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The use of deep learning is becoming increasingly important in the analysis of medical

data such as pattern recognition for classification. The use of primary healthcare

computational medical records (CMR) data is vital in prediction of infection prevalence

across a population, and decision making at a national scale. To date, the application

of machine learning algorithms to CMR data remains under-utilized despite the potential

impact for use in diagnostics or prevention of epidemics such as outbreaks of influenza.

A particular challenge in epidemiology is how to differentiate incident cases from those

that are follow-ups for the same condition. Furthermore, the CMR data are typically

heterogeneous, noisy, high dimensional and incomplete, making automated analysis

difficult. We introduce a methodology for converting heterogeneous data such that it is

compatible with a deep autoencoder for reduction of CMR data. This approach provides

a tool for real time visualization of these high dimensional data, revealing previously

unknown dependencies and clusters. Our unsupervised nonlinear reduction method

can be used to identify the features driving the formation of these clusters that can

aid decision making in healthcare applications. The results in this work demonstrate

that our methods can cluster more than 97.84% of the data (clusters >5 points) each

of which is uniquely described by three attributes in the data: Clinical System (CMR

system), Read Code (as recorded) and Read Term (standardized coding). Further, we

propose the use of Shannon Entropy as a means to analyse the dispersion of clusters

and the contribution from the underlying attributes to gain further insight from the

data. Our results demonstrate that Shannon Entropy is a useful metric for analysing

both the low dimensional clusters of CMR data, and also the features in the original

heterogeneous data. Finally, we find that the entropy of the low dimensional clusters are

directly representative of the entropy of the input data (Pearson Correlation = 0.99, R2

= 0.98) and therefore the reduced data from the deep autoencoder is reflective of the

original CMR data variability.
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1. INTRODUCTION

Computerized Medical Records (CMR)s (also known as
electronic health records or electronic medical records) are
a digital storage of health information for individuals. These
digital records are the standard way for medical professionals,
such as General Practitioners (GPs) to record primary healthcare
data for patients. Identifying patterns in primary care data is
vital in forecasting responses or policies to healthcare issues; for
example, early warning for potential epidemics allows healthcare
organization to take preventative measures such as vaccination
or quarantine. Data quality and veracity assessments are vital for
decision making [1] as they can have implications in not only
health, but can also have social, economic and political impacts.
In many cases, primary care records contain indicators for the
health at a population level that are nationally representative
[2] and analysis of these data can lead to improvements for
disease incidence estimates in surveillance systems [3]. The
Royal College of General Practitioners (RCGP) Research and
Surveillance Centre (RSC) [4, 5] collects primary care data
for a number of respiratory infections and other conditions,
focusing on influenza. The network is used annually by the UKs
Chief Medical Officer to know when influenza is circulating
and which age groups are most at risk [5]. For instance, the
RCGP RSC data showed that in 1989–1990 children were most
affected by influenza, and in 2000 older people were at risk
of infection [6]. The RSC was also pivotal in identifying and
monitoring the 2009-2010 swine flu pandemic [7]. However,
methods for utilizing large primary care data are limited and
inferring meaning from these data is challenging [8]. Despite
these difficulties, the potential for identifying trends in CMR
data are significant. Predictive algorithms may help tackle higher
mortality observed in winter months [9], or forecast unexpected
spikes in mortality rates due to the spread of influenza [10].

Methods for pre-processing synthetic data to reduce
complexity prior to clustering have been demonstrated as an
effective way to analyse CMR type data [11]. Low dimensional
representations of complex systems can provide great insights
into patterns or behaviors that are otherwise difficult or
impossible to obtain directly [12–14]. Multivariate and machine
learning methods have emerged as powerful tools in data
analysis. Specifically, clustering methods have shown potential in
analysis of medical records [15], however, they rely on complete,
non-redundant and homogenous data, where CMR data are
typically heterogeneous, incomplete, and contain redundancies
and uninformative fields [11].

Over the last decade, the power of deep learning has shown its
potential in a number of areas to extract patterns from complex
data without bespoke pre-processing or normalizations [16–18].
Deep learning has very recently been used to aid palliative care
by improving prognosis estimates based on healthcare data [19].
The generality of these methods is attractive in studying complex
and dynamic problems such as CMR data, where the fields in the

Abbreviations: CMR, Computerized medical records; DAE, deep autoencoder;
RCGP, Royal College of General Practitioners; RSC, Research and
Surveillance Centre.

data vary significantly in format, complexity, redundancy, noise,
and size for differing requirements. The data fields extracted from
a medical record database will vary drastically depending on
the research question and corresponding extraction query. Deep
learning methods offer a powerful and practice suite of tools for
analysis of CMR data.

