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System theory has its roots in mathematical formalisms developed by mathematicians

and physicists, such as Leibniz, Euler, and Newton, and applied by congenial

chemists and biologists such as Lotka and Bertalanffy. In these approaches, the

dynamical system—may it be either single organisms or populations of organisms in

their ecosystems—is defined and formally translated into an interaction matrix and

first-order ordinary differential equations (ODEs) which are then solved. This provides

the background for the quantitative analysis of any linear to non-linear system. In

his inspiring article “Can a biologist fix a radio?,” Lazebnik made the differences

very clear between a “guilt by association” hypothesis of a modern biologist vs.

a Signal–Input–Output (SIO) model of an electrical engineer. The drawback of this

“Gedankenexperiment” is that two rather different approaches are compared—a forward

model predictive control approach in the case of the SIO model by an engineer and

an inverse or reverse approach by the biologist or ecologist. Biological and ecological

systems are much too complex to estimate all the underlying ODE’s, parameter and

input signals that generate a probability distribution. Thus, the combination of inverse

data-driven modeling and stochastic simulation is a key process for understanding

the control of a biological or ecological system. The challenge of the next decades

of systems biology is to link these approaches more systematically. Over the last

years, we have developed a hybrid modeling approach based on the stochastic

Lyapunov matrix equation for the analysis of genome-scale molecular data. This

workflow connects forward and inverse strategies such as the genome-scale-based

metabolic reconstruction of an organism and the calculation of dynamics around a

quasi-steady state using statistical features of large-scale multiomics data. Ultimately,

this workflow is linked to physiology and phenotype (the output) to unambiguously define

the genotype–environment–phenotype relationship. This system-theoretical formalism

establishes the generic analysis of the genotype–environment–phenotype relationship

to finally result in predictability of organismal function in the environmental context.

The approach is based on fundamental mathematical control theory for the analysis

of dynamical systems using eigenvalues and matrix algebra, stochastic differential

equations (SDEs), and Langevin- and Fokker–Planck-type equations eventually leading
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to the continuous stochastic Lyapunov matrix equation. The stochastic Lyapunov

matrix equation is also a fundamental approach for the analysis and control of

artificial intelligence systems in model predictive control and thus opens up completely

new perspectives for the integration of systems engineering and systems biology.

Furthermore, similar mathematical formalisms—using a community matrix instead of a

stoichiometric matrix of a metabolic network—were also conceptually developed and

applied by ecologists such as Levins and May in the analysis of stability and complexity

of model ecosystems. Thus, the generalization of this hybrid forward–inverse approach

spans from biology to ecology and promises to be a systematic iterative process that

finally leads to functional units able to explain living systems up to their interaction in

complex ecosystems.

Keywords: system theory, non-linear systems, multiomics, genotype, phenotype, model predictive control,

artificial intelligence, data science

REFLECTIONS ON HISTORICAL
DEVELOPMENTS

Systems biology is a modern development in biology integrating
genome-scale molecular analysis, e.g., metabolomics,
proteomics, and transcriptomics, with computer-based
mathematical and statistical modeling of metabolism and
regulation. The aim is, on the one hand, to derive causal
mechanisms from molecule to organism and, on the other, to
establish quantitative models for the prediction of phenotypes
from genotypes. Ultimately, systems biology aims for a universal
genotype–environment–phenotype equation, especially in the
era of genome sequencing. These ideas were already developed
a long time ago in the work of Ludwig von Bertalanffy, e.g., in
the book Vom Molekül zur Organismenwelt [1]. In one of his
most important pioneering publications, Der Organismus als
physikalisches System betrachtet, Bertalanffy describes already
in 1940 the mathematical modeling of an open biochemical
system and derives analytical rules for self-organization [2].
In the following years, he realized that these rules can be
generalized and applied to all non-linear complex systems
in biology, ecology, economy, sociology, etc., and called
this “General System Theory” [3]. The technical limitations
of Bertalanffy and his time were almost insurmountable in
all aspects of the molecular and mathematical analysis of a
complex biochemical organismal system. The system that he
defined in 1940 consisted of four (five) components with four
differential equations. This system could be solved analytically
and principles of self-regulation and -organization were
demonstrated [2].

Now, where are we standing, almost 80 years later,
when we talk about an organism, microorganisms, plants,
animals, or human? After the elucidation of the molecular
principles of inheritance and information storage in the
1950s [4], the definition of the central dogma of molecular
biology by Francis Crick [5], and the not foreseeable rapid
development of next-generation sequencing after the first
release of a human and a higher plant genome sequence
[6–8], a day-by-day increasing remarkable number of genome
sequencing projects—last estimates are 300,000—is available.

