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Deep learning has been successfully used in various applications including image

classification, natural language processing and game theory. The heart of deep learning

is to adopt deep neural networks (deep nets for short) with certain structures to build

up the estimator. Depth and structure of deep nets are two crucial factors in promoting

the development of deep learning. In this paper, we propose a novel tree structure to

equip deep nets to compensate the capacity drawback of deep fully connected neural

networks (DFCN) and enhance the approximation ability of deep convolutional neural

networks (DCNN). Based on an empirical risk minimization algorithm, we derive fast

learning rates for deep nets.

Keywords: deep nets, learning theory, deep learning, tree structure, empirical risk minimization

1. INTRODUCTION

Deep learning [1], a learning strategy based on deep neural networks (deep nets), has recently
made significant breakthrough on bottlenecks of classical learning schemes, such as support
vector machines, random forests and boosting algorithms, by demonstrating its remarkable success
in such research areas as computer vision [2], speech recognition [3], and game theory [4].
Understanding the theory of deep learning has recently triggered enormous research activities in
communities of statistics, optimization, approximation theory, and learning theory. Continually
rapid developments on the deep learning methodology as well as its rationality verifications
gradually uncover its mysterious veils.

Depth and structure of deep nets are two crucial factors in promoting the development
of deep learning [5]. The necessity of depth has been rigorously verified from the viewpoints
of approximation theory and representation theory, via showing the advantages of deep nets
in localized approximation [6], sparse approximation in the frequency domain [7, 8], sparse
approximation in the spatial domain [9], manifold learning [10, 11], hierarchical structures
grasping [12, 13], piecewise smoothness realization [14], universality with bounded number of
parameters [15, 16] and rotation invariance protection [17].We refer the readers to Pinkus [18] and
Poggio et al. [19] for details on the theoretical advantages of deep nets over shallow neural networks
(shallow nets). The gain in approximation and feature extraction inevitable leads to large capacity
of deep nets, making the derived estimators sensitive to noise accumulated from significant increase
amount of computation. In particular, under some capacitymeasurements like the number of linear
regions [20], Betti numbers [21], and number of monomials [22], it is well-known that while the
capacity of deep nets increases exponentially with respect to depth and polynomially with respect
to width, the increase in depth of the network brings additional risk in stability, additional difficulty
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FIGURE 1 | Deep nets vs. shallow nets. (A) A special deep net. (B)

Shallow net.

in designing learning algorithms, and may result in large
variance. In this regard, we would like to point out that although
there are the same number of free parameters in neural networks
presented in Figure 1, the capacity of the network in Figure 1A

is much larger than that in Figure 1B.
Fortunately, the structure, reflected by the layer-to-layer

conjunction rule, compensates for the capacity drawback of
deep nets and allows deep learning feasible and even practical.
Two dominant structures of deep nets, as shown in Figure 2,
are the deep fully connected neural networks (DFCN) and
deep convolutional neural networks (DCNN). While the pros
of DFCN is its excellent approximation ability, since all the
conjunctions are considered in this structure, its cons, however,
lies in the extremely large capacity, leading to scalable difficulty
and large variance from the learning theory viewpoint [23].
On the other hand, the advantage of DCNN is its small
number of free parameters as a result of sparse connectivity
and weight-sharing mechanisms. For example, there are 2 free
parameters in each layers for a DCNN with filter length 2 (see
Figure 2B). Such a parameter reduction certainly brings the
benefit in stability and consequently small variance. However,
it is questionable if DCNN could maintain the attractive
approximation ability of DFCN. Indeed, with the exception
of the universal approximation property and approximation
rate estimates [24, 25], there is insufficient theoretical study
in the assessment of the approximation capability of DCNN.
Thus, equipping deep nets with an appropriate structure to
reduce the number of parameters of DFCN while enhancing the
approximation ability of DCNN requires some desirable balance
of the bias and variance in the learning process.

In this paper, we propose an appropriate structure to equip
deep nets with a combination of some smaller variance provided
by DCNN and a corresponding less bias advantage of DFCN.
Two important ingredients of our approach are feature grouping
via dimensionality-leveraging and tree-type feature extraction.
Our construction is motivated by the structures of deep nets
presented in Chui et al. [6] and Lin [9] for the realization of
locality and sparsity features. As shown in Figure 3A, to capture

the position information for x ∈ R
d among 4 candidates, a

dimensionality-leveraging, from d to 8d, is used to group each
position information via 2d neurons. With the help of the neural
networks in dimensionality-leveraging, features are coupled in
a group of neurons, and then the tree structure, instead of the
convolutional structure, is sufficient to capture such features.
Thus, we will use the first hidden layer to group the features via
dimensionality-leveraging, and will then utilize the tree structure
to extract the features, as exhibited in Figure 3B.

