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Area under the ROC curve (AUC) is a standard metric that is used to measure

classification performance for imbalanced class data. Developing stochastic learning

algorithms that maximize AUC over accuracy is of practical interest. However, AUC

maximization presents a challenge since the learning objective function is defined over

a pair of instances of opposite classes. Existing methods circumvent this issue but with

high space and time complexity. From our previous work of redefining AUC optimization

as a convex-concave saddle point problem, we propose a new stochastic batch learning

algorithm for AUC maximization. The key difference from our previous work is that we

assume that the underlying distribution of the data is uniform, and we develop a batch

learning algorithm that is a stochastic primal-dual algorithm (SPDAM) that achieves a

linear convergence rate. We establish the theoretical convergence of SPDAM with high

probability and demonstrate its effectiveness on standard benchmark datasets.

Keywords: AUC maximization, imbalanced data, linear convergence, stochastic optimization, ROC curve

1. INTRODUCTION

Quantifying machine learning performance is an important issue to consider when designing
learning algorithms. Many existing algorithms maximize accuracy, however, it can be a misleading
performance metric for several reasons. First, accuracy assumes that an equal misclassification cost
for positive and negative labeling. This assumption is not viable for many real world examples such
asmedical diagnosis and fraud detection [1]. Also, optimizing accuracy is not suitable for important
learning tasks such as imbalanced classification. To overcome these issues, Area Under the ROC
Curve (AUC) [2, 3] is a standard metric for quantifying machine learning performance. It is used
in many real world applications, such as ranking and anomaly detection. AUC concerns the overall
performance of a functional family of classifiers and quantifies their ability of correctly ranking any
positive instance with regards to a randomly chosen negative instance. This combined with the fact
that AUC is not effected by imbalanced class data makes AUC a more robust metric than accuracy
[4]. We will discuss maximizing AUC in a batch learning setting.

Learning algorithms that maximize AUC performance have been developed in both batch and
online settings. Previously, most algorithms optimizing AUC for classification [5–8] were for batch
learning, where we assume all training data is available making those methods not applicable to
streaming data. However, online learning algorithms [9–14], have been proven to be very efficient
to deal with large-scale datasets and streaming data. The issue with these studies is that they focus
on optimizing the misclassification error or its surrogate loss. These works all attempt to overcome
the problem that AUC is based on the sum of pairwise losses between examples from different
classes, making the objective function quadratic in the number of samples. Overcoming this issue
is the challenge of designing algorithms to optimize the AUC score in either setting.
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In this work, we present a new stochastic batch learning
algorithm for AUC maximization, SPDAM. The algorithm is
based on our previous work that we can reformulate AUC
maximization as a stochastic saddle point problem with the
inclusion of a regularization term [15]. However, the key
difference from our previous work is that SPDAM assumes
that the distribution is uniform and is solved as a stochastic
primal dual algorithm [16]. The proposed algorithm results in a
faster convergence rate than existing state-of-the-art algorithms.
When evaluating on several standard bench mark datasets,
SPDAM achieves performances that are on par with other
state-of-the-art AUC optimization methods with a significant
improvement in running time.

The paper is organized as follows: Section 2 discusses related
work. Section 3 briefly reformulates AUC optimization as a
saddle point problem. Section 4 exploits section 3 with the
assumption that the distribution is a uniform distribution
over the data and introduces SPDAM. Section 5 details the
experiments. Finally, section 6 gives some final thoughts.

2. RELATED WORK

AUC has been studied extensively because it is an appropriate
performance measure for when dealing with imbalanced
data distributions for learning classification. Designing such
algorithms that optimize AUC is a significant challenge because
of the need for samples of opposite classes. An early work
first maximized the AUC score directly by performing gradient
descent constrained to a hypersphere [17]. Their algorithm used a
differentiable approximation to the AUC score that was accurate
and computationally efficient, being of the order of O(n), where
n is the number of data observations. Another early work
optimized the AUC score using support vector machines [6].

In more recent work [18–22], significant progress has
been done to design online learning algorithms for AUC
maximization. Online methods are desirable for evaluating
streaming data since these methods update when new data is
available. However, a limitation of these methods is that the
previous samples used need to be stored. For iteration t and
where the dimension of the data is d, this results in a space and
time complexity ofO(td). This is an undesirable property because
these algorithms will not scale well for high-dimensional data as
well as will require more resources. To overcome the quadratic
nature of AUC, the problem of optimizing the AUC score can be
reformulated as a sum of pairwise loss functions using hinge loss
[19, 22]. The use of a buffer with size s was proposed. This lessens
the complexity to O(sd). However, if the buffer size is not set
sufficiently large this will impact the performance of the method.