In this work we propose a deep learning method for
visualizing and analysing CMR data to identify low dimensional
patterns in the data, such as manifolds or clusters, that would
not otherwise be obtainable in the high dimensional space. Our
proposed workflow could be used to aid healthcare practitioners
in decision making based on the individual or population based
data. In the following sections we describe the data and methods,
and discuss the results of our analysis. All data used in this
work is fully anonymised and complies with the RCGP RSC
protocols and ethics.

2. MATERIALS AND METHODS

Deep learning algorithms have been applied to a diverse range
of problems in a number of areas of research. In particular, deep
neural networks have emerged as popular tools for several tasks
such as segmentation and classification. A significant limitation
to their use has been the requirement for a large amount of
labeled data for training networks for such tasks. Additionally,
for applications in clinical settings, the lack of transparency in
the decision making is extremely problematic and may limit the
uptake in many other areas.

Hinton and Salakhutdinov introduced the use of the
autoencoder for unsupervised dimensionality reduction [17],
sidestepping the requirement for explicitly labeled data by
training a network to first encode the input data, then decode
this back to the input data. In this framework, the network
is trained to learn an encoding of the data that can be
decoded back to the input data, which does not require
explicit labels. Additionally, these networks can be trained
such that we obtain a fixed and deterministic transformation
between the input and encoded data, enabling several advantages
such as maintaining a common encoded space for training
and unseen data. This allows the time and memory efficient
application of these algorithms to large datasets [18], as well
as identifying the features that are driving patterns in the data.
We utilize these features of the autoencoder to perform non-
linear unsupervised dimensionality reduction of computerized
medical records (CMR) enabling visualization, unsupervised data
exploration, and pattern recognition that is both deterministic
and traceable. In the following subsections we outline the data
handling, processing and analysis used in this work.

2.1. Computerized Medical Records
CMRs are a collection of attributes from anonymised patients,
containing a mix of data types (numeric, text, etc.). The data
has been collected and stored by the RCGP RSC [4, 5]. All
data are from English General Practices (GPs) and consist of
2.4 million records from > 230 GPs that is representative of
the national population [5]. CMR data are uploaded to the RSC
twice per week with each upload containing data from a 6 week
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period, with overlapping uploads to account for post-acquisition
data correction by the medical professional. In this study, we
analyse attributes extracted from one of these uploads covering
a 6 week period in 2016 for 11,000 medical records, each with
nine attributes relating to the patient and condition. Specifically,
these are: the patients age and gender, the anonymised ID for
the GP sending the data to the SRC, the date of the record,
the Clinical System for the record, the Read Term (recorded
condition), Read Code (standardized coding for the condition,
see [5] for further details), Coding System (the standards for
the Read Code), and the Episode which records the status of
the condition. The Episode type records whether the condition
is new (N), ongoing (O) or first (F), though can also be
missing (blank). A large proportion of the 11,000 CMR data
(1,067 records) have missing Episode type and cannot be used
for routine analysis and reporting. As the most reliable way
of differentiating incident from prevalent cases is through the
clinician assigning Episode type to the patient’s CMR [20] this
represents a significant amount of unusable data. An ability to
uncover patterns in the data may be useful in identifying sources
and commonalities in missing Episode type, which may inform
methods for correcting or predicting these errors. Furthermore,
looking for patterns or manifolds in the data may reveal other
interesting features in the data that are not observable in the
original high dimensional space.

The information was extracted from the CMR database
RCGP RSC secure servers from the anonymised NHS records
data using secure onsite SQL database. Only the necessary
fields pre-defined for the study where extracted in line with
NHS Digital’s Data Security and Privacy (DSP) governance
process. The resulting dataset is in a delimited text ASCII
text file where columns represent an attribute value and rows
correspond to different instances of a record. Each attribute
has a column heading and each instance in the dataset is
an individual medical record, and thus the data set may
contain multiple records from the same patient. The data
used in this work, and other datasets, can be requested from
the RSC via https://www.rcgp.org.uk/clinical-and-research/our-
programmes/research-and-surveillance-centre.aspx.

