several applications of s-sparse recovery. Orthogonal
array measurements, for instance, have ±1-entries. This is
well-suited for the single pixel camera [32]. Alltop sequence
constructions, on the other hand, have successfully been applied
to stylized radar problems [33]. Both types of measurements also
have the property that every entry has unit modulus. This is an
important feature for communication applications like CDMA
[34]. Having pointed out these high-level connections, we want
to emphasize that careful, problem specific adaptations may be
required to rigorously exploit them. The framework developed
here may serve as a guideline on how to achieve this goal in
concrete scenarios.

2. PROOFS

2.1. Textbook-Worthy Proof for Real-Valued
Compressed Sensing With Gaussian
Measurements
This section is devoted to summarizing an elegant argument,
originally by Rudelson and Vershynin [14], see also [35–37] for
arguments that are similar in spirit. This argument only applies
to s-sparse recovery of real-valued signals. We will generalize a
similar idea to the complex case later on.

In this work we are concerned with uniform reconstruction
guarantees: with high probability, a single realization of the
measurement matrix A allows for reconstructing any s-sparse
vector x by means of ℓ1-regularization (1). A necessary
pre-requisite for uniform recovery is the demand that the
kernel, or nullspace, of A must not contain any s-sparse
vectors. This condition is captured by the nullspace property
(NSP). Define,

Ts =
{

z ∈ S
n−1

: ‖z‖ℓ1 ≥ 2σs(z)
}

, (8)

where σs(x) = inf‖z‖0≤s ‖x − z‖ℓ1 is the approximation error
(measured in ℓ1-norm) one incurs when approximating x by
s-sparse vectors.

A matrix A obeys the NSP of order s (s-NSP) if,

inf
z∈Ts

‖Az‖ℓ2 > 0. (9)

The set Ts is a subset of the unit sphere that contains all
normalized s-sparse vectors. This justifies the informal definition
of the NSP: no s-sparse vector is an element of the nullspace
of A. Importantly, the NSP is not only necessary, but also
sufficient for uniform recovery (see e.g., Foucart and Rauhut
[3, Theorem 4.5]). Hence, universal recovery of s-sparse signals

readily follows from establishing Rel. (9). The nullspace property
and its relation to s-sparse recovery has long been somewhat
folklore. We refer to Foucart and Rauhut [3, Notes on section 4]
for a discussion of its origin.

The following powerful statement allows for exploiting
generic randomness in order to establish nullspace properties.
It is originally due to Gordon [38], but we utilize a
more modern reformulation, see Foucart and Rauhut
[3, Theorem 9.21].

Theorem 3. (Gordon’s escape through a mesh.) Let A be a real-
valued m× n standard Gaussian matrix3 and let E ⊆ S

n−1 ⊂ R
n

be a subset of the real-valued unit sphere. Define the Gaussian
width ℓ(E) = E supz∈E〈ag , z〉, where the expectation is over
realizations ag ∼ N (0, I) of a standard Gaussian random vector.
Then, for t ≥ 0 the bound

inf
z∈E

‖Az‖ℓ2 ≥
√
m− 1− ℓ(E)− t

is true with probability at least 1− e−t2/2.

This is a deep statement that connects random matrix theory
to geometry: the Gaussian width is a rough measure of the size
of the set E ⊆ S

n−1. Setting E = Ts allows us to conclude that a
matrix A encompassing m independent Gaussian measurements
is very likely to obey the s-NSP (9), provided that (m−1) exceeds
ℓ(Ts)

2. In order to derive an upper bound on ℓ(Ts), we may use
the following inclusion

Ts ⊂ 2conv (6s) ,

see e.g., Kabanava and Rauhut [35, Lemma 3] and Rudelson and
Vershynin [14, Lemma 4.5]. Here, 6s ⊆ S

n−1 denotes the set of
all s-sparse vectors with unit length. In turn,

ℓ(Ts) ≤ 2E sup
z∈conv(6s)

〈ag , z〉 = 2E sup
z∈6s

〈ag , z〉, (10)

because the linear function z 7→ 〈ag , z〉 achieves its maximum
value at the boundary 6s of the convex set conv (6s). The
right-hand side of (10) is the expected supremum of a Gaussian
process indexed by z ∈ 6s. Dudley’s inequality [39], see also [3,
Theorem 8.23], states

E sup
z∈6s

〈ag , z〉 ≤ 4
√
2

∫ 1

0

√

ln
(

C
(

6s, ‖ · ‖ℓ2 , u
))

du,

where C(6s, ‖ · ‖ℓ2 , u) are covering numbers associated with the
set 6s. They are defined as the smallest cardinality of an u-
covering net with respect to the Euclidean distance. A volumetric
counting argument yields C(6s, ‖ · ‖ℓ2 , u) ≤

(

en
s

)s (
1+ 2

u

)s
and

Dudley’s inequality therefore implies

ℓ(Ts) ≤ c
√

s log (en/s),

3This is a m × n matrix where each entry is sampled independently from the

standard normal distributionN (0, 1).
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where c is an absolute constant. This readily yields the following
assertion (choose t =

√
2c̃m for c̃ sufficiently small).