All these developments could not be anticipated by Bertalanffy
and colleagues and open up a completely new avenue of
thinking. Using a genome sequence, it is possible to reconstruct
the genome-scale metabolic network comprising typically more
than 3,000 reactions in a plant, animal, human, and other
systems [9–16]. To translate this into Bertalanffy’s world and
a system-theoretical approach, respectively, it is necessary to
create more than 3,000 coupled differential equations. They
form an interactive, dynamic, and causal metabolic network
of the organism. These complex systemic networks were not
solvable at Bertalanffy’s time, but nowadays, it is possible to
numerically approximate solutions [16]. Paralleling genome
sequencing, further technology platforms evolved in the last
decades, which are far away from Bertalanffy’s imaginations
such as genome-scale RNAseq, proteomics, and metabolomics
[17]. Those bioanalytical approaches follow Francis Crick’s idea
of molecular information flow and resolve highly complex
mixtures of transcripts, proteins, and metabolites. To reveal
their dynamic relations and complex network topologies a
plethora of uni- and multivariate statistical methods are applied
to allow data integration and interpretation [18–21]. In a
last step, the statistical models are linked to mathematical
models of the underlying causal system, e.g., ordinary and
partial differential equations as well as stochasticity [22]. The
resulting causal interaction networks and the corresponding
dynamics eventually elucidate molecular and phenotypic traits
and thereby close the circle to Bertalanffy’s imaginations to
describe an organism from molecule to organism as proposed
in 1944 [1].

GENOME-SCALE MOLECULAR
ANALYSIS—A PANOMICS PLATFORM
COMBINED WITH DATA-DRIVEN
MODELING

In the following, I will introduce techniques for genome-scale
molecular analysis as well as mathematical and statistical
hybrid modeling as fundamental requirements to fulfill this
proposed cycle of understanding the dynamics of an organism.
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The comprehensive analysis of organisms, microbes, plants,
fungi, animals, and human begins nowadays with genome
sequencing using “next-generation sequencing” technologies
[12]. On the basis of a full genome sequence and following
the information flow from genome to transcriptome to
proteome to metabolome, subsequent genome-scale molecular
techniques such as transcriptomics (RNAseq), proteomics, and
metabolomics—a PANOMICS strategy—are employed to reveal
a complete picture of molecular dynamics of the respective
organism (Figure 1). In parallel, comprehensive genome-scale
metabolic reconstructions are derived from the genome sequence
by comparing orthologous genes and their functions by database
search, e.g., using UNIPROT with annotated protein sequences
and functions of up to 160 million predicted proteins [15,
23]. A comprehensive discussion of all these initial steps up
to the PANOMICS platform to investigate an organism is
described in a recent publication entitled the “unpredictability
of metabolism from genome sequences” [12]. This obviously
contrasting title comes from the fact that a genome-scale
metabolic reconstruction does not reflect any dynamics or
plasticity of metabolism. In other words, the phenotypic plasticity
of an organism that is the result of the interaction with its
environment cannot be derived from the genome sequence alone,

FIGURE 1 | A workflow which combines multiomics analysis [36] and causal modeling [22] of molecular co-regulation (also called correlation or association) networks.

Because the linkage of genome-scale metabolic reconstruction (RECON) and the data covariance matrix (COV) is central in this approach we call it COVRECON. The

calculation of the differential Jacobian is demonstrated for the first time by Sun and Weckwerth [22].

at least not at this stage of biological and biochemical knowledge.
A hope is, of course, to apply system-theoretical ideas and,
thus, systems biology to this problem of functional genome
annotation to finally give a causal–functional interpretation of a
newly sequenced genome up to its molecular and phenotypical
dynamics in relation to its environment. It is further obvious
that such a prediction of function and phenotype cannot be
derived by looking at separated parts of the organism but
rather by looking to the relation or network dynamics of all
biochemical and physiological components. Thus, the organism
has to be understood as a whole. This is not a contradiction
to sophisticated biochemical analysis of isolated parts of the
system, and, thus, often a misinterpretation of system theory
and consequently systems biology. The more knowledge about
single parts of the system there is, the better the description and
understanding of the whole will be.

Another very prominent example of functional annotation of
genomes derives from genome-wide association studies (GWAS).
Here, allelic polymorphisms in the genome of one species
and its corresponding ecotypes or phenotypes are screened
systematically to reveal their correlation with phenotypic and
adaptive traits. In most cases, single-nucleotide polymorphisms
(SNPs) are molecular neutral mutations; however, there are
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FIGURE 2 | Derivation of metabolite correlation networks from large-scale metabolomic analysis. These correlation networks show differential connectivity in

dependence of the analyzed genotype. From this fundamental multivariate structure several research fields are envisioned: Firstly, topology analysis of the correlation

network resulted in a power-law-like pattern of the probability of metabolite connectivity [34, 35]. The power-law pattern is observed in real world networks with only a

few hub nodes showing high connectivity in contrast to most others. This pattern is also highly conserved in biochemical networks, thus reflecting biochemical

network structure and regulation. Secondly, based on the correlation pattern we developed a stochastic model of metabolism which led to the stochastic Lyapunov

matrix equation (for more details see text).