2.2. Data Pre-processing
The use of heterogeneous data in reduction methods requires
some pre-processing [11]. Prior to our reduction method we pre-
process the data in order to account for the mixed data formats in
the CMR. In our method, we initially convert the mixed format
data, containing numerical, date, structured text, unstructured
text, and categorical data, into solely numerical values so that all
attributes can be processed together to identify patterns between
variables. Each instance in the dataset is processed as follows. All
numerical fields are converted to doubles. Text data (categorical,
structured and unstructured) are converted to unsigned 32-bit
integers using the conversion listed in Figure 1 for each character
in a string. For text data where instances in the CMR differ
in length, first the longest entry in the dataset is identified and
all other instances are padded with whitespace characters at the
end of the string to this length. Encoding the text data in this
way and using an autoencoder provides robustness against errors

in the entries such as spelling mistakes or differing orders of
words. For date variables, the attributes are read in as text strings
in order to account for differing formats across datasets, and
converted to the ISO 8601 format yyyy-mm-dd. These variables
are then separated into three numerical values corresponding to
the year, month, and day of the records to account for any regular
patterns such as seasonal variation. After all of the attributes
have been converted in to numerical data as described above,
the values for an instance in the CMR is concatenated together
to a single numerical vector of length M. This is performed
for all N instances in the data yielding numerical matrix with
dimensions N × M. Specifically for the data used in this work,
we obtain a matrix of 11,000 instances each with 93 dimensions.
Processing the CMR data in this way ensures the mixed type
input data is returned as a numeric matrix of all attributes,
that is compatible with a suite of mathematical operations. In
particular, we require this format for the CMR in order to use
a deep autoencoder which is able to identify patterns in complex,
nonlinear and high dimensional data in an unsupervised manner
that is computationally efficient. In the next section we outline
the details of the network and algorithms used in this work.

2.3. Deep Autoencoder
An autoencoder is a special class of neural network that is
structurally symmetric and is designed to first encode the input
data and then decode it back to the input data. This feature
enables the autoencoder to be trained in an unsupervised manner
as the network learns an encoded representation of the data that
can be decoded back to the input data. We implicitly have labels
for our data rather than requiring a class label as in typical deep
learning problems. Encoding the data refers to an operation that
transforms the data into a different space, typically with a lower
dimensionality, and decoding refers to a reverse transformation
back to the original space. Thus the network takes the N × M
input matrix x and encodes it to z, an N × K matrix where
typically K < M, then decodes z back to a N × M matrix x′.
The performance of the network can be evaluated by comparing
the matrix elements in the output of the network with those
of the input by calculating the mean squared error ǫ for N
training examples

ǫ =
1

N

N
∑

j

ǫj =
1

N

N
∑

j

M
∑

i

(xji − x′ji)
2. (1)

The encoded data z is obtained through an activation function σ

and similarly decoded using the function σ ′,

z = σ (Wx+ b); x′ = σ ′(W′z+ b′); (2)

The elements of W,W′, b and b′ can be obtained by training the
network using gradient descent, hence with Equations (1) and
(2) we can train the network in an unsupervised manner. Here
we use the scaled conjugate gradient algorithm for our gradient
descent [21]. There are a range of activations that can be chosen
for σ and σ ′, which are often of the same form to provide
symmetry in the network and an output that is comparable to
the input. Activation functions such as ReLU, σ (z) = max(0, z),
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are popular in convolutional neural networks due to their success
in image analysis problems [16]. Sigmoid activation functions,

σ (z) =
(

1+ e−z
)−1

, have also been shown to be useful in
reduction and visualization of complex and high dimensional
data [22], and identification of low dimensional patterns in the
data for segmentation and classification tasks [16, 18]. Here
we compare both ReLU and sigmoid activation functions for
reduction of the CMR data. The ability to identify nonlinear
patterns give DAEs an advantage over linear methods such as
PCA [23].

As the autoencoder encodes and decodes the input data,
one can stack networks together to form a deep autoencoder
of several encoding and decoding layers. This provides a
computationally efficient way to train deep networks for high
dimensional data by performing layer-wise training. This is
achieved by passing the encoded data from one layer as input
in to the next layer which is then trained in the same way.
Stacking these layers together produces a deep network that
consists of several encoding layers followed by several decoding
layers. Typically, each layer encodes the input data into a lower

FIGURE 1 | Workflow for analysing computational medical records (CMR) with a deep autoencoder (DAE). The high dimensional CMR data (Top) is converted to

Numerical data (Middle) for all attributes using 32uint conversion (MATLAB, 2016a) which are then used as inputs for the DAE (Bottom). The DAE is trained to learn a

low dimensional representation (blue neurons) of the converted CMR data (gray neurons) via several hidden layers (red neurons) in an unsupervised manner.
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FIGURE 2 | Comparison of KL divergence in Equation (5) using only the first term (Left) and the both terms (Right). With both terms the KL divergence is

non-negative and symmetric for ρ̂ = 0.5.