Theorem 4. (NSP for Gaussian measurements.) A number
of m ≥ c2s log(en/s) independent real-valued Gaussian
measurements obeys the (real-valued) s-NSP with probability at
least 1− e−c̃m.

This argument is exemplary for generic proof techniques:
strong results from probability theory allow for establishing
close-to-optimal recovery guarantees in a relatively
succinct fashion.

2.2. Extending the Scope to Subgaussian
Measurements
The extended arguments presented here are largely due to
Dirksen, Lecue and Rauhut [36]. Again, we will focus on the
real-valued case.

Gordon’s escape through a mesh is only valid for Gaussian
random matrices A. Novel methods are required to extend
this proof technique beyond this idealized case. Comparatively
recently, Mendelson provided such a generalization [40, 41].

Theorem 5. (Mendelson’s small ball method, Tropp’s
formulation [37]). Suppose that A is a random m × n matrix
whose rows correspond to m independent realizations of a random
vector a ∈ R

n. Fix a set E ⊆ R
n, and define,

Qξ (a,E) = inf
z∈E

Pr [|〈z, a〉| ≥ ξ ] for ξ > 0,

Wm(a,E) =E sup
z∈E

〈z, h〉 where h =
1

√
m

m
∑

i=1

ǫiai ∈ R
n,

is the empirical average over m independent copies of a weighted
by uniformly random signs ǫi ∼ {±1}. Then, for any t, ξ > 0

inf
z∈E

‖Az‖ℓ2 ≥ ξ
√
mQ2ξ (a,E)− 2Wm(a,E)− ξ t

with probability at least 1− 2e−t2/2.

It is worthwhile to point out that for real-valued Gaussian
vectors this result recovers Theorem 3 up to constants. Fix ξ > 0
of appropriate size. Then, E ⊆ S

n−1 ensures that ξQ2ξ (ag ,E)
is constant. Moreover, Wm(ag ,E) reduces to the usual Gaussian
width ℓ(E).

Mendelson’s small ball method can be used to establish the
nullspace property for independent random measurements a ∈
R
n that exhibit subgaussian behavior:

E exp (θ〈z, a〉) ≤ exp

(

θ2

2
‖z‖2ℓ2

)

for all z ∈ R
n, θ > 0. (11)

Signed Bernoulli vectors are a concrete example. Such random
vectors are isotropic (3) and direct computation also reveals

E
[

〈z, asb〉4
]

=
n
∑

i,j,k,l=1

E
[

ǫiǫjǫkǫl
]

zizjzkzl =
n
∑

i=1

E
[

ǫ4i
]

z4i

+3
∑

i6=j

E
[

ǫ2i
]

E

[

ǫ2j

]

z2i z
2
j

=
n
∑

i=1

z4i + 3
∑

i6=j

z2i z
2
j = 3‖z‖4ℓ2−2‖z‖4ℓ4 ≤ 3‖z‖4ℓ2 ,

(12)

because there are 3 possible pairings of four indices. Next, set E =
Ts ⊂ S

n−1. An application of the Paley-Zygmund inequality then
allows for bounding the parameter Q2ξ (asb,Ts) in Mendelson’s
small ball method from below:

Q2ξ (asb,Ts) ≥ inf
z∈Sn−1

Pr [|〈z, asb〉| ≥ 2ξ ] = inf
z∈Sn−1

Pr
[

〈z, asb〉2 ≥ 4ξ 2E
[

〈z, asb〉2
]]

≥ inf
z∈Sn−1

(

1− 4ξ 2
)2 E

[

〈z, asb〉2
]2

E
[

〈z, asb〉4
] ≥

(1− 4ξ 2)2

3
.

This lower bound is constant for any ξ ∈ (0, 1/2).
Next, note that Xz = 〈z, h〉 is a stochastic process that is

indexed by z ∈ R
n. This process is centered (EXz = 0)

and Equation (11) implies that it is also subgaussian. Moreover,
E
[

|Xz − Xy|2
]

= ‖z − y‖2ℓ2 readily follows from isotropy (3).
Unlike Gordon’s escape through a mesh, Dudley’s inequality
does remain valid for such stochastic processes with subgaussian
marginals. We can now repeat the width analysis from the
previous section to obtain

Wm(asb,Ts) ≤ 2E sup
z∈6s

〈z, h〉 ≤ c
√

s log(en/s).