phenomena such as linkage disequilibrium and accumulation
of SNPs in a specific genomic region pointing to potential
adaptation processes in the genome [24–28]. Initially, these
potentially functional SNPs are revealed by correlation analysis
with phenotypic traits, and in a tedious and laborious way,
these spurious correlations need to be tested for their causal
relevance. A very elegant study has demonstrated the full
workflow 2008 in maize starting with GWAS and finally
identifying the causal relationship in some maize seeds [29].
Other studies have combined GWAS and metabolomics to
identify causal genes involved in the humanmetabotype [30]. We

have recently applied in situ eco-metabolomics in combination
with SNP enrichment and metabolic modeling to reveal potential
biochemical adapation processes of Arabidopsis thaliana to the
natural habitate and micro-environment [31]

The final and conclusive step to link genome-scale molecular
analysis with genome sequence information is model building
[12]. These models can be pure structural, kinetic, or mixed
forms, which allow one to analyze the stability of the system by
systematically perturbing kinetic parameters [32, 33].

However, all these approaches rely on “speculated” forward
conjectures about network structure and kinetic parameters. The
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problem is that all these data are not available, especially the
detailed kinetics of protein interaction, enzymatic reactions, and
biochemical regulation. We have recently introduced a novel
idea by linking correlation networks of molecular components
in an organism with the underlying biochemical regulation [34].
The dynamic molecular interaction or correlation networks
are derived by applying the comprehensive PANOMICS
platform introduced above and using statistics to reveal
correlations between the components [34–38] (Figure 2).
Here, the terminus correlation is equivalent to covariance,
co-regulation or association often used in literature. Any
kind of pairwise correlation analysis or multivariate statistical
analysis is using the same basic assumption that there is a
relation between the components that can be resolved by
statistics. In a second step, we use genome data for a metabolic
reconstruction as introduced above [12, 17]. The linkage of the
molecular correlation networks and the genome-scale metabolic
reconstruction somehow fills the static information of the
genome with life. Eventually, we have demonstrated in 2012
that one can use the molecular covariance networks to calculate
the biochemical perturbation of the system using the inverse
stochastic Lyapunov matrix equation [22] (Figure 1). In several
follow-up studies, we have demonstrated that the “calculated”
predictions—in contrast to “speculated” predictions—reveal
biochemical key points of regulation [16, 39–41]. Also, other
groups have used the proposed concept to predict biochemical
perturbation [42, 43]. The aim of the following paragraph is
to demonstrate that the concept of the stochastic Lyapunov
matrix equation is systematically derived from very basic
system-theoretical principles, thereby presenting a fundamental
system-theoretical equation.

A STATISTICAL–MATHEMATICAL
FORMALISM TO STREAMLINE
BIOLOGICAL AND ECOLOGICAL
MULTIVARIATE DATA CAUSALITY
ANALYSIS

The pioneering work of Bertalanffy and others still provides the
basic principles necessary to analyze any complex biological and
ecological system. These principles were developed in parallel
and multidisciplinary, e.g., in the work of Ludwig v. Bertalanffy
in biology in the 1930s, or in the work of Alfred Lotka in
ecology in 1934, and later by the work of Norbert Wiener in
cybernetics and many others. Parts of stable population theory
were already introduced by Leonard Euler in 1760 as discussed
in Lotka’s seminal work [44]. Principally, Bertalanffy, Lotka, and
all others generalized any complex system by applying general
systems equations [3, 44]. Because the basic principles of systems
analysis are built on the work of Newton, Leibniz, and Euler,
I will introduce briefly these formalisms. However, it has to
be considered that there are important differences depending
on the system under study: in Newton’s world, velocity and
acceleration of particles in a Euclidian space are considered.
In biology, for instance, we consider molecular dynamics and
phenotypes in the organismic phase space, and in ecology, we

consider, e.g., population dynamics and prey/predator phase
spaces. It is already clear from this that it is not yet possible to
define and observe the complete system at once. Accordingly, the
accurate initial definition of the “sub”-system under study and
its relation to the environment is of utmost importance [45, 46].
A very intriguing discussion is found in Günter Ropohl’s book,
Allgemeine Systemtheorie [47].