dimensional space to identify manifolds in the system. We use a
deep autoencoder consisting of four encoding layers that reduce
the dimensionality of the input data from 93 to 50, 20, 10, and
3 dimensions before decoding this back to the dimensionality
of the input data as illustrated in Figure 1. Reduction of high
dimensional data to two or three dimensions is common for
visualization of these data as they can reveal patterns in the low
dimensional space. The data form these manifolds or clusters
based on patterns in the data such as structure in images [24],
text documents [16, 17], hyperspectral data [25], transcriptomics
[26], gene [27], and cell expression [28]. We construct our
deep autoencoder such that the lowest dimensionality of the
encoded data consists of three deep features, so that it can be
visualized as a scatter plot. The number of hidden layers, and
neurons within each, were selected from initial configuration
optimization. For the data in this work, increasing the number
of layers did not provide notable improvements to the network
performance whilst increasing training and computation time. It
was also observed that the number of neurons in each layer had
little effect compared to regularization.

We employ an L2 weight regularization, also known as
Tikhonov regularization, to reduce the complexity of W and
improve the conditioning of the problem. This form of
regularization is known to prevent overfitting in training [29–31],
by restricting the magnitude of values inW. This is calculated for
L hidden layers,M inputs and K outputs,

�w =
1

2

L
∑

l

(

W(l)
)2

=
1

2

L
∑

l

M
∑

m

K
∑

k

(

w
(l)
mk

)2
. (3)

The average output of neuron k is defined as

ρ̂k =
1

N

N
∑

j=1

zjk, (4)

and measure how responsive the network is to features in the
input data. A low average activation indicates that the neuron
is only responding to very specific features, whereas higher
values indicate that the neuron is not distinguishing between
instances in the data. In order to constrain this, we include a
sparsity regularization for the average output of each neuron in
the network. This will constrain the output from each neuron
to approximate a specified level, enabling them to respond to
particular features while also learning general features, and thus
leading to an encoding that distinguishes sub-types in the data
based on their attributes. The sparsity is constrained using the
Kullback-Leibler (KL) divergence between the desired level of
activation, ρ, and the average output ρ̂

�s =

K
∑

k=1

ρ log

(

ρ

ρ̂k

)

+ (1− ρ) log

(

1− ρ

1− ρ̂k

)

. (5)

The first term of Equation (5) is the typical KL divergence, and
the second term is included to introduce non-negativity in the
metric and control the level of asymmetry in the function via ρ̂

as shown in Figure 2. For small datasets, a low activation may
lead to overfitting and in general a high activation is undesirable,
hence we require a balance between these two cases. Here we
select ρ̂=0.5 to exploit this symmetry and compare this to other
values in the results section.

Combining Equations (1), (3), (4), and (5) we obtain a
total cost function used to train the deep sparse autoencoder
defined as.

E = ǫ + λ�w + β�s. (6)

2.4. Cluster Segmentation
Once we have obtained a low dimensional representation
of the data we can identify any patterns of the encoded
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FIGURE 3 | (A) Low dimensional representation of the CMR data following reduction with the autoencoder exhibiting the formation of clusters of CMR data. Isolated

clusters in the (B) red, (C) blue, and (D) green regions of the low dimensional (RGB) space (omitting empty regions for clarity).

features in the CMR data and determine the attributes that are
driving the formation of any sub-groups. In selecting a deep
autoencoder with a dimensionality of three in the encoded space
with the lowest number of dimensions, we can visualize this
representation of the data as a scatter plot. This is common in
high dimensional visualization, classification, or deep learning
tasks as it can reveal patterns in the data such as separation
of groups into clusters, or location on a manifold. The low
dimensional representation of the data exhibits clustering of
CMR data (Figure 3), indicating that points within each cluster
share commonalities in their features. Typically, analysis of these
data representations are qualitative comparisons of different
embedding methods [24, 32], or they provide the basis for
training classification algorithms [17, 18] when the class labels
are available. In our case we do not have labeled data and hence
we can not use the labels of data points as an indicator of
the network’s performance. However, we can compare the data
points within each cluster to identify what features are driving
their formation in the low dimensional space. To isolate points
within each cluster we segment the RGB space using a mesh to

divide the co-ordinate space into regions of fixed size boxes, and
discard regions with no data points. This isolates the vastmajority
of the clusters as illustrated in Figure 3B). Resulting clusters are
manually inspected and corrected for instances of cluster splitting
or merging. Thresholding for clusters with more than 5 data
points yields 27 unique clusters of CMR data points in the RGB
space. We note it is possible to perform clustering on the low
dimensional data; however, we found that even with a variety of
distance metrics, k-means over or under segmented the clusters
in the data. The exploration of automated clustering methods is
an obvious extension though is not the focus of this current study.