Fixing ξ > 0 sufficiently small, setting t =
√
2c̃m and inserting

these bounds into Equation (5) yields the following result.

Theorem 6. (NSP for signed Bernoulli measurements.)Amatrix
A encompassing m ≥ Cs log(en/s) random signed Bernoulli
measurements obeys the (real-valued) s-NSP with probability at
least 1− e−c̃m.

A similar result remains valid for other classes of independent
measurements with subgaussian marginals (11).

2.3. Generalization to Complex-Valued
Signals and Partial De-Randomization
The nullspace property, as well as its connection to uniform
s-sparse recovery readily generalizes to complex-valued s-sparse
vectors (see e.g., Foucart and Rauhut [3], section 4). In turn,
Mendelson’s small ball method may also be generalized to the
complex-valued case:

Theorem 7. (Mendelson’s small ball method for complex vector
spaces.) Suppose that the rows of A correspond to m independent
copies of a random vector a ∈ C

n. Fix a set E ⊆ C
n and define

Qξ (a,E) = inf
z∈E

Pr [|〈z, a〉| ≥ ξ ] for ξ > 0,
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Wm(a,E) =E sup
z∈E

|〈z, h〉| where h =
1

√
m

m
∑

i=1

ǫiai.

Then, for any t, ξ > 0

inf
z∈E

‖Az‖ℓ2 ≥
√
2
(

ξ
√
mQ23/2ξ/2− 2Wm(E, a)− ξ t

)

with probability at least 1− 2e−t2/2.

Such a generalization was conjectured by Tropp [37], but we
are not aware of any rigorous proof in the literature. We provide
one in subsection 5.1 and believe that this generalization may be
of independent interest. In particular, this extension allows for
generalizing the arguments from the previous subsection to the
complex-valued case.

Let us now turn to the main scope of this work: partial
de-randomization. Effectively, Mendelson’s small ball method
reduces the task of establishing nullspace properties to bounding
the two parametersQ23/2ξ (a,Ts) andWm(a,Ts) in an appropriate
fashion. A lower bound on the former readily follows from the
Paley-Zygmund inequality, provided that the following relations
hold for any z ∈ C

n:

E
[

|〈a, z〉|2
]

= ‖z‖2ℓ2 (isotropy),

E
[

|〈a, z〉|4
]

≤ C4‖z‖4ℓ2 (4h moment bound).

Here, C4 > 0 is constant.
Indeed, inserting these bounds into the Paley-Zygmund
inequality yields

Q23/2ξ (a,Ts) ≥ C−1
4

(

1− 8ξ 2
)2

for any ξ ∈
(

0, 2−3/2
)

.
(13)

In contrast, establishing an upper bound on Wm(a,Ts)
via Dudley’s inequality requires subgaussian marginals (11)
(that must not depend on the ambient dimension). This
implicitly imposes stringent constraints on all moments of a

simultaneously. An additional assumption allows to considerably
weaken these demands:

max
1≤k≤n

|〈ek, a〉|2 =1 almost surely (incoherence). (14)

Here, e1, . . . , en denotes the standard basis of Cn. Incoherence
has long been identified as a key ingredient for developing
s-sparse recovery guarantees. Here, we utilize it to establish
an upper bound on Wm(A,Ts) that does not rely on
subgaussian marginals.

Lemma 2. Let a ∈ C
n be a random vector that is isotropic and

incoherent. Let Ts ⊂ C
n be the complex-valued generalization of

the set defined in Equation (8) and assume m ≥ log(2n). Then,

Wm(a,Ts) ≤ 4
√

2s log(2n). (15)

This bound only requires an appropriate scaling of the first two
moments (isotropy) but comes at a price. The bound scales

logarithmically in n rather than n/s. We defer a proof of this
statement to subsection 5.2 below. Inserting the bounds (13) and
(15) into the assertion of Theorem 7 readily yields the main
technical result of this work:

Theorem 8. Suppose that a ∈ C
n is a random vector that obeys

incoherence, isotropy and the 4th moment bound. Then, choosing

m ≥ Cs log(n)

instances of a uniformly at random results in a measurement
matrixA that obeys the complex-valued nullspace property of order
s with probability at least 1− 2e−c̃m.

In complete analogy to the real-valued case, the complex
nullspace property ensures uniform recovery of s-sparse vectors
x ∈ C

n from y = Ax via solving the convex optimization
problem (1).