From the mathematical point of view, the system under study
is instantaneously defined by its state variables that can be
measured [45]. These state variables—number of individuals in
populations, metabolite concentrations, etc.—span a coordinate
system that can be understood as the phase space of the system.
Accordingly, the measurements of these state variables represent
exclusive solutions of the respective system. Typically, we analyze
and characterize these solutions by multivariate statistics such
as correlation networks, principal, or independent components
analysis of many biological replicates of a fluctuating quasi
steady state of the system [12, 17, 18, 34, 36, 37]. Here, we and
all other labs observed the phenomenon that many biological
replicates of the “same” system state by snapshot analysis of the
metabolome, proteome, or transcriptome showed high biological
variance that can be exploited for variance and covariance
analysis to distinguish the time-dependent molecular states of the
system [18–20, 35, 36, 42, 48, 49] (see Figures 3–6). Importantly,
these trajectories built from distinct covariance matrices of the
measured n variables—genes, proteins, metabolites, phenotypes,
populations, etc.—represent solutions in this n-dimensional
space, which is spanned by these n state variables. As we do not
know the systems equation that would enable the calculation
of the interactions and dynamics of the state variables in the
system, we can instead learn more about the systems equations
by exploiting the “statistical solutions” of the system in an inverse
approach. This can be achieved in approximation by calculation
of the Jacobian at the fix points or quasi equilibrium/steady
states of the system that are directly or transiently related to the
“covariance solutions” of the system. As the Jacobian is defined
by the systems equation, we can learn about these equations by
inverse calculation of the Jacobian from the “covariance solution”
using the stochastic Lyapunov matrix equation [22]. We call this
data-driven inverse modeling strategy COVRECON (Figure 1). I
will explain the principal concepts and workflows step by step in
the following paragraphs.

Irrespective of which system we are analyzing, the basic
systems equations are derived always in exactly the same
way. Bertalanffy, Lotka, and all others used first-order coupled
ordinary differential equations (ODEs) as the mathematical
formalism. A very intuitive and elegant description is found
by Uwe an der Heiden [46]. To understand the mathematical
formalism, it is helpful to start with the analysis of a rather
abstract linear system introduced by Newton, e.g., a coupled
mass–spring system of higher order with damping coefficients,
and then extrapolate the analytical solutions to numerical
solutions and finally to stochastic non-linear systems by
calculating the Jacobian at quasi equilibrium.

Let us start with the coupled mass–spring system. Later on,
this simple system consisting of one mass, one spring, and a
damping coefficient can be extended to a highly complex system:
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FIGURE 3 | A PCA plot showing the metabolomic trajectory of a diurnal cycle of Arabidopsis thaliana [37]. The independent biological replicates reach again and

again the same quasi-steady state (the circles) in the phase space. From these replicate analysis a covariance matrix can be obtained for each time point

(Cov1-Cov6). From all these different covariance matrices a corresponding Jacobian (J1-J6) can be calculated with the inverse stochastic Lyapunov matrix equation

showing the biochemical perturbation and keypoints of control over a day-night cycle (for more details see text).

imagine a chain or network of thousands or millions of coupled
mass–spring systems and various damping terms [51, 52]. This
kind of network of n interacting components and properties can
be described by an nth-order master equation or a corresponding
dissected set of coupled first-order differential equations and is
therefore comparable to any other complex system of interacting
components, molecules, phenotypes, populations, or even state
variables of economic systems (Figure 6).

A damped mass–spring system is described by a second-order
differential equation:

M
d2x

dt2
+ D

dx

dt
+ Kx = 0 (1)

with dx
dt

as the velocity and d2x
dt2

as the acceleration andM, D, and
K as system parameters.

Correspondingly, higher-order systems result in nth-order
systems [52–54]:

an
dnx

dtn
+ an−1

dn−1x

dtn−1 + · · · + a2
d2x

dt2
+ a1

dx

dt
+ a0x = 0 (2)

One could think about networks of coupledmass–spring systems.
Their interaction matrix is characterized by the incidence matrix
[51, 54, 55]. A similar idea is the “community matrix” of
population dynamics, firstly introduced by Richard Levins and
further discussed by Robert May in ecosystems analysis (see
also below) [56, 57]. Because any system we can think of is a
dynamic network of its interacting components, this initial step
is fundamental for deriving a quantitative understanding. By
introducing new variables and their first-order derivatives, it is

possible to dissect this nth-order system and any other higher-
order system into n coupled first-order differential equations
[51, 53–55], e.g.,

x1 = x

x2 =
dx
dt

x3 =
d2x
dt2

...
dx1
dt

= x2
dx2
dt

= x3
...
dxn−1
dt

= xn
dxn
dt

= −an−1xn − an−2xn−1 − · · · − a2x3 − a1x2 − a0x1

(3)

In matrix notation, this is

d

dt


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(4)

or

dX

dt
= AX, (5)

respectively [54, 55]. A is the system matrix.
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FIGURE 4 | Derivation of the stochastic Lyapunov Matrix Equation from fluctuating metabolic correlation networks [50]. Stochastic processes are introduced by

adding Gaussian white noise to the ODE. Numerical solutions of independent replicates of the system demonstrate significant pairwise correlations between

metabolites according to the experimental observations in real metabolomics data (see Figure 2). The concept is described by the stochastic Lyapunov matrix

equation (for more details see text).
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FIGURE 5 | The stochastic Lyapunov matrix equation presents a genotype-phenotype equation. Here N is the metabolic interaction matrix or stoichiometric matrix

which is derived from a whole-genome metabolic reconstruction (see also Figure 1 and [12]), Cov is defined by the data matrix and the systems equation are

represented by the Jacobian which is the linearized solution of this non-linear system at a quasi-equilibrium point and reflected by the time-dependent trajectory of the

system (see Figure 3) (for more details see text).