2.5. Analysis Using Shannon Entropy
Although segmenting the clustered data allows us to identify the
attributes driving these clusters, and therefore patterns in the
data, this does not explicitly provide a rationale for variations
in cluster sizes, density or proximity to neighbors. One can
make quality assessments of a larger cluster size indicating more
variable or heterogeneous data, though this can be inappropriate
if the low dimensional coordinate space contains nonlinearities,
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FIGURE 4 | Low dimensional representations of CMR data with a deep autoencoder using sigmoid (Left) and ReLU (Right) activation functions. Using a sigmoid

activation function patterns identified by the network manifest as clusters in the low dimensional space. When using a ReLU function all data points are confined to the

same low dimensional space hence there are no observable patterns to differentiate the CMR data.

non-constant intervals or dimensions, or is poorly understood
[33]. Moreover, the mixed data types can compound the problem
of determining data variance or heterogeneity if using different
measures for each data type. However, by interpreting the clusters
as probability distributions we can make use of Shannon Entropy
[34], H, defined as

H(X) = E[− log(P(X))] = −

n
∑

i

P(xi) logb P(xi), (7)

where P(xi) is the probability of xi and b=2. This enables the
calculation of H(X) when X is numerical, categorical, date, or
text data by computing the number of possible outcomes, and
their frequencies, within cluster X. Using the groups in the data
identified by the DAE in Figure 3, we can select the subset of
the original CMR data and compute H(X) for each attribute
within this subset. A low entropy (H(X) → 0) occurs when the
majority of members in the subset have the same value, i.e., there
is a narrow distribution of values, and H(X) = 0 when all data
points have the same value for a given attribute. In contrast, a
high entropy (H(X) → ∞) indicates a lack of commonality
betweenmembers and the subset has a wide distribution of values
for a given attribute in the CMR data. Comparing the entropy
values for all CMR subsets identified in Figure 3, we can identify
the attributes that are driving the formation of the clusters
by comparing those that have low entropy values for cluster
members but differ between clusters. Moreover, we can calculate
H(X) for the clusters in the low dimensional space obtained from
the deep autoencoder by interpreting the position of the points as
a probability distribution. For very dense clusters, H(X) → 0, all
cluster members occupy the same space, hence the autoencoder
has identified a pattern of attributes that well characterize this
sub-group in the dataset. Conversely, diffuse clusters, H(X) →

∞, are less ordered (more variable) and patterns identified by the

network are less precise. This permits the comparison of different
clusters within the data, and for each attribute, in order to identify
the main drivers for the clusters. That is, in the case of CMR, we
compute the entropy for the low dimensional clusters, and the
individual attributes in the original high dimensional data (e.g.,
Gender, Age, etc.) to identify how the attributes are contributing
to the entropy in the low dimensional space.

We implement our algorithms and all subsequent analysis in
MATLAB (MathWorks, 2016a) using the deep learning toolbox
and custom codes.

3. RESULTS

We find that ρ̂=0.5 yields the best performance for CMR data
as a balance between specialization and generalization in the
hidden layers, leading to the formation of well defined clusters. A
network with too few layers may not be able to capture complex
patterns in the data, however, beyond the four layers in Figure 3

additional layers do not noticeably improve the low dimensional
representation and increased computational cost for training.
When training the network, we find that a ReLU activation
function is unable to train a network that can learn an interesting
representation of the data in the low dimensional space under
any combination of hyper-parameters. This activation function
learns a low dimensional representation of the data that embeds
all the data points into the same space, i.e., all 11,000 CMR
are indistinguishable. It is unclear if this is a result of the pre-
processing of the CMR data required to enable training a DAE
for these data, or whether optimization of structure and hyper-
parameters using meta-heuristic algorithms are needed in this
case. In contrast we find that a Sigmoid activation function
captures interesting patterns in the data that are unobtainable
with a ReLU activation function (see Figure 4).
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TABLE 1 | Key attributes in driving formation of clusters covering 97.84% of the data.