2.4. Recovery Guarantee for Strength-4
Orthogonal Arrays
Suppose that aoa ∈ {±1}n is chosen uniformly from a
strength-4 orthogonal array. By definition, each component
ai of a has unit modulus. This ensures incoherence. Moreover,
E
[

aiaj
]

= E
[

ǫiǫj
]

= δij, because 4-wise independence
necessarily implies 2-wise independence. Isotropy then
readily follows from (3). Finally, 4-wise independence
suffices to establish the 4th moment bound. By assumption
E
[

aiajākāl
]

= E
[

ǫiǫjǫkǫl
]

and we may thus infer

E

[

|〈z, aoa〉|4
]

=
n
∑

i,j,k,l=1

E
[

ǫiǫjǫkǫl
]

z̄i z̄jzkzl

=
n
∑

i=1

E

[

ǫ4i

]

|zi|4 +
∑

i6=j

E

[

ǫ2i

]

E

[

ǫ2j

] (

z̄2i z
2
j + 2|zi|2|zj|2

)

=2‖z‖4ℓ2 +
∑

i6=j

z̄2i z
2
j − ‖z‖4ℓ4 ≤ 3‖z‖4ℓ2 .

In summary: aoa meets all the requirements of Theorem 8.
Theorem 1 then follows from the fact that the complex
nullspace property ensures uniform recovery of all s-sparse
signals simultaneously.

2.5. Recovery Guarantee for Mutually
Unbiased Bases
Suppose that amub ∈ C

n is chosen uniformly from a maximal
set of n mutually unbiased bases (excluding the standard basis)
whose elements are re-normalized to length

√
n. Random time-

frequency shift of the Alltop sequence (6) are a concrete example
for such a sampling procedure, provided that the dimension n ≥
5 is prime.

The vector amub is chosen from a union of n bases that are
all mutually unbiased with respect to the standard basis, see
Equation (5). Together with normalization to length

√
n, this

readily establishes incoherence: max1≤k≤n |〈ek, a〉|2 = n
n =

1 with probability one. Next, by assumption amub is chosen
uniformly from a union of n re-scaled orthonormal bases. Let us
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denote each of them by b
(l)
1 , . . . , b

(l)
n , where 1 ≤ l ≤ n labels the

different basis. Then,

E
[

|〈amub, z〉|2
]

=
1

n2

n
∑

l=1

n
∑

i=1

|
√
n〈b(l)i , z〉|2 =

1

n

n
∑

l=1

‖z‖2ℓ2

= ‖z‖2ℓ2 for all z ∈ C
n

which implies isotropy. Finally, a maximal set of (n+1) mutually
unbiased bases – including the standard basis which we denote

by b
(n+1)
k

= ek – forms a 2-design according to Definition 3. For
any z ∈ C

n this property ensures

E
[

|〈amub, z〉|4
]

=
n+1
∑

l=1

n
∑

i=1

|〈b(l)i , z〉|4 −
n
∑

k=1

|〈ek, z〉|4

= 2‖z‖4ℓ2 − ‖z‖4ℓ4 ≤ 2‖z‖4ℓ2

which establishes the 4th moment bound. In summary, the
random vector amub ∈ C

n meets the requirements of Theorem 8.
Theorem 2 then readily follows form the implications of the
nullspace property for s-sparse recovery.

3. EXTENSION TO NOISY
MEASUREMENTS

The nullspace property may be generalized to address two
imperfections in s-sparse recovery simultaneously: (i) the vector
x ∈ C

d may only be approximately sparse in the sense that it is
well-approximated by an s-sparse vector, (ii) the measurements
may be corrupted by additive noise: y = Ax+ s with s ∈ C

m.
To state this generalization, we need some additional notation.

For z ∈ C
n and s ∈ [n], let zs ∈ C

n be the vector that only
contains the s largest entries in modulus. All other entries are set
to zero. Likewise, we write zs̄ = z − zs to denote the remainder.
In particular, σs(z) = ‖zs̄‖ℓ1 . An m × n matrix A obeys the
robust nullspace property of order s with parameters ρ ∈ (0, 1)
and τ > 0 if

‖zs‖ℓ2 ≤
ρ
√
s
‖zs̄‖ℓ1 + τ‖Az‖ℓ2 for all z ∈ S

n−1,

see e.g., Foucart and Rauhut [3, Definition 4.21]. This extension
of the nullspace property is closely related to stable s-sparse
recovery via basis pursuit denoising:

minimize ‖z‖ℓ1
subject to ‖Az− y‖ℓ2 ≤ η. (16)

Here, η > 0 denotes an upper bound on the strength of the noise
corruption: ‖s‖ℓ2 ≤ η. [3, Theorem 4.22] draws the following
precise connection: suppose that A obeys the robust nullspace
property with parameters ρ and τ . Then, the solution z♯ ∈ C

n

to (16) is guaranteed to obey

‖z♯ − x‖ℓ2 ≤
D1√
s
σs(x)+ D2η, (17)

where D1 = (1 + ρ)2/(1 − ρ) and D2 = (3 + ρ)τ/(1 − ρ). The
first term on the r.h.s. vanishes if x is exactly s-sparse and remains
small if x is well approximated by a s-sparse vector. The second
term scales linearly in the noise bound η ≥ ‖s‖ℓ2 and vanishes in
the absence of noise corruption.