These systems are solved by inserting

x(t) = eλt

dx
dt

= λeλt

d2x
dt2

= λ2eλt

...

(6)

and deriving the characteristic equation for the calculation of
the eigenvalues λ1,2,...,n and constants C1,2,....,n using n initial
conditions [54, 55], finally leading to the general solution:

x(t) = C1e
λ1t + C2eλ2t + · · · + Cne

λnt (7)

The eigenvalues of the matrix A in (5) are the roots of the
characteristic equation [52]. One can substitute the zeros in
the matrix A if there are off-diagonal connections between the
state variables (see discussion below). These matrix systems of
linear differential equations [Equation (5)] can be solved by the
eigenvector/eigenvalue equation. Suppose the n by nmatrixA has
n linearly independent eigenvectors. Then,

T−1AT = D (8)

with the eigenvector matrix T and the eigenvalue matrix D
[52, 54].
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FIGURE 6 | The data matrix and the stochastic Lyapunov matrix equation are directly associated by multivariate properties of the system. This applies to any complex

network or system and even to model predictive control of artificial intelligence systems. MIMO, multiple input multiple output.

The solution of Equation (5) is according to Equations (7, 8)
in matrix notation:

X ( t ) = TeDtT−1X ( 0 ) (9)

and corresponds to the matlab command [T,D]= eig(A) [52].
Linear systems (5) can be solved by (8) and (9) calculating

the eigenvalues and eigenvectors. In case of nonlinear systems
equations which is true for almost all molecular, organismal and

ecological networks in the real world we have to introduce the
Jacobian matrix. The Jacobian matrix is derived by linearizing
a non-linear system at quasi steady states [52, 54]. Assume a
non-linear function

dx

dt
= f (x) (10)

with the steady state

f (x0) = 0 (11)
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For x near x0,

so1x = x− x0

is small, a Taylor expansion leads to

f (x) ∼
Df

Dx

∣

∣

∣

∣

x=x0

(x− x0) (12)

Which is called the “Jacobian” [54, 58]. For an n-dimensional
system the Jacobian matrix reads:

J(x0) =















∂f1
∂x1

∂f1
∂x2

· · ·
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · ·
∂f2
∂xn

...
... · · ·

...
∂fn
∂x1

∂fn
∂x2

· · ·
∂fn
∂xn















(13)

For linear systems or close to the steady state, it holds

J ∼ A (14)

The solution to these systems is again given by the matrix
eigenvalue/eigenvector Equation (10) [52, 54, 55]:

T−1AT = D (8)

Once we derive the Jacobian of a system of coupled first-order
differential equations, we can calculate eigenvalues and vectors,
which describe stability and system properties close to a steady
state or quasi equilibrium. If we are able to derive the Jacobian
from the covariance matrix of the data (see below), we can
calculate the eigenvalues from these data-derived Jacobians to
investigate their properties. For this we have developed the
concept of the inverse stochastic Lyapunov matrix equation and
we have recently tested this idea [16, 22, 59]. In the following
this concept is explained. To solve this inverse problem we need
to exploit the statistical solution of the system defined by the
data matrix of the state variables at a steady state (or better
quasi-steady state), e.g., in form of the data covariance matrix,
and need to translate this into the “systems state equations
solutions” represented by the Jacobian. The system dynamics
at different steady states or snapshots are comprised in a nxm
data matrix of n state variables at m time points or m specific
sample states.

XD =









...
...

...
...

x1 x2 · · · xm
...

...
...

...









nxm

(15)

The variance–covariance matrix of the data Cov is
expressed as the inner product of the centered data
matrix XDcent :

Cov =
1

m
XDcentX

T
Dcent (16)

If we statistically analyze several measurements or empirical
observations of the state variables over time, e.g., in a
principal components analysis (PCA), then we derive the
trajectory of different snapshots of transitory steady states
of the system defined by the covariance matrix of its state
variables [12, 17, 18, 34, 37, 39, 60] (Figure 3). These
trajectories are representative for the phase space of the system.
In a time–dependent trajectory of a biological system or
any other system, independent replicated measurements of
the state variables reach a quasi-steady state represented by
the corresponding state variables variance–covariance matrix
at this specific time point (Figure 3). The variance of the
replicated measurements around a mean value is due to
unknown stochastic processes and can be approximated by
stochastic simulation, e.g., adding white noise. The potential
causal relation of the state variables is reflected in the
covariance pattern.

To learn about the system from these data-defined
trajectories [61], we need an equation that links the
covariance matrix of the state variables with the Jacobian.
This relationship is characterized by a special form of the
Lyapunov matrix equation introducing white noise in the
system and solving for the symmetric m × m covariance matrix
Cov [50, 62–64] (Figure 4).