Again, using the idea of reformulating AUC as a sum of
pairwise loss functions was further expanded upon [18]. Using
the square loss function instead of hinge loss, a key observation
was made in which the mean and covariance statistics of the
training data could be easily updated as new data becomes
available. Unlike the previous work where s samples needed to
be stored, these statistics only needed to be stored. However,
this algorithm still results in scaling issues for high-dimensional

data because storing the covariance matrix results in a quadratic
complexity ofO(d2). The authors did make note of this issue and
proposed using low-rank Gaussian matrices to approximate the
covariance matrix. The approximation is not a general solution
to the original problem and depends on whether the covariance
matrix can be well approximated by low-rank matrices.

Work has been also been done to maximize AUC using batch
methods. In Ding et al. [23], the authors propose an algorithm
that uses an adaptive gradient method that uses the knowledge
of historical gradients and that is less sensitive to parameter
selection. The method proposed in Gultekin et al. [24] is based
on a convex relaxation of the AUC function, but instead of
using stochastic gradients, the algorithm uses the first and second
order U-statistics of pairwise distances. A critical feature of this
approach is that it is learning rate free as training the step size is
a time consuming task.

More recently, work based on Ying et al. [25] has been
expanded upon. The critical idea was the primal and dual
variables introduced have distinct solutions. Two different works
took advantage of this observation. The first work developed a
primal dual style stochastic gradient method [26] while the other
develops a stochastic proximal algorithm that can have non-
smooth penalty functions [27, 28]. Both algorithms achieve a
O(1/T) convergence rate up to a logarithmic term.

3. PROBLEM STATEMENT

First, consider X ⊆ R
d to be the input space and Y = {−1,+1}

the output space. For the training data, z = {(xi, yi), i =
1, . . . , n}, we assume to be i.i.d. and the samples are obtained
from an unknown distribution ρ on Z = X × Y . As in Ying
et al. [25], we restrict this work to the family of linear functions,
i.e., f (x) = w⊤x.

3.1. AUC Optimization
The ROC curve is the plot of the true positive rate vs. the false
positive rate. The area under the ROC curve (AUC) for any
scoring function f :X → R is equivalent to the probability of
a positive sample ranking higher than a negative sample [3, 29].
It is defined as

AUC(f ) = Pr(f (x) ≥ f (x′)|y = +1, y′ = −1), (1)

where (x, y) and (x′, y′) are independently drawn from ρ. The
intent of AUC maximization is to find the optimal decision
function f :

argmax
f

AUC(f ) = argmin
f

Pr(f (x) < f (x′)|y = 1, y′ = −1)

= argmin
f

E

[

I[f (x′)−f (x)>0]

∣

∣y = 1, y′ = −1
]

, (2)

where I(·) is the indicator function. As in Ying et al. [25],
define p = Pr(y = 1). Recall that the conditional
expectation of a random variable ξ (z) is defined by E[ξ (z)|y =
1] = 1

p

∫∫

ξ (z)Iy=1dρ(z). In (2), the indicator function is not

continuous, and is usually replaced by a convex surrogate such
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as the ℓ2 loss (1 − (f (x) − f (x′)))2 or the hinge loss
(

1 −
(f (x) − f (x′))

)

+. We used the ℓ2 loss for this work as it has been
shown to be statistically consistent with AUC while the hinge
loss is not [18, 30]. Letting λ be a regularization parameter, AUC
maximization can be formulated by

argmin
w

E

[

(1− w⊤(x− x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2,

= argmin
w

1

p(1− p)

∫∫

Z×Z
(1− w⊤(x− x′))2

I[y=1,y′=−1]dρ(z)dρ(z
′)+ λ

2 ‖w‖
2.

(3)

where the samples (x, y) and (x′, y′) are independent. When ρ is a
uniform distribution over training data z, we obtain the empirical
minimization (ERM) problem for AUC optimization studied in
Gao et al. [18] and Zhao et al. [22]

argmin
w

1

n+n−

n
∑

i=1

n
∑

j=1
(1− w⊤(xi − xj))

2
I[yi=1∧yj=−1] +

λ

2
‖w‖2,

(4)
where n+ and n− denote the numbers of instances in the positive
and negative classes, respectively.

3.2. Equivalent Representation as a Saddle
Point Problem (SPP)
As in Ying et al. [25], AUC optimization as in (3) can be
represented as stochastic Saddle Point Problem (SPP) (e.g., [15]).
A stochastic SPP is generally in the form of

min
u∈�1

max
α∈�2

{

f (u,α) : = E[F(u,α, ξ )]
}

, (5)

where �1 ⊆ R
d and �2 ⊆ R

m are non-empty closed convex
sets, ξ is a random vector with non-empty measurable set
4 ⊆ R

p, and F :�1 × �2 × 4 → R. Here E[F(u,α, ξ )] =
∫

4
F(u,α, ξ )d Pr(ξ ), and function f (u,α) is convex in u ∈ �1

and concave in α ∈ �2. In general, u and α are referred to as
the primal variable and the dual variable, respectively. In this
work, we modified our formulation for AUC maximization to
include a regularization term. We give a modified version of the
result in Ying et al. [25] that includes the L2 term. First, define
F :R

d × R
3 × Z → R, for any w ∈ R

d, a, b,α ∈ R and
z = (x, y) ∈ Z , by

F(w, a, b,α; z) = (1− p)(w⊤x− a)2I[y=1] + p(w⊤x− b)2I[y=−1]