In the previous section, we have established the classical
nullspace property for measurements that are chosen
independently from a vector distribution that is isotropic,
incoherent and obeys a bound on the 4th moments. This
argument may readily be extended to establish the robust
nullspace property with relatively little extra effort. To this end,
define the set

Tρ,s =
{

z ∈ S
n−1

: ‖zs‖ℓ2 >
ρ
√
s
‖zs̄‖ℓ1

}

.

A moment of thought reveals that the matrix A obeys the robust
nullspace property with parameters ρ, τ if

inf
z∈Tρ,s

‖Az‖ℓ2 ≥
1

τ
. (18)

What is more, the following inclusion formula is also valid:

Tρ,s ⊂
3

ρ
conv (6s) ,

see Kabanava and Rauhut [35, Lemma 3] and Rudelson and
Vershynin [14, Lemma 4.5]. This ensures that the bounds on
the parameters in Mendelson’s small ball method generalize in
a rather straightforward fashion. Isotropy, incoherence and the
4th moment bound ensure

Q2ξ (a,Tρ,s) ≥
(1− 2ξ 2)2

C4
and Wm(a,Tρ,s) ≤

12

ρ

√

2s log(2n).

Now, suppose that A subsumesm ≥ Cρ−2s log(2n) independent
copies of the random vector a ∈ C

n. Then, Theorem 7 readily
asserts that with probability at least 1− 2e−c̃m

inf
z∈Tρ,s

‖Az‖ℓ2 ≥
c

ρ

√
m, (19)

where c > 0 is another constant. Previously, we employed
Mendelson’s small ball method to merely assert that a similar
infimum is not equal to zero. Equation (19) provides a strictly
positive lower bound with comparable effort. Comparing this
relation to Equation (18) highlights that this is enough to
establish the robust nullspace property with parameters ρ and
τ = ρ

c
√
m
. In turn, a stable generalization of the main recovery

guarantee follows from Equation (17).

Theorem 9. Fix ρ ∈ (0, 1) and s ∈ N. Suppose that we
sample m ≥ Cρ−2s log(n) independent copies of an isotropic,
incoherent random vector a ∈ C

n that also obeys the 4th moment
bound. Then, with probability at least 1 − 2e−c̃m, the resulting
measurement matrix A allows for stable, uniform recovery of
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(approximately) s-sparse vectors. More precisely, the solution z♯ to
(16) is guaranteed to obey

‖x− z♯‖ℓ2 ≤
D1√
s
σs(x)+ D2

η
√
m
,

where D1,D2 > 0 depend only on ρ.

4. NUMERICAL EXPERIMENTS

In this part we demonstrate the performance which can be
achieved with our proposed derandomized constructions and we
compare this to generic measurement matrices (Gaussian, signed
Bernoulli). However, since the orthogonal array construction is
more involved we first provide additional details relevant for
numerical experiments.
Details on orthogonal arrays: An orthogonal array
OA(λσ k, n, σ , k) of strength k, with n factors and σ levels
are an λσ k × n array of σ different symbols such that in any k
columns every ordered σ k-tuple occurs in exactly λ rows. Arrays
with λ = 1 are called simple. A comprehensive treatment can
be found in the book [16]. Known arrays are listed in several
libraries4. Often the symbol alphabet is not relevant, but we use
the set Zσ = {0, . . . , σ − 1} for concreteness. Such arrays can

be represented as a matrix in Z
λσ k×n
σ . For σ = qp with q prime

the simple orthogonal array OA(σ k, n, σ , k) is linear if the qpt

rows of the matrix form a vector space over Fq. The runs of an
orthogonal array (the rows of the corresponding matrix) can
also be interpreted as codewords of a code and vice versa. The
array is linear if and only if the corresponding code is linear [16,
Chapter 4]. This relationship allows to employ classical code
constructions to construct orthogonal arrays.