It is important to emphasize that the aim of the present
paper is not to pursue the advantages of deep nets with tree
structures in approximation, since this has been the subject of
investigation in a vast amount of literature (see for example
[6, 9, 10, 13, 15, 17, 26]), but to show the benefit of tree structures
in deriving small variance. In particular, using the tree structures,
we are able to decouple deep nets, layer by layer, and derive
a tight covering number [27] estimate by using the Lipschitz
property of the activation function. Since there are much fewer
free parameters in deep nets with tree structures than those in
DFCN, with the same number of neurons, the covering number
of the former is smaller than that of the latter, resulting in smaller
variance of deep nets with tree structures. We will then derive
fast learning rates for “generalization error” for implementing
the empirical risk minimization on deep nets. Deep nets with
tree structures, revealed by our study, possess three theoretical
advantages, namely: the capacity, as measured by the covering
number, is much smaller than that of DFCN; based on tree
structures, the approximation capability is comparable with that
of DFCN; and fast learning rate is achieved, by applying an
empirical risk minimization algorithm.

2. DEEP NETS WITH TREE STRUCTURES

In image processing, a standard approach is to leverage a low-
dimensional image to a high-dimensional pixel-scale image.
While leveraging is a brutal approach that loses such image
features as sparsity, locality and symmetry, and makes the
variables highly inter-related, one method to capture the
structure information by means of grouping the adjacent
variables is machine learning. In particular, DCNN with
numerous hidden layers, as exhibited in Figure 4, has been
utilized, with the underlying intuition that the convolutional
structure can extract missing features by deepening the network.
The problem is, however, that with the exception of being able to
extract transition-invariance features [28], there is no theoretical
verification that DCNN could out-perform other neural network
structures in feature extraction. Motivated by the application of
DCNN in image processing, we propose a novel structure to
equip deep nets for feature extraction and learning. Our basic
idea is to group different features via several neurons in the
first hidden layer rather than brutal leveraging. In this way, each
group is independent and thus a tree structure feature extraction
is sufficient to extract the grouped feature, just as Figure 3B

purports to show.
In the following, we present the detailed definition of deep nets

with tree structures. Let I : = [−1, 1], x = (x(1), . . . , x(d)) ∈ I
d =
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FIGURE 2 | Structures for deep nets. (A) Deep fully-connected nets. (B) Convolutional neural networks.

FIGURE 3 | Deep nets with tree structures. (A) Deep nets for locality. (B) Deep nets with tree structures.

FIGURE 4 | DCNN in image processing.

[−1, 1]d, and L ∈ N denote the number of hidden layers. Also let
φk :R → R, k = 0, 1, . . . , L, be univariate activation functions.
Let N0 = d and for each j = 1, . . . , L, denote by Nj ≥ 2, the size
of tree in the j-th hidden layer. Set

HEα0 ,0(x) =
N0
∑

j=1

aj,Eα0 ,0φ0(wj,Eα0 ,0x
(j) + bj,Eα0 ,0),

x = (x(1), . . . , x(d)), Eα0 ∈
L
∏

i=1

{1, 2, . . . ,Ni}. (1)

Then a deep net with the tree structure of L layers can be
formulated recursively by

HEαk ,k(x) =
Nk
∑

j=1

aj,Eαk ,kφk(Hj,Eαk ,k−1(x)+ bj,Eαk ,k),

1 ≤ k ≤ L, Eαk ∈
L
∏

i=k+1

{1, 2, . . . ,Ni}, (2)

where aj,Eαk ,k, bj,Eαk ,k,wj,Eα0 ,0 ∈ R for each j ∈ {1, 2, . . . ,Nk},
k ∈ {0, 1, . . . , L}, ∏L

L+1{1, 2, . . . ,NL} = ∅ and HEαk−1 ,k−1(x) =
(H1, Eαk ,k−1(x), . . . ,HNk , Eαk ,k−1(x)). Let Htree

L denote the set of
output functions HL = HEαL ,L for EαL ∈ ∅ at the L-th layer. For

0 ≤ k ≤ L − 1 and Eαk ∈ ∏L
i=k+1{1, 2, . . . ,Ni}, denote by Htree

Eαk ,k
the set of functions HEαk ,k defined in (2).