+ 2(1+ α)(pw⊤xI[y=−1] − (1− p)w⊤xI[y=1])

− p(1− p)α2 +
λ

2
‖w‖2. (6)

Equation (6) is similar as in our previous work [25]. The only
difference is the inclusion of a regularization term. The main
result still holds in a similar manner.

Theorem 3.1. The AUC optimization (3) is equivalent to

min
w∈Rd

(a,b)∈R2

max
α∈R

{

f (w, a, b,α) : =
∫

Z

F(w, a, b,α; z)dρ(z)
}

. (7)

In addition, we can prove the following result.

Proposition 3.1. For any saddle point (w∗, a∗, b∗,α∗) of the
SPP formulation (7), w∗ is a minimizer of the original AUC
optimization problem (3).

Proof: Let f̄ (w, a, b,α) = 1+
∫

Z
F(w,a,b,α;z)dρ(z)

p(1−p) + λ
2 ‖w‖

2 and let

(w∗, a∗, b∗,α∗) be a saddle point of the problem

min
w∈Rd

(a,b)∈R2

max
α∈R

f̄ (w, a, b,α).

Since the order of the two minimization [i.e., minimizing with
respect tow andminimizing with respect to (a, b) ] does not affect
the result. This implies, for every fixed w, (a∗, b∗,α∗) is a saddle
point of the sub-problem

min
(a,b)∈R2

max
α∈R

f̄ (w, a, b,α).

Notice from the proof for Theorem 3.1 that

E

[

(1− w⊤(x− x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2 =

min
(a,b)∈R2

max
α∈R

f̄ (w, a, b,α). (8)

Hence,

E

[

(1−w⊤(x−x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2 = f̄ (w, a∗, b∗,α∗).

This further implies

min
w

E

[

(1− w⊤(x− x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2 =

min
w

f (w, a∗, b∗,α∗). (9)

As w∗ is a minimizer of the righthand side of the Equation (9),
w∗ is also a minimizer of the lefthand side of the equation.

4. STOCHASTIC PRIMAL-DUAL
ALGORITHM FOR AUC MAXIMIZATION

The algorithm developed in our previous work focused on
the population objective of the saddle point problem (7). It is
essentially an online projected gradient descent algorithm which
has an optimal convergence rateO(1/

√
t). This convergence rate

is distribution-free, i.e., it holds true for any distribution ρ.
In this section, we are concerned with the case that the

distribution ρ in (7) is a uniform distribution over the given
data z = {z1, . . . , zn}. Denote by Nn = {1, 2, . . . , n} for any
n ∈ N. Now, when ρ is a uniform distribution over finite data
{(xi, yi) : i ∈ Nn}, we can reformulate (4) as a SPP as in (5):

min
w∈Rd

(a,b)∈R2

max
α∈R

1

n

∑

i∈Nn

F(w, a, b,α, zi). (10)
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In this case, the AUC optimization is equivalent to the saddle
point problem (10). For this special case, we will develop in this
section a stochastic primal-dual algorithm for AUC optimization
(10) which is able to converge with a linear convergence rate.
To this end, we now consider the following general saddle point
problem for AUC maximization

min
w,a,b

max
α

{ 1

n+

∑

i∈Nn

(w⊤xi − a)2Iyi=1 +
1

n−

∑

i∈Nn

(w⊤xi − b)2Iyi=−1

+ 2(1+ α)w⊤
[ 1

n−

∑

i∈Nn

xiIyi=−1 −
1

n+

∑

i∈Nn

xiIyi=1
]

− α2

+�(w)
}

, (11)

where �(w) is a penalty term. If �(w) = I‖w‖≤R(w), the above
formulation is equivalent to the saddle point formulation (10).

Before describing the detailed algorithm, we introduce some
notations and slightly modify the saddle formulation (11).
Specifically, denote by n+ and n− the numbers of samples in
the positive and negative classes, respectively. In this discrete
case p = n+

n . Let b = m− − m+ where m+ and m− are
the means of the positive and negative classes, respectively, i.e.,
m+ = 1

n+

∑

i∈Nn
xiIyi=1 and m− = 1

n−

∑

i∈Nn
xiIyi=−1. For any

i ∈ Nn, denote

x̄i =
xi −m+√

2p
if yi = 1, x̄i =

xi −m−
√

2(1− p)
if yi = −1.