Cluster Points Clinical system Read code Read term

1 1,596 EMIS Web H06z1 Lower resp tract infection

2 25 INPS Vision H06z1 Lower resp tract infection

3 35 INPS Vision Enterprise H06z1 Lower resp tract infection

4 104 EMIS Web H06z1 Respiratory tract infection

5 362 EMIS Web H061. Acute bronchitis

6 291 EMIS Web H062. Acute lower respiratory tract infection

7 10 INPS Vision Enterprise H060. Acute wheezy bronchitis

8 40 EMIS Web H060. Acute wheezy bronchitis

9 8 EMIS Web H060w Acute viral bronchitis unspecified

10 27 EMIS Web H30.. Chest infection unspecified bronchitis

11 20 EMIS Web H061z Acute bronchiolitis NOS

12 25 EMIS Web H060z Acute bronchitis NOS

13 68 EMIS Web H27z. Influenza like illness

14 137 INPS Vision Enterprise H06z0 Chest infection

15 12 EMIS Web H300. Tracheobronchitis NOS

16 557 EMIS Web H060. Acute bronchitis

17 23 EMIS Web H27.. Influenza

18 119 EMIS Web H302. Wheezy bronchitis

19 131 INPS Vision Enterprise H06z0 Chest infection NOS

20 24 EMIS Webmigrated Oct15 H06z0 Chest infection NOS

21 778 EMIS Web H27z. Flu like illness

22 14 EMIS Webmigrated Oct15 H27z. Flu like illness

23 2,250 EMIS Web H06z0 Chest infection

24 3,769 EMIS Web H06z0 Chest infection NOS

25 173 INPS Vision H06z0 Chest infection

26 114 INPS Vision H06z0 Chest infection NOS

27 17 EMIS Web H06z2 Recurrent chest infection

Cluster numbers refer to Figure 3 with the corresponding number of points for each cluster. Each cluster is uniquely formed by three attributes; Clinical System (CMR system), Read

Code (as recorded) and Read Term (standardized coding).

Training the network to encode these data had a
computational runtime of (69.67 ± 2.42) seconds where
the uncertainty is the standard error in the mean over
10 independent training cycles using the same network
configuration and parameters. This does not include
optimization of hyper-parameters. Once trained, the network
provides a deterministic method to encode and decode the input
data, or unseen data, that will ensure results are reproducible
and directly comparable. This provides a very efficient means
to analyse CMR as the encoding and decoding times are (0.157
± 0.002) and (0.193 ± 0.009) seconds, respectively, for 11,000
CMR. Using pre-trained networks could serve as a practical
tool for medical practitioners and clinicians to use for real
time analysis of CMR data based on cluster membership in the
low dimensional representation. Moreover, the training time
is approximately 70 s when trained on a CPU, hence there is
opportunity to utilize GPUs and further optimizations to enable
dataset specific training for CMR data in reasonable time frames
to be practical in healthcare settings.

The reduction to three dimensions permits visualization of the
CMR data as a 3D scatter plot where the (x, y, z) coordinates can
be interpreted as red-blue-green (RGB) as exhibited in Figure 3

where the clusters vary in size and dispersion. We segment the
low dimensional space to isolate the clusters using a fixed size
mesh yielding 27 individual sub-groups, with the data using
a minimum cluster size of five points (0.05% of the dataset,
summarized in Table 1). The clustered data represent 97.84% of
the CMR data.

We can compute the entropy of each cluster in the low
dimensional space based on the RGB values of each data point
(defined by the x, y, z co-ordinates) they contain. Using the
cluster labels identified using the DAE and the segmentation
method, we can extend the entropy analysis to the original
CMR data attributes collectively and individually. Computing the
entropy for each attribute for the members within the clusters
can identify greatest contribution to cluster dispersion in the low
dimensional representation. Entropy is a measure of a disordered
system; in this context disorder can be interpreted as variability in
the data. A high entropy occurs when there is a broad distribution
of values within a set of data points; i.e., when points in a cluster
do not share a common attribute. A low entropy on the other
hand is indicative of a well ordered cluster where the majority
of points have a common attributes. In the case where entropy
equals zero, all points in a cluster have the same value. This
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FIGURE 5 | Relationship between the entropy of low dimensional clusters in

Figure 3A and the entropies of the high dimensional CMR data (summed over

all attributes). The data (blue crossed circles) have a high Pearson’s correlation

of 0.99 and follow a linear fit (solid red line) with an R2 of 0.98 and a narrow

95% confidence bound (dashed red line) as indicated.

is useful in identifying the features in the CMR data that are
driving the patterns in the low dimensional data, resulting in the
formation of clusters as those with zero entropy contain specific
attribute values in the cluster. Analysing each cluster reveals that
all of them can be uniquely identified through a combination of
only three of the attributes, namely, Clinical System, Read Code
and Read Term, each of which has zero entropy for each cluster
(see Table 1). Interestingly, of all the values available for each of
the three main attributes driving the formation of clusters, only
a few are required to uniquely identify 98% of the data. All the
remaining data are disparate points or form clusters with fewer
than five data points. In addition, identifying the attributes with
the highest entropy provides insight into the features that have
little or no influence in forming these low dimensional patterns.
The least ordered attributes are typically Practice ID, Event Date
and Age indicating that these are the attributes with the highest
variability. The implication of this is that these features do not
influence cluster membership, but they are however the largest
contributors to the cluster dispersion in Figure 3.