Again, we start with Equation (5)

dX

dt
= AX (5)

The equilibrium of this system is stable in the sense of Lyapunov
if there exists a continuously differentiable scalar function V(x)
along the system trajectories with [64, 65]

V(x) > 0
V(0) = 0 (17)

and

dV

dt
=

∂V

∂x

dx

dt
≤ 0 (18)

If condition (18) is a strict inequality, then the equilibrium point
is asymptotically stable.

For the linear system (5), a quadratic Lyapunov function can
be chosen

V(x) = xTPx

P = PT > 0
(19)

Inserting Equation (5) leads to

dV

dt
= xT(ATP + PA)x (20)

This system is asymptotically stable if

ATP + PA < 0 (21)
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or

ATP + PA = −Q

Q = QT (22)

where Q is any positive definite matrix. For stochastic linear
systems driven by white noise, the solution of the Lyapunov
equation represents the variance of the state vector [64, 66].
Because of Equation (14) A∼J at equilibrium or close to
steady state (see above), we can now substitute A with J and
P with the variance–covariance matrix Cov [64], resulting in
the equation

JCov+ CovJT = −Q (23)

Typically, this equation is used in the forward approach for
deriving an unknown covariance matrix Cov by knowing the
systems equations resulting in the Jacobian J—as described
above—and the diffusion matrix Q representing the fluctuation
or perturbations of the system around a steady state or critical
point [62, 67]. Furthermore, this equation is also central in
the theory of stochastic processes [66, 68] and has been solved
by various approaches [69–71]. We derived and applied this
equation to the best of our knowledge for the first time in
the context of molecular correlation networks [50] (Figure 4)
and developed an approach to use this equation inversely
and calculate the Jacobian J from the covariance matrix Cov
[22] (Figure 1). Based on a functional interpretation of this
equation in the molecular context, it also represents a genotype–
environment–phenotype relationship similar to the community–
stability relationship in ecosystems as first described by Levins
and May [56, 57, 72]. In the following paragraphs, I will explain
these relationships.

A DATA-DRIVEN INVERSE MODELING
APPROACH TO SOLVE FOR J USING THE
STOCHASTIC LYAPUNOV MATRIX
EQUATION

As discussed above, Equation (23) is typically used in the forward
approach for deriving an unknown covariance matrix Cov by
knowing the systems equations in form of the Jacobian J. Using
Equation (23) in an inverse approach, in other words, calculating
the Jacobian J from a given covariance matrix Cov and diffusion
matrixQ, introducing stochastic fluctuation is rather unexplored,
especially in the context of molecular networks. We recently
applied the stochastic Lyapunov matrix equation to the analysis
of metabolic networks [22, 50] and addressed this question. We
were interested in solving this equation in the reverse or inverse
direction, calculating the Jacobian from the covariance matrix.
This is an underdetermined problem and therefore impossible
by first inspection because J has many more entries than the
covariance matrix and only parameterized solutions are possible
[50]. In 2012, we developed an approach based on the assumption
that a typical network—metabolic network or other molecular
networks—is sparse [22]. This time, we were able to calculate the
Jacobian from the covariance matrix because the system of linear

homogenous equations changed from an underdetermined to
an overdetermined problem [22]. This was the first time that we
could solve for the Jacobian J and thereby estimated differences
in the matrix of systems equations starting with a covariance
matrix of state variables Cov. We applied this strategy to several
molecular systems [12, 16, 17, 22, 34, 39–41, 50, 59, 73]. Because
the molecular interaction matrix underlying the Jacobian
strictly depends on whole-genome metabolic reconstruction
[12], this equation also presents a genotype–phenotype
equation (Figures 1, 5).

THE STOCHASTIC LYAPUNOV EQUATION
REPRESENTS A
GENOTYPE–ENVIRONMENT–PHENOTYPE
EQUATION IN THE FRAMEWORK OF
MODEL PREDICTIVE CONTROL

Sample classification and rapid diagnostics of newborns based
on metabolic profiling using gas chromatography coupled to
mass spectrometry (GC–MS) is a very old technology dating
back to the 1970s [74]. However, the basic idea of using
metabolomic analysis to study gene function analysis emerged
rather in the times when genome sequences started to be available
at the beginning of the twenty first century [34, 49, 75, 76].
Accordingly, in pioneering studies, metabolomics was applied
in combination with multivariate statistical analysis to study
gene mutants especially in plants and yeast [35, 48, 77]. An
intriguing approach for the analysis of these multivariate data
matrices has been the construction of correlation networks [34,
35, 38, 49, 78]. From 2000 on we systematically investigated the
structure and biochemical relevance of metabolite correlation
networks and revealed generic topological properties such as
a power-law-like distribution of metabolite connectivity (see
Figure 2) [35]. By realizing that biological replicate analysis
showed an intrinsic high variance of the corresponding state
variables, we developed a modeling approach that implements
stochastic differential equations (SDEs) for the simulation of
metabolic networks [50]. The use of SDEs mimics the situation
of intrinsic fluctuation of metabolite levels within the analyzed
system as discussed above. Because we did not know the very
specific origin of this fluctuation, we have used Gaussian white
noise with zero mean and unit variance (Figure 4). The partial
differential equation for the time evolution of the probability
density function of this stochastic system is described by the
Fokker–Planck or Kolmogorov or Diffusion equation [50, 66].
Also, Robert May derived this relationship for the description of
population dynamics in randomly fluctuating environments [57].
I will discuss this in the last paragraph in more detail. Setting
this equation to zero results in the approximate equilibrium
probability distribution of the fluctuating state variables, in
our case, metabolite concentrations. The resulting m × m
covariance matrix Cov of the state variables can be seen to be
the solution of the stochastic Lyapunov matrix equation (21)
(Figure 4) [50]. The starting point of this computer simulation
has been the observation of strong biological fluctuations in