(12)

Let g(w) = |b
⊤w|2
2 + b⊤w+�(w). To satisfy the hypothesis that

g is a λ strong convex function, we will let �(w) = λ
2 ‖w‖

2.
Now we have the following reformulation of (11), based on
which we will develop a stochastic primal-dual algorithm for
AUC maximization.

Proposition 4.1. Formulation (13) is equivalent to

min
w

max
β

{ 1

n

∑

i∈Nn

βiw
⊤x̄i −

‖β‖2

2
+ g(w)

}

, (13)

where g :Rd → R is defined, for any w ∈ R
d, by g(w) =

|b⊤w|2
2 + b⊤w+�(w).

Proof: By minimizing out a, b and α, formulation (11) is
equivalent to

min
w

max
α

{ 1

n+

∑

i∈Nn

(w⊤(xi −m+))
2
Iyi=1

+
1

n−

∑

i∈Nn

(w⊤(xi −m−))
2
Iyi=−1 + 2b⊤w+ |b⊤w|2 +�(w)

}

.

Substituting (12) into the above equation yields the
desired result.

Recall that κ = max{‖xi‖ : i ∈ Nn}. We can establish the
following linear convergence rate of SPDAM.

TABLE 1 | Pseudo-code of Stochastic Primal-Dual Algorithm for AUC

maximization.

Stochastic Primal-Dual Algorithm for AUC Maximization (SPDAM)

1. Choose parameters σ > 0 and τ > 0

2. Initialize β (0) and w(0). Let w̄(0) = w(0) and u(0) = 1
n

∑

i∈Nn β
(0)
i x̄i .

3. For t = 0, . . . ,T − 1 do

Uniformly and randomly choose I ⊆ Nn of size m and execute the following

updates:

β
(t+1)
i =







argmaxβi∈R
{

βi〈w̄(t), xi〉 −
|βi |2
2 −

|βi−β
(t)
i |

2

2σ

}

if i ∈ I
β
(t)
i otherwise.

u(t+1) = u(t) + 1
n

∑

i∈I (β
(t+1)
i − β

(t)
i )xi .

ū(t+1) = u(t) + n
m (u(t+1) − u(t)).

w(t+1) = argminw∈Rd
{

〈ū(t+1),w〉 + g(w)+ ‖w−w
(t)‖2

2τ

}

.

w̄(t+1) = w(t+1) + θ (w(t+1) −w(t)).

4. end for

5. Output: w(T ) and β (T )

Theorem 4.1. Assume that g is λ-strongly convex. Let (w∗,β∗) be
the saddle point of (13). If the parameter σ , τ and θ are chosen
such that

σ =
(n−m)+

√

(n−m)2 + 4nκ2m/λ

8mκ2
, τ =

1

4σκ2
and

θ = 1−
λ

λ+ 2σκ2
,

then, for any t ≥ 1, the SPDAM algorithm achieves

(

1

m
+

1

4σm

)

E
[

‖β(t+1) − β∗‖2
]

+
(

λ+
1

2τ

)

E
[

‖w(t+1) − w∗‖2
]

+
1

4τ
E

[

‖w(t+1) − w(t)‖2
]

≤ θ t
[

(

1

m
+

1

2σm

)

‖β(0) − β∗‖ +
(

λ+
1

2τ

)

‖w(0) − w∗‖2
]

.

(14)

Before we present the proof for the above theorem. It is useful to
make some comments. Firstly, the proposed algorithm in Table 1
is inspired by the stochastic primal-dual algorithm proposed in
Yu et al.[16] and Zhang and Lin [31] which focused on Support
Vector Machines (SVM) and logistic regression. Secondly, the
algorithm SPDAM enjoys faster convergence over the stochastic
projected gradient method in our previous work. However,
the incremental primal-dual algorithm here, in contrast to the
algorithm in Table 1 which can deal with streaming data, is not
an online learning algorithm, since it needs to know a priori
the number of the samples, the ratio of the samples of positive
class, and means of the positive and negative classes. We now
will prove the main theorem. The following lemma is critical for
proving Theorem 4.1.
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Lemma 4.1. For the updates in SPDAM, we have

(

1

m
+

1

2σm

)

E

[

‖β(t+1) − β∗‖2
]

=
(

1

2σm
+

n−m

nm

)

E

[

‖β(t) − β∗‖2
]

−
1

2σm
E

[

‖β(t+1) − β(t)‖2
]

+ E
[

〈ū(t+1), w̄(t) − w∗〉
]

, (15)

and

(

λ+
1

2τ

)

E
[

‖w(t+1) − w∗‖2
]

≤
1

2τ
E

[

‖w(t) − w∗‖2
]

−
1

2τ
E

[

‖w(t+1) − w(t)‖2
]

− E
[

〈ū(t+1),w(t+1) − w∗〉
]

. (16)

Proof: We first prove Equation (15). For any i ∈ Nn, let β̃i be
defined as

β̃i = argmax
βi∈R

{

βi〈w̄(t), xi〉 −
|βi|2

2
−
|βi − β

(t)
i |2

2σ

}

.