The entropy of a specific attribute provides useful information
about how that feature is contributing to the variability in the
low dimensional space, but we can also sum the entropy for each
feature to indicate the variability of a sub-group of CMR data.
Taking each cluster as a sub-group and summing the entropy for
each of the attributes within each cluster provides an indication
of the variability of the original high dimensional input data.
Interestingly, this summed entropy correlates strongly with the
entropy of the low dimensional RGB points with a Pearson’s
Correlation of 0.99 and an R2 of 0.98 as shown in Figure 5.
The low dimensional representation of the CMR data learned
by the DAE has not only identified structure in the data, but
also maintains the properties of the original high dimensional

TABLE 2 | Rank clusters by highest proportion of missing Episode type.

Cluster Clinical system M F N O M’

2 INPS Vision 21 3 1 0 0.84

26 INPS Vision 92 6 9 4 0.83

25 INPS Vision 133 24 15 1 0.77

3 INPS Vision Enterprise 27 3 4 1 0.77

19 INPS Vision Enterprise 99 0 29 3 0.76

14 INPS Vision Enterprise 99 2 28 3 0.75

7 INPS Vision Enterprise 7 1 2 0 0.70

17 EMIS Web 8 10 1 4 0.35

13 EMIS Web 18 35 2 13 0.26

27 EMIS Web 3 5 1 8 0.18

9 EMIS Web 1 7 0 0 0.13

21 EMIS Web 74 532 78 95 0.10

22 EMIS Webmigrated Oct15 1 11 1 1 0.07

18 EMIS Web 8 77 11 23 0.07

8 EMIS Web 2 30 3 5 0.05

23 EMIS Web 105 1,177 464 504 0.05

16 EMIS Web 25 326 90 116 0.04

24 EMIS Web 167 1,706 1,038 858 0.04

20 EMIS Webmigrated Oct15 1 18 5 0 0.04

5 EMIS Web 10 244 44 66 0.03

1 EMIS Web 36 1,014 247 300 0.02

4 EMIS Web 1 67 15 21 0.01

6 EMIS Web 2 210 25 54 0.01

10 EMIS Web 0 20 2 5 0.00

11 EMIS Web 0 15 0 5 0.00

12 EMIS Web 0 11 13 1 0.00

15 EMIS Web 0 6 3 3 0.00

Episode types are missing data (M), first (F), new (N), or ongoing (O). The clusters have

been ranked in order of highest proportion of missing data (M’).

data. This indicates that the DAE can produce visualizations that
accurately reflect the input data that can be further analyzed as
outlined here.

4. DISCUSSION AND CONCLUSIONS

The analysis of the CMR data with a deep autoencoder was able
to isolate sub-groups within the dataset that can be uniquely
identified by three of the attributes. The other six attributes
were found to not affect the formation of clusters, only their
diffuseness. The lack of influence of Practice ID, Event Date,
Age and Gender in grouping the data indicate the absence
of a systematic bias in the data recording. That is, clusters
forming based on these variables would indicate these as major
discriminating features. As neither Practice ID nor Event Date
discriminate the data in any observable way we can be confident
that the data are well standardized and that practices and
personnel recording the data are not an influence in any
observable patterns.

The ratio of genders in each cluster varies between 1:1 and 3:1
but also does not significantly segment the data in an observable
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FIGURE 6 | (A–E) Typical distributions of Episode for the five archetype clusters in CMR data identified in Figure 3 listing the specific cluster the distribution arises

from. Pie charts illustrate the frequency of Episode type and the proportion of missing (M), first (F), new (N), or ongoing (O) occurrence of respiratory infection listed in

the CMR data.

way. 14 of the clusters contain ≥ 60% females, 10 of the clusters
are 50:50 males to females, and the remaining 3 clusters ≥