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 July 2019 | Volume 5 | Article 29

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Weckwerth Data-Driven Modeling in Biology and Ecology

metabolite concentrations. Based on this stochastic model, we
could explain the existence of these metabolite correlation
networks and also their relation to the underlying biochemical
network. However, a major aim was to calculate the underlying
regulation—in other words, the Jacobian—from the metabolite
covariance data. This was not possible, but instead, we showed
a parameterized solution to the problem. We finally solved
this problem by assuming that metabolic networks are highly
sparse networks that allowed the calculation of the Jacobian
directly from the metabolomics data (Sun and Weckwerth
[22]). Because the Jacobian structure of biochemical networks is
defined by the stoichiometric or metabolic interaction matrix of
the genotype-based reconstructed metabolic network, it contains
all the information of potential causal relations of this specific
genotype (Figure 5) (for more details of this relationship,
see Weckwerth [12, 17, 74]). In Figure 1 the COVRECON
strategy shows the systematic linkage of genome-scale metabolic
reconstruction, multiomics measurement of state variables of
the system and the inverse Lyapunov matrix equation for
functional data integration. Because this equation explicitly
describes the relation of the Jacobian and the data covariance
matrix, it connects all other multivariate properties of the
system such as pairwise state variable correlations, metabolite
correlation networks, and time-dependent trajectories of the
system derived from PCA (Figure 6 and discussion below).
This basically holds true for any complex system from biology,
ecology, economy, and sociology (see Figure 6) and even for
model predictive control of artificial intelligence systems (see
below). Therefore, the stochastic Lyapunov matrix equation
and especially its inverse application are based on intrinsic
systemic properties and represent a fundamental equation in
system theory.

Importantly, the approach is especially suited for non-linear
systems, multiple stability, and limit cycle analysis because it uses
the data covariance matrix—thus the real data of a biological
system where we assume it is in quasi steady state—to predict
the system matrix. Thus, any calculated quasi steady state is
a realistic solution of the system because it relies on the real
data at least in biological systems. This is very much related to
model predictive control of non-linear and closed loop artificial
systems using the stochastic Lyapunov matrix equation [79, 80],
which demonstrates that the proposed framework is appropriate
for closed loop and limit cycling control analysis. Moreover,
Lyapunov-based control analysis is nowadays becoming more
and more attractive for bioinspired artificial intelligence systems
[81, 82]. This also gives rise to another hypothesis whether
control parameters of biological systems with or without limit
cycles can be revealed by this inverse approach. All conventional
approaches start with an existing model. We use the empirical
data to reveal the model control points by calculating the system
matrix J from the data covariance matrix and looking for specific
perturbations in J from one state to a consecutive or perturbed
next state of the system [16, 22, 39, 40]. In the future, we will
analyze hypothetical closed loop systems such as the diurnal
rhythm of a plant or circadian regulation of cellular metabolism
to test for this hypothesis.

PCA IS BOUND TO THE JACOBIAN
SYSTEM MATRIX OF A NON-LINEAR
SYSTEM BY THE INVERSE STOCHASTIC
LYAPUNOV MATRIX
EQUATION—MODELING MEETS BIG DATA
SCIENCE

The stochastic Lyapunov matrix equation also provides the
basis for the functional interpretation of PCA of molecular
data. As the covariance matrix Cov of the measured state
variables is the underlying information of PCA, it can be
assumed that there is a direct link of Equation (23) and PCA
or, in other words, the analysis of the systems trajectory in
the phase space (see section before). Indeed, Cov is derived
from the data matrix XD by Equation (16). Cov can be
dissected by singular value decomposition (SVD) formalism or
eigendecomposition [51, 54, 55]:

Cov = U6UT (24)

Here, U—the eigenvectors of the symmetric covariance matrix—
corresponds to the “loadings” of a PCA and 6 —the squared
eigenvalues of CovD—corresponds to the “scores” [51, 52].

Now, we can insert Equation (24) into Equation (23) and
obtain a direct relation of PCA and the Jacobian of the data

JU6UT
+ U6UTJT = −Q (25)

This equation establishes the direct linkage of PCA and the
biochemical Jacobian (Figure 3). More important, this principle
holds true for any other complex system as well—from
molecular, ecological, up to economic or sociological networks
(see Figure 6).