Hence,

|β(t)
i − β∗i |2

2σ
+
|β∗i |2

2
− β∗i 〈w̄(t), xi〉 =

|β(t)
i − β̃i|2

2σ
+
|β̃i|2

2

− β̃i〈w̄(t), xi〉 +
(

1

2
+

1

2σ

)

|β̃i − β∗i |2. (17)

Observe, by the definition of the saddle point (w∗,β∗), that

β∗ = argmax
βi

{

βi〈w∗, xi〉 −
|βi|2

2

}

.

Consequently, β̃i〈w∗, xi〉− |β̃i|
2

2 = β∗i 〈w∗, xi〉−
|β∗i |2
2 −

1
2 |β̃i−β∗i |2

which implies that |β̃i|
2

2 −
|β∗i |2
2 = (β̃i−β∗i )〈w∗, xi〉+

1
2 |β̃i−β∗i |2.

Putting this back into (17), we have

|β(t)
i − β∗i |2

2σ
+ (β̃i − β∗i )〈w̄(t) − w∗, xi〉 =

|β(t)
i − β̃i|2

2σ

+
(

1+
1

2σ

)

|β̃i − β∗i |2. (18)

Let Ft be the sigma field generated by all random variables
defined before round t. Taking expectation conditioned over Ft

implies that

E
(

|β(t)
i − β

(t+1)
i |2|Ft

)

=
m

n
|β̃i − β

(t)
i |

2,

E
(

|β(t+1)
i − β∗i |2|Ft

)

=
m

n
|β̃i − β∗i |2 +

n−m

n
|β(t)

i − β∗i |2,

E
(

|β(t+1)
i |2|Ft

)

=
m

n
|β̃i|2 +

n−m

n
|β(t)

i |
2,

E
(

β
(t+1)
i |Ft

)

=
m

n
β̃i +

n−m

n
β
(t)
i .

Using the above equalities to represent terms involving β̃i by

β
(t+1)
i on the righthand side of (18), we have

(

1

m
+

1

2σm

)

E
[

|β(t+1)
i − β∗i |2|Ft

]

=
(

1

2σm
+

n−m

nm

)

|β(t)
i − β∗i |2 −

1

2σm
E[‖β(t+1) − β(t)‖2]

+ E
[

〈w̄(t) − w∗,
1

m
(β t+1

i − β∗i )+
1

n
(β

(t)
i − β∗i )xi〉|Ft

]

Taking the summation over i ∈ Nn and noticing that ū(t+1) =
1
m

∑

i∈Nn
(β t+1

i − β∗i )xi +
1
n

∑

i∈Nn
(β(t) − β∗i )xi, we have

(

1

m
+

1

2σm

)

E
[

|β(t+1) − β∗|2|
]

=
(

1

2σm
+

n−m

nm

)

E[‖β(t) − β∗‖2]−
1

2σm
E[‖β(t+1) − β(t)‖2]

+ E
[

〈w̄(t) − w∗, ū(t+1)
]

,

which completes the proof of the first estimation (15).
Now we turn our attention to the proof of inequality (16).

Indeed, by the definition of w(t+1) and λ-strongly convexity of
g, there holds

〈ū(t+1),w∗〉 + g(w∗)+
‖w(t) − w∗‖2

2τ
≥ 〈ū(t+1),w(t+1)〉

+ g(w(t+1))+
‖w(t+1) − w(t)‖2

2τ

+
(

λ

2
+

1

2τ

)

‖w(t+1) − w∗‖2. (19)

Let u∗ = 1
n

∑

i∈Nn
β∗i xi. By the definition of the saddle point

(w∗,β∗), there holds

〈u∗,w(t+1)〉 + g(w(t+1)) ≥ 〈u∗,w∗〉 + g(w∗)+
λ

2
‖w(t+1) − w∗‖2.

Adding the above inequality with (19) and arranging the terms
yields that

(

λ+
1

2τ

)

‖w(t+1) − w∗‖2 ≤
‖w(t) − w∗‖2

2τ
−
‖w(t+1) − w(t)‖2

2τ

− 〈w(t+1) − w∗, ū(t+1) − u∗〉.

This completes the proof of the lemma.