In this work we propose to generate sampling matrices A ∈
Z
m×n
σ by selecting m ≤ M = λσ k rows at random from an

orthogonal array OA(λσ 4, n, σ , 4) of strength k = 4 and with
n factors. Intuitively, m log2(M) bits are then required to specify
such a matrix A. For k = 4, a classical lower bound due to Rao
[42] demands

M = λσ 4 ≥ 1+ n+
(

n

2

)

= �(n2). (20)

Arrays that saturate this bound are called tight (or complete). In
summary, an order of s log2(n) bits are required to sample am×n
matrix A withm ≥ Cs log(n) rows according to this procedure.
Strength-4Constructions: For compressed sensing applications,
we want arrays with a large number of factors n since this
corresponds to the ambient dimension of the sparse vectors
to recover. On the other hand the run size M should scale
“moderately” to describe the random matrices only with few
bits. Most constructions use an existing orthogonal array as
a seed to construct larger arrays. Known binary arrays of
strength 4 are for example the simple array OA(16, 5, 2, 4), or
OA(80, 6, 2, 4). Pat [43] proposes an algorithm that uses a linear
orthogonal array OA(N, n, σ , k) as a seed to construct a linear

4For example http://neilsloane.com/oadir/ or http://pietereendebak.nl/oapage/

orthogonal array OA(N2, n2+2n, σ , k). This procedure may then
be iterated.
Numerical results for orthogonal arrays: Figure 1 summarizes
the empirical performance of basis pursuit (1) from independent
orthogonal array measurements. We consider real-valued signals
x and quantify the performance in terms of the normalized
ℓ2-recovery error (NMSE) ‖z♯ − x‖ℓ2/‖x‖ℓ2 where z♯ is the
solution of (1). To construct the orthogonal array, algorithm
[43] is applied twice OA(16, 5, 2, 4) → OA(256, 35, 2, 4) →
OA(65536, 1295, 2, 4). The 323 rows are uniformly samples from
this array, i.e., the sampling matrix A has ±1 entries (instead
of binary entries) and size 323 × 1295. But note that, in the
case of non-negative sparse vectors, the corresponding binary
0/1-matrices may be used instead directly to recover with non-
negative least-squares [44]. The sparsity of the unknown vector
has been varied between 1 . . . 180. For each sparsity many
experiments are performed to compute NMSE. In each run, the
support of the unknown vector has been chosen uniformly at
random and the values are independent instances of a standard
Gaussian random variable. For comparison, we have also
included the corresponding performances of a generic sampling
matrix (signed Bernoulli) of the same size. Numerically, the
partially derandomized orthogonal array construction achieves
essentially the same performance as its generic counterpart.
Numerical results for the Alltop design: Figure 1 shows
the NMSE achieved for measurement matrices based on
subsampling from an Alltop-design (6). The data is obtained
in the same way as above, but the sparse vectors are
generated as iid. complex-normal distributed on the support.
For comparison the results for a (complex) standard Gaussian
sampling matrix are included as well. Again, the performance
of random Alltop-design measurements essentially matches its
generic (Gaussian) counterpart.

5. ADDITIONAL PROOFS

5.1. Proof of Theorem 7
The proof is based on rather straightforward modifications of
Tropp’s proof for Mendelson’s small ball method [37]. Let a ∈ C

n

be a complex-valued random vector. Suppose that a1, . . . , am ∈
C
n are independent copies of a and let A be the m × n matrix

whose i-th row is given by ai. The goal is to obtain a lower bound
on infz∈E ‖Az‖ℓ2 , where E ⊂ C

n is an arbitrary set. First, note
that ℓ1 and ℓ2 norms on R

2m are related via ‖v‖ℓ1 ≤
√
2m‖v‖ℓ2 .

For any z ∈ E this relation ensures

‖Az‖ℓ2 =

√

√

√

√

m
∑

i=1

|〈ai, z〉|2 =

√

√

√

√

m
∑

i=1

Re (〈ai, z〉)2 +
m
∑

i=1

Im (〈ai, z〉)2

≥
1

√
2m

(

m
∑

i=1

|Re(〈ai, z〉)| +
m
∑

i=1

|Im(〈ai, z〉)|
)

=
1

√
2m

m
∑

i=1

(

|Re(〈ai, z〉)| + |Im(〈ai, z〉)|
)

.
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FIGURE 1 | (Left) Performance of basis pursuit for m = 323 and n = 1295 (real-valued signals) from random orthogonal array measurements and their generic

counterpart (signed Bernoulli). (Right) Performance of basis pursuit for m = 255 and n = 1021 (complex-valued signals) from random time-frequency shifted Alltop

sequences and their generic counterpart (standard complex Gaussian vectors).

Next, fix ξ > 0 and introduce the indicator function I {x ≥ ξ}
which obeys x ≥ ξI {x ≥ ξ} for all x ≥ 0. Consequently,

‖Az‖ℓ2 ≥
ξ

√
2m

m
∑

i=1

(

I
{

|Re(〈ai, z〉)| ≥ ξ
}

+ I
{

|Im(〈ai, z〉)| ≥ ξ
})

.