SVD, PCA, and many related tools are basic algorithms for
the analysis of large-scale data with millions of data points and/or
millions of variables. Therefore, these conceptual Equations allow
for the data-driven calculation of solutions of the underlying
general system of first-order differential equations once we
have assumptions about the underlying interaction networks.
Consequently, we can test any complex system for data-driven
generic principles.

We have implemented this approach and demonstrated the
feasibility to identify causal relationships in highly complex
molecular association networks [16, 22, 39, 41, 73, 73, 83].

Furthermore, the calculation of the Jacobian from the
data matrix and the covariance matrix, respectively, allows
for the data-driven analysis of stability and control of
trajectories of these systems [59]. Knowing the trajectory of
the system’s state variables from the measured or observed
data, one is able to learn about the underlying principles and
system equations.

Many obstacles remain. The calculation of the Jacobian is
highly dependent on the accuracy of the covariance matrix.
A perfect covariance matrix will reveal the perfect solution
of the Jacobian; however, the data are in most instances
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too noisy to guarantee the best solution. Therefore, many
data points are necessary to establish a reasonable covariance
matrix. Furthermore, the calculation is highly dependent on
the condition number of the system. Ill-conditioned systems
are problematic [73]. Therefore, a reduction to superpathways
or highly generic and reduced interaction or better incidence
matrices, e.g., is a solution to the problem [16, 39].

THE STOCHASTIC LYAPUNOV MATRIX
EQUATION IS A FUNDAMENTAL
PRINCIPLE FOR THE
COMPLEXITY–STABILITY RELATIONSHIP
OF ECOLOGICAL SYSTEMS USING SDES
AND RANDOM MATRIX THEORY

The proposed concept of systematic inverse calculation of the
Jacobian from data covariance has not been applied in ecological
or population studies to the best of my knowledge. Thus, one
further hypothesis is that this concept could be exploited as a
general framework from molecular biology to ecological systems
analysis. This idea is especially supported by the following
studies. In 1970, Gardner and Ashby presented an intriguing
analysis of the connectance—nowadays called connectivity (see
Figure 2)—of large dynamic systems and investigated their
stability [84]. Inspired by this work as one of the first systematic
analyses of network connectivity, Robert May presented a
follow-up study and translated this idea into the ecological
context for the analysis of complex population dynamics using
random matrix theory [72]. May described a system with n
variables, which are the n populations of interacting species. This
system and its stability close to equilibrium are characterized by
the equation

dX

dt
= AX (5)

with X as the nx1 column vector of the disturbed populations xj
and the nxn interactionmatrixAwith elements ajk describing the
effect of species k on species j near equilibrium. The interaction
network of populations defines whether there is an interaction
or not (ajk= 0) and the type of interaction defines the sign and
magnitude of ajk. The population average interaction strength
mean square value α and the connectance (connectivity) C are
drawn randomly from a statistical distribution, and relations for
the local asymptotic stability of A—all eigenvalues have negative
real parts or not—are derived depending on the mean interaction
strength, number of populations, and connectance (for further
details, see May [72])

α > (nC)−1/2 (26)

The interpretation of May is famous:

“Applied in an ecological context, this ensemble of very
general mathematical models of multi-species communities, in
which the population of each species would by itself be stable,
displays the property that too rich a web connectance (too large
a C) or too large an average interaction strength (too large an α)
leads to instability. The larger the number of species, the more
pronounced the effect” [72].

It is intriguing that this system definition and all subsequent
derivations are exactly derived from the same system-theoretical
principles described above. In later discussions, Robert May
implemented the stochastic Lyapunov matrix equation for the
analysis of multispecies models in stochastic environments
[57] by interpreting the symmetric covariance matrix Cov
as the solution of the Lyapunov matrix equation. This
is exactly the same interpretation as we have developed
for the characterization of molecular networks [see above
Equation (23)].

These general principles in studies of ecological systems
and population dynamics have been extended intensively
investigating the Jacobian of these systems as a central
figure [85]. On the other hand, no follow-up study has
tried to apply an inverse approach by deriving the Jacobian
from the data covariance matrix in ecological systems.
Accordingly, this will be an interesting research question for
future studies.

CONCLUSION

The main aim of the presented ideas is to demonstrate
the common system-theoretical principles of biological and
ecological systems. It is intriguing how principles of the analysis
of dynamical systems are originated by principles of system
theory and later cybernetics and can be applied to the analysis
of biological and ecological systems. A main framework is
defined by stability analysis and application of the stochastic
Lyapunov matrix equation. The inverse application of stochastic
Lyapunov matrix equation allows for the data-driven inverse
modeling of complex systems from molecular to population
networks and will be further explored for the prediction of
regulatory structures in these highly complex and intuitively
inaccessible systems.
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