Now we are ready to prove Theorem 4.1 using Lemma 4.1.
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Proof: Adding (15) and (16) together, we have

(

1

m
+

1

2σm

)

E
[

‖β(t+1) − β∗‖2
]

+
(

λ+
1

2τ

)

E
[

‖w(t+1) − w∗‖2
]

≤
( 1

2σm
+

1

m
−

1

n

)

E
[

‖β(t) − β∗‖
]

+
1

2τ
E

[

‖w(t) − w∗‖2
]

−
1

2σm
E

[

‖β(t+1) − β(t)‖2
]

−
1

2τ
E

[

‖w(t+1) − w(t)‖2
]

+ E
[

〈u(t) − u∗ +
n

m
(u(t+1) − u(t)), w̄(t) − w(t+1)〉

]

. (20)

By the definition of u(t), u(t+1) and w̄(t), we have

〈u(t) − u∗ +
n

m
(u(t+1) − u(t)), w̄(t) − w(t+1)〉

= θ〈u(t) − u∗,w(t) − w(t−1)〉

− 〈u(t+1) − u∗,w(t+1) − w(t)〉

+
nθ

m
〈u(t+1) − u(t),w(t) − w(t−1)〉

+
n−m

m
〈u(t+1) − u(t),w(t) − w(t+1)〉.

By the Cauchy-Schwartz inequality, letting X = [x1, x2, . . . , xn]
⊤

and noticing that κ2σ = 1
4τ we have

n〈u(t+1) − u(t),w(t) − w(t−1)〉 =
〈

∑

i∈K
(β

(t+1)
i − β

(t)
i )xi,w

(t) − w(t−1)
〉

≤
‖β(t+1) − β(t)‖κ2m

4σκ2m
+
‖w(t) − w(t−1)‖2m

4τ

=
‖β(t+1) − β(t)‖

4σ
+
‖w(t) − w(t−1)‖2m

4τ
. (21)

Likewise,

n〈u(t+1) −u(t),w(t) − w(t+1)〉 ≤
‖β(t+1) − β(t)‖

4σ

+
‖w(t+1) − w(t)‖2m

4τ
.

Putting these estimations into (22) and arranging the terms yield
that
(

1

m
+

1

2σm

)

E
[

‖β(t+1) − β∗‖2
]

+
(

λ+
1

2τ

)

E
[

‖w(t+1) − w∗‖2
]

+
1

2τ
E

[

‖w(t+1) − w(t)‖2
]

+ E
[

〈ut+1 − u∗,w(t+1) − w(t)〉
]

≤
( 1

m
+

1

2σm
−

1

n

)

E
[

‖β(t) − β∗‖
]

+
1

2τ
E

[

‖w(t) − w∗‖2
]

+ θ

(

1

2τ
E

[

‖w(t) − w(t−1)‖2
]

+ E
[

〈ut − u∗,w(t) − w(t−1)〉
]

)

.

(22)

Choosing that σ = (n−m)+
√

(n−m)2+4nκ2m/λ

8mκ2
, τ = 1

4σκ2
and

θ = 1− λ
λ+2σκ2

implies that

(

1

m
+

1

2σm
−

1

n

)

= θ

(

1+
1

2σ

)

and
1

2τ
= θ

(

λ+
1

2τ

)

.

(23)

Letting

△t =
(

1

m
+

1

2σm

)

E
[

‖β(t) − β∗‖2
]

+
(

λ+
1

2τ

)

E
[

‖w(t) − w∗‖2
]

+
1

2τ
E

[

‖w(t) − w(t−1)‖2
]

+ E
[

〈ut − u∗,w(t) − w(t−1)〉
]

,

we know from (22) and (23) that△t+1 ≤ θ △t . Using the exactly
argument as in (21), there holds

|〈ut − u∗,w(t) − w(t−1)〉| ≤
‖w(t) − w(t−1)‖2

4τ

+
‖(β(t) − β∗)⊤X‖2

n2/τ
≤
‖w(t) − w(t−1)‖2

4τ
+
‖(β(t) − β∗)⊤X‖

4nσκ2

≤
‖w(t) − w(t−1)‖2

4τ
+
‖β(t) − β∗‖

4nσ
, (24)

which implies, for any t, that

△t ≥
(

1

m
+

1

4σm

)

E
[

‖β(t) − β∗‖2
]

+
(

λ+
1

2τ

)

E
[

‖w(t) − w∗‖2
]

+
1

4τ
E

[

‖w(t) − w(t−1)‖2
]

≥ 0.

(25)

Consequently,

△t+1 ≤ θ t△0 = θ t
((

1

m
+

1

2σm

)

‖β(0) − β∗‖

+
(

λ+
1

2τ

)

‖w(0) − w∗‖2
)

.

Combining this with the inequality (25) yields the desired result.

5. EXPERIMENTS

In this section, we report the experimental evaluations
of SPDAM and compare it with existing state-of-
the-art learning algorithms for AUC optimization and
convergence rate.

5.1. Comparison Algorithms
We conduct comprehensive studies by comparing the proposed
algorithm with other AUC optimization algorithms for
both online and batch scenarios. Specifically, the algorithms
considered in our experiments include:

• SPDAM: The proposed stochastic primal-dual algorithm
for AUC maximization.
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• regSOLAM: The regularized online projected gradient
descent algorithm for AUC maximization.