(21)

Also, note that the expectation value of each summand obeys

E
[

I
{

|Re(〈ai, z〉)| ≥ ξ
}]

+ E
[

I
{

|Im(〈ai, z〉)| ≥ ξ
}]

=Pr
[

|Re(〈ai, z〉)| ≥ ξ
]

+ Pr
[

|Im(〈ai, z〉)| ≥ ξ
]

≥Pr
[

|Re(〈ai, z〉)| ≥ ξ ∨ |Im(〈ai, z〉)| ≥ ξ
]

≥Pr
[

|〈ai, z〉| ≥
√
2ξ
]

,

according to the union bound. The last line follows from a simple
observation. Let z = a + ib be a complex number. Then, |z| =√
a2 + b2 ≥

√
2ξ necessarily implies either |a| ≥ ξ , or |b| ≥ ξ

(or both). Next, define

Q2ξ (z) = Pr
[

|Re(〈ai, z〉)| ≥ 2ξ
]

+ Pr
[

|Im(〈ai, z〉)| ≥ 2ξ
]

and note that the estimate from above ensures

inf
z∈E

Q2ξ (z) ≥ inf
z∈E

Pr
[

|〈a, z〉| ≥ 23/2ξ
]

= Q23/2ξ (a,E). (22)

Adding and subtracting ξ
√
m/2Q2ξ (z) to Equation (21) and

taking the infimum yields

inf
z∈E

‖Az‖ℓ2

≥ inf
z∈E

(

ξ

√

m

2
Q2ξ (z)− ξ

√

m

2
Q2ξ (z)

+
ξ

√
2m

m
∑

i=1

(

I
{

|Re(〈ai, z〉)| ≥ ξ
}

+ I
{

|Im(〈ai, z〉)| ≥ ξ
})

)

≥ ξ

√

m

2
Q23/2ξ (a,E)−

ξ
√
2m

sup
z∈E

(

mQ2ξ (z)

−
m
∑

i=1

(I
{

|Re(〈ai, z〉)| ≥ ξ
}

+ I
{

|Im(〈ai, z〉)| ≥ ξ
}

)

)

. (23)

Here we have applied Equation (22) to bound the contribution of
the first term. SinceQ2ξ (z) features both a real and imaginary part
and we can split up the remaining supremum accordingly. The
suprema over real and complex parts individually correspond to

R(E, a) = sup
z∈E

m
∑

i=1

(

Pr
[

|Re(〈ai, z〉)| ≥ 2ξ
]

− I
{

|Re(〈ai, z〉)| ≥ ξ
})

,

I(E, a) = sup
z∈E

m
∑

i=1

(

Pr
[

|Im(〈ai, z〉)| ≥ 2ξ
]

− I
{

|Im(〈ai, z〉)| ≥ ξ
})

,

and the vectors a1, . . . , am are independent copies of a single
random vector a ∈ C

n. The bounded difference inequality [45,
section 6.1] asserts that both expressions concentrate around
their expectation. More precisely, for any t > 0

Pr
[

R(E, a) ≥ ER(E, a)+ t
√
m
]

≤ e−t2/2 and

Pr
[

I(E, a) ≥ EI(E, a)+ t
√
m
]

≤ e−t2/2.

Therefore, the union bound grants a transition from R(E, a) +
I(E, a) to ER(E, a) + EI(E, a) + 2

√
mt with probability at least

1 − 2e−t2/2. These expectation values can be further simplified.
Define the soft indicator function

ψξ (s) =











0 |s| ≤ ξ ,

(|s| − ξ )/ξ ξ ≤ |s| ≤ 2ξ ,

1 |s| ≥ 2ξ

which admits the following bounds: I {|s| ≥ 2ξ} ≤ ψξ (s) ≤
I {|s| ≥ ξ} for all s ∈ R. Moreover, ξψξ (s) is a contraction, i.e., a
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real-valued function with Lipschitz constant one that also obeys
ξψξ (0) = 0. Rademacher symmetrization [3, Lemma 8.4] and the
Rademacher comparison principle [46, Equation (4.20)] yield

E R(E, a) =E sup
z∈E

m
∑

i=1

(

EI
{

|Re(ai, z)| ≥ 2ξ
}

− I
{

|Re(〈ai, z〉)| ≥ ξ
})

≤E sup
z∈E

m
∑

i=1

(

Eψξ (Re(〈ai, z〉))− ψξ (Re(〈ai, z〉)
)