60% males. This does not take in to account the difference in
cluster population size, or instance of multiple CMRs from the
same patient, though this type of further analysis is possible. For
other datasets, gender may be an important factor, such as in
certain types of disease, however it is not found to be influential
in grouping patients with respiratory conditions as we would
expect. The Coding System has the same values for all but one
instance in the datasets thus has no influence on the results
and is omitted from our analysis and summaries. Looking at
the distribution of Episode type for each of the clusters we can
identify some archetypal patterns in the data. Of all 27 clusters
in the data we observe 5 general trends in the data summarized
in Figure 6; (a) one with ≈ 50% new (N) and first (F), (b) seven
clusters with >70% missing (M), (c) 13 clusters with >59 % F,
(d) five clusters with ≈ 50% F, and ≈ 20% O, and (e) one cluster
with ≈ 50% ongoing (O). A typical distribution of Episode type
with these patterns is illustrated in Figure 6 for a few of the
clusters. These distributions are useful in assessing the subsets
of data with missing entries or the ratio of first and new to
ongoing Episodes. We can further analyse the cluster with the
highest proportion of missing Episode type in order to identify
trends in the data such as the sources of these CMRs. The largest
proportion of data with missing Episode type are from the INPS
Vision and INPS Vision Enterprise Clinical Systems (Table 2).
Data from the EMIS systems contain much fewer missing data
providing better quality input for theWeekly Returns Service and
any data for predictive models. We note that the TTP systmOne
constitute only 38 out of 11,000 records and did not form clusters
larger than 5 data points and so does not appear in our analysis.
This analysis is useful in identifying common features in CMRs
and data sources, and provide potential early warning signs as
larger proportions of incident (first and new) Episodes can be
used to detect potential disease outbreaks to prevent epidemics.
Implementation of this system could enable targeted analysis of
the data focusing on specific ages or regions through Practice ID,
or a front end for data correction methods [20] for improved
reporting and forecasting.

We note that the identification of three main drivers is not
dependent on the number of dimensions in our DAE as these
attributes vary in dimensionality. The input data consists of a

concatenated vector of the attributes in the CMR converted,
described in section 2.2, with a total dimensionality of 93,
where the three attributes driving the clusters (Read Term,
Clinical System and Read Code) contributing 58%, 24% and
5%, respectively, to the dimensionality of the input. Once the
attributes are combined there is no distinction between elements
in the input vector. Moreover, the contribution of each element is
restricted by using a sparse DAE as outlined in section 2.3, which
limits the dominance of any particular entry in the input vector.

In this work we have presented a methodology for processing
heterogeneous CMR data and performed unsupervised nonlinear
dimensionality reduction using a deep autoencoder. Analysing
the data in this way enables the visualization and segmentation
of the high dimensional multi-type CMR data in order to
identify patterns and trends in the data. From these, we can
carry out cluster specific analysis. This efficient methodology
can perform reduction of the data at a practical time scale to
be a useful tool for healthcare practitioners. Furthermore, we
introduce the use of Shannon Entropy as a means to analyse the
variability of heterogeneous CMR data. Furthermore, we show
a strong correlation between the Shannon Entropy in both the
original CMR and DAE reduced data, demonstrating that the
low dimensional clusters are representative of the original data.
Maintaining properties of the CMR data in the low dimensional
representation enables confidence in further analysis such as
interpretation of visualizations and variability, that is not possible
in other nonlinear reduction techniques [33].

These methods can be combined with methods for data
correction. This is a vital benefit, as 15–20 practices (50,000–
150,000 patients) are excluded from the RCGP Weekly Returns
Service due to being poor quality data [20]. The Weekly Returns
Service monitors the number of patients with incident Episodes
of illness in England and is the key primary care element of
the national disease monitoring systems run by Public Health
England [20]. The analysis of this data are also critical for
assessing flu vaccine effectiveness [4], hence the omission of such
a large amount of data each week is significant, and methods for
data correction are of high importance.

The data used here are examples of data selected over a
6 week period from 230 practices, however the methodology
can be extended to large subsets of the database to identify
further patterns in the data. An investigation over a longer
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time frame may identify any slow dynamic trends such as
periodic changes in data quality. The results presented here
have shown the benefit of this type of analysis for CMR data
and its use for near real time data analysis. This methodology
has the potential to be used by medical practitioners to aid
data analysis and decision making such as treatment course
or diagnosis, though more work is needed in understanding
and optimizing the algorithm. The use of regularization plays
a vital role in the training process and the embedded results,
though it is unclear how to select an appropriate regularization
strategy or their coefficients in the cost function. A comparison
between other regularization methods, such as L1-norm, would
be particularly useful due to its promotion of sparsity [35].
Comparison of our sparse deep autoencoder to other sparse
methods such as compressed sensing would also be of interest
for these data.
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