• OPAUC: The one-pass AUC optimization algorithm with
square loss function [18].

• OAMseq: The OAM algorithm with reservoir sampling and
sequential updating method [22].

• OAMgra: The OAM algorithm with reservoir sampling and
online gradient updating method [22].

• Online Uni-Exp: Online learning algorithm which
optimizes the (weighted) univariate exponential loss [7].

• B-SVM-OR: A batch learning algorithm which optimizes
the pairwise hinge loss [32].

• B-LS-SVM: A batch learning algorithmwhich optimizes the
pairwise square loss.

It should be noted that OAMseq, OAMgra, and OPAUC are
the state-of-the-art methods for AUC maximization in online
settings. The algorithm regSOLAM is a modified version of
our previous work that includes a regularization term and it
achieves a similar convergence with only modified constants.
We also reformulate the bound R in terms of the regularization
parameter λ. Assume κ = supx∈X ‖x‖ < ∞, and recall that

TABLE 2 | Basic information about the benchmark datasets used in the

experiments.

Datasets ♯inst ♯feat Datasets ♯inst ♯feat

diabetes 768 8 fourclass 862 2

german 1,000 24 splice 3,175 60

usps 9,298 256 a9a 32,561 123

mnist 60,000 780 acoustic 78,823 50

ijcnn1 141,691 22 covtype 581,012 54

sector 9,619 55,197 news20 15,935 62,061

‖w‖ ≤ R. By assuming that w∗ is the optimal w then we have
the following:

λ

2
‖w∗‖2 ≤ E

[

(1− w⊤(x− x′))2|y = 1, y′ = −1
]

+
λ

2
‖w‖2

By letting w = 0 and recalling that ‖w‖ ≤ R, we can very

easily see that: R ≤
√

2
λ
. We make these changes to ensure a fair

comparison with SPDAM.

5.2. Experimental Testbed and Setup
To examine the performance of the proposed SPDAM algorithm
in comparison to state-of-the-art methods, we conduct
experiments on 11 benchmark datasets. Table 2 shows the
details of each of the datasets. All of these datasets are available
for download from the LIBSVM and UCI machine learning
repository. Note that some of the datasets (mnist, covtype, etc.)
are multi-class, which we converted to binary data by randomly
partitioning the data into two groups, where each group includes
the same number of classes.

For the experiments, the features were normalized by taking

xi ← xi−mean(xi)
‖xi‖ for the large datasets and xi ← xi

‖xi‖ for the

small datasets (diabetes, fourclass, and german). For each dataset,
the data is randomly partitioned into 5-folds (4 are for training
and 1 is for testing). We generate this partition for each dataset
5 times. This results in 25 runs for each dataset for which we
use to calculate the average AUC score and standard deviation.
To determine the proper parameter for each dataset, we conduct
5-fold cross validation on the training sets to determine the
parameter λ ∈ 10[−5 : 1] for SPDAM and for regSOLAM the
learning rate ζ ∈ [1 : 9 : 100] and the regularization parameter
λ ∈ 10[−5 : 5] were found by a grid search. The buffer size for
OAMseq and OAMgra is 100 as suggested [22]. All experiments
for SPDAM and regSOLAM were conducted with MATLAB.

5.3. Evaluation of SPDAM and
regSOLAM on Benchmark Datasets
Classification performances on the testing dataset of all methods
are given in Table 3. These results show that SPDAM and

TABLE 3 | Comparison of the testing AUC values (mean±std.) on the evaluated datasets.

Datasets SPDAM regSOLAM OPAUC OAMseq OAMgra online Uni-Exp B-SVM-OR B-LS-SVM

diabetes 0.8275 ± 0.0302 0.8140 ± 0.0330 0.8309 ± 0.0350 0.8264 ± 0.0367 0.8262 ± 0.0338 0.8215 ± 0.0309 0.8326 ± 0.0328 0.8325 ± 0.0329

fourclass 0.8223 ± 0.0275 0.8222 ± 0.0276 0.8310 ± 0.0251 0.8306 ± 0.0247 0.8295 ± 0.0251 0.8281 ± 0.0305 0.8305 ± 0.0311 0.8309 ± 0.0309

german 0.7959 ± 0.0265 0.7830 ± 0.0247 0.7978 ± 0.0347 0.7747 ± 0.0411 0.7723 ± 0.0358 0.7908 ± 0.0367 0.7935 ± 0.0348 0.7994 ± 0.0343

splice 0.9227 ± 0.0128 0.9237 ± 0.0090 0.9232 ± 0.0099 0.8594 ± 0.0194 0.8864 ± 0.0166 0.8931 ± 0.0213 0.9239 ± 0.0089 0.9245 ± 0.0092