≤2E

m
∑

i=1

ǫiψξ (Re(〈ai, z〉) ≤
2

ξ
E sup

z∈E

m
∑

i=1

ǫiRe(〈ai, z〉)

≤
2
√
m

ξ
E sup

z∈E
|〈z, h〉| ,

where h = 1√
m

∑m
i=1 ǫiai ∈ C

n. A completely analogous

bound holds true for EI(E, a). Inserting both bounds into
Equation (23) establishes

inf
z∈E

‖Az‖ℓ2 ≥ξ
√

m

2
Q23/2ξ −

ξ
√
2m

(

4
√
m

ξ
E sup

z∈E
|〈z, h〉| + 2

√
mt

)

=ξ
√

m

2
Q23/2ξ − 23/2E sup

z∈E
|〈z, h〉| −

√
2ξ t

with probability at least 1 − 2e−t2/2. Setting Wm(E, z) =
E supz∈E |〈z, h〉| establishes the claim.

5.2. Proof of Lemma 2
The inclusion Ts ⊂ 2conv(6s) remains valid in the complex case.
Moreover, every z ∈ conv(6s) necessarily obeys

max
z∈conv(6s)

‖z‖ℓ1 ≤ max
z∈6s

‖z‖ℓ1 =
√
s,

because the maximum value of a convex function is achieved at
the boundary. Hoelder’s inequality therefore implies

Wm(a,Ts) = E sup
z∈Ts

|〈z, h〉| ≤ 2E sup
z∈conv(6s)

‖z‖ℓ1‖h‖ℓ∞

≤ 2
√
s E‖h‖ℓ∞ , (24)

where h = 1√
m

∑m
i=1 ǫiai ∈ C

n. Moreover,

E‖h‖ℓ∞ = E max
1≤k≤n

|〈ek, h〉| ≤ E max
1≤k≤n

∣

∣Re(〈ek, h〉)
∣

∣

+E max
1≤k≤n

|Im(〈ek, h〉|

and we may bound both expressions on the r.h.s. independently.
For the first term, fix θ > 0 and use Jensen’s inequality (the
logarithm is a concave function) to obtain

E max
1≤k≤n

|Re(〈ek, h〉)| = E max
1≤k≤n

max
σ=±

σRe(〈ek, h〉)

≤
1

θ
log

(

E exp

(

max
1≤k≤n

max
σ=±

θσRe (〈ek, h〉)
))

.

Monotonicity and non-negativity of the exponential function
then imply

E exp

(

max
1≤k≤n

max
σ=±

θσRe (〈ek, h〉)
)

≤
n
∑

k=1

∑

σ=±
E exp (θσRe (〈ek, h〉))

=
n
∑

k=1

∑

σ=±

m
∏

i=1

E exp

(

θσ
√
m
ǫiRe (〈ek, ai〉)

)

,

where we have also used that all ǫi’s and ai’s are independent.
The remaining moment generating functions can be bounded
individually. Fix 1 ≤ k ≤ n, σ ∈ {±1} and
1 ≤ i ≤ m and exploit the Rademacher randomness
to infer

E exp

(

θσ
√
m
ǫiRe (〈ek, ai〉)

)

= E cosh

(

θσ
√
m
Re (〈ek, ai〉)

)

≤ E exp

(

θ2σ 2

2m
Re (〈ek, ai〉)2

)

= E exp

(

θ2

2m
Re (〈ek, ai〉)2

)

,

because σ 2 = 1. Incoherence moreover ensures (Re(〈ek, ai〉)2 ≤
|〈ek, ai〉|2 ≤ 1. This ensures that the remaining expectation

value is upper-bounded by exp
(

θ2

2m

)

. Inserting these individual

bounds into the original expression yields

E max
1≤k≤n

∣

∣Re(〈ek, h〉)
∣

∣ ≤
1

θ
log





n
∑

k=1

∑

σ=±

m
∏

i=1

E exp

(

θσ
√
m
ǫiRe

(

〈ek, ai〉
)

)





≤
1

θ
log





n
∑

k=1

∑

σ=±

m
∏

i=1

exp

(

θ2

2m

)





=
1

θ
log

(

2n exp

(

θ2

2

))

=
log(2n)

θ
+
θ

2

for any 0 < θ ≤
√
2m. Choosing θ =

√

2 log(2n)
minimizes this upper bound and is feasible, by assumption. A
completely analogous bound can be derived for the expected
maximum absolute value of the imaginary part. Combining
both yields

E‖h‖ℓ∞ ≤
√

2 log(2n)+
√

2 log(2n) = 2
√

2 log(2n)

and inserting this bound into (24) ensures

Wm(a,Ts) ≤ 4
√

2s log(2n).
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