usps 0.9854 ± 0.0019 0.9848 ± 0.0021 0.9620 ± 0.0040 0.9310 ± 0.0159 0.9348 ± 0.0122 0.9538 ± 0.0045 0.9630 ± 0.0047 0.9634 ± 0.0045

a9a 0.8967 ± 0.0032 0.8970 ± 0.0048 0.9002 ± 0.0047 0.8420 ± 0.0174 0.8571 ± 0.0173 0.9005 ± 0.0024 0.9009 ± 0.0036 0.8982 ± 0.0028

mnist 0.9552 ± 0.0011 0.9599 ± 0.0014 0.9242 ± 0.0021 0.8615 ± 0.0087 0.8643 ± 0.0112 0.7932 ± 0.0245 0.9340 ± 0.0020 0.9336 ± 0.0025

acoustic 0.8119 ± 0.0039 0.8114 ± 0.0035 0.8192 ± 0.0032 0.7113 ± 0.0590 0.7711 ± 0.0217 0.8171 ± 0.0034 0.8262 ± 0.0032 0.8210 ± 0.0033

ijcnn1 0.9132 ± 0.0016 0.9108 ± 0.0030 0.9269 ± 0.0021 0.9209 ± 0.0079 0.9100 ± 0.0092 0.9264 ± 0.0035 0.9337 ± 0.0024 0.9320 ± 0.0037

covtype 0.9409 ± 0.0011 0.9332 ± 0.0020 0.8244 ± 0.0014 0.7361 ± 0.0317 0.7403 ± 0.0289 0.8236 ± 0.0017 0.8248 ± 0.0013 0.8222 ± 0.0014

sector 0.9406 ± 0.0062 0.9734 ± 0.0036 0.9292 ± 0.0081 0.9163 ± 0.0087 0.9043 ± 0.0100 0.9215 ± 0.0034 – –

To accelerate the experiments, the value for sector was determined after five runs instead of 25 for the other data sets. The performances of OPAUC, OAMseq, OAMgra, online Uni-Exp,
B-SVM-OR, and B-LS-SVM were taken from Gao et al. [18].
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FIGURE 1 | AUC vs. Iteration curves of SPDAM against regSOLAM. For SPDAM, 10% of the data was chosen for a batch size. The optimal value of the parameter λ

from SPDAM was used in regSOLAM.

FIGURE 2 | AUC vs. Iteration curves of SPDAM algorithm for various batch sizes. The batch size is a percentage of the number of samples.

regSOLAM both achieve similar performances as other state-of-
the-art online and offline methods based on AUC maximization.
In some cases, SPDAM and regSOLAM perform better
than some of the other online learning algorithms. There is a
significant improvement in the text classification dataset mnist
and covtype. The difference in performance of SPDAM and
regSOLAM could be due to the fact since the data is randomly
partitioned into two classes, the value of p could be resulting in a
higher AUC score.

However, the main advantage of SPDAM over regSOLAM is
the running time performance. SPDAM has a linear convergence
rate while regSOLAM has aO( 1√

t
) convergence. The theory tells

us that SPDAM should be faster than regSOLAM. In Figure 1,
we show AUC vs. Iterations for SPDAM against regSOLAM
over 3 datasets. The figures show that SPDAM converges
faster in comparison to regSOLAM, while maintaining a similar
competitive performance as from Table 3.

In order to obtain this convergence rate, it is important to
pick a large enough batch size (m). As from Theorem 4.1, the
value of θ needs to be small for ensuring that SPDAM converges
quickly. To ensure a fast convergence, the relationship between
σ and θ should be examined. For θ to be small, σ should also
be small which can be made possible by increasing the batch
size m. If the batch size is too small, SPDAM will result in very
poor performance. Figure 2 demonstrates SPDAM on various

batch sizes and shows that selecting a larger batch size ensures a
faster rate of convergence. A batch size of 10% is sufficient so that
SPDAM converges faster than regSOLAM.

6. CONCLUSION

In this paper, we proposed a stochastic primal-dual algorithm
for AUC optimization [18, 22] based upon our previous work
that AUC maximization is equivalent to a stochastic saddle point
problem. By letting the distribution of ρ as in (7) be uniform,
the proposed SPDAM algorithm is shown both theoretically and
by experiments that the algorithm achieves a linear convergence
rate. This makes SPDAM, given that a large enough batch size is
used, faster than regSOLAM. If the batch size is not sufficiently
large, SPDAM has poor performance.

There are several research directions for future work. First,
the convergence was established using the duality gap associated
with the stochastic SPP formulation (7). It would be interesting
to establish the strong convergence of the output w̄T of the
regSOLAM algorithm to its optimal solution of the actual AUC
optimization problem (3). Secondly, the SPP formulation (3.1)
holds for the least square loss. We do not know if the same
formulation holds true for other loss functions such as the logistic
regression or the hinge loss.
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