By setting φ0(t) = t and bj,Eα0 ,0 = 0, it is easy to see that Htree
1

reduces to the classical shallow net. In view of the tree structure,
it follows from (1), (2) and Figure 5 that there are a total of

AL : = 2

L
∑

k=0

5L−k
ℓ=0NL−ℓ + 5L

ℓ=0Nℓ (3)
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FIGURE 5 | Size of tree in deep nets.

free parameters for HL ∈ Htree
L . For α,R ≥ 1, we introduce the

notation

Htree
L,α,R : =

{

HL ∈ Htree
L : |aj,Eαk ,k|, |bj,Eαk ,k|, |wj,Eαk ,0| ≤ R (AL)

α ,

0 ≤ k ≤ L, 1 ≤ j ≤ Nk, Eαk ∈
L
∏

i=k+1

{1, 2, . . . ,Ni}
}

. (4)

With the restrictions imposed by (4) on deep nets, the parameters
are bounded. This is indeed a necessity condition, since it can be
found in Guo et al. [29] and Maiorov and Pinkus [15] that there
exists some h ∈ Htree

2,∞,∞ with finitely many neurons but infinite
capacity (covering number).

3. ADVANTAGES OF DEEP NETS WITH
TREE STRUCTURES

The study of the advantages of deep nets over shallow nets
in approximation is a classical topic and several theoretical
benefits of deep nets are revealed in a large literature. We
refer the readers to a fruitful review paper [18] for more
details. Due to the concise mathematical formulation, deep nets
with tree structures are one of the most popular structures in
approximation theory. It dates back to Mhaskar [26], where it
was proved that deep nets with tree structures can be constructed
to overcome the saturation phenomenon of shallow nets in the
sense that the approximation rate cannot go beyond a certain
level when the regularity of the target function increases. In Chui
et al. [6], deep nets with two hidden layers and tree structures
were constructed to provide localized approximation, which is
beyond the performance of shallow nets. In Maiorov and Pinkus
[15], a deep net with tree structures, two hidden layers and
finitely many neurons, was demonstrated to possess the universal
approximation property. Furthermore, in our recent papers Chui
et al. [10, 17], deep nets with tree structures were proved to be
capable of extracting the manifold structure feature and rotation-
invariance feature, respectively.

Most importantly, it is clear from the above-mentioned
results that deep nets with tree structures do not degrade the
approximation performance of DFCN, while sparse connections
between neurons significantly reduces the number of free
parameters. In the following, we will show that deep nets with
tree structures have an overall advantage over DFCN by deriving
tight covering number estimates. Let B be a Banach space and V
be a subset of B. Denote byN (ε,V ,B) the ε-covering number of
V under the metric of B [27], defined by the minimal number of
elements in an ε-net of V . For B = L∞(Id), we set N (ε,V) : =
N (ε,V , L∞(Id)) for brevity. The objective of this consideration is
to establish the following theorem, that exhibits a tight bound for
covering numbers ofHtree

L,α,R.

Theorem 1. Assume that

|φj(t) − φj(t
′)| ≤ c1|t − t′|, and |φj(t)| ≤ 1,

∀ t, t′ ∈ R, j = 0, . . . , L. (5)

Then for any 0 < ε ≤ 1,

N (ε,Htree
L,α,R) ≤

(

2L+5/2c
L+3/2
1 AL+1

R,α,L

ε

)2AL

, (6)

whereAR,α,L : = R (AL)
α andAL is defined by (3).

The proof of Theorem 1 is delayed to section 5. We remark
that the assumption (5) is mild. Indeed, almost all widely used
activation functions including the logistic function φ(t) = 1

1+e−t ,

hyperbolic tangent sigmoidal function φ(t) = 1
2 (tanh(t)+1) with

tanh(t) = (e2t − 1)/(e2t + 1), arctan sigmoidal function φ(t) =
1
π
arctan(t)+ 1

2 , Gompertz function φ(t) = e−ae−bt
with a, b > 0

and Gaussian function σ (t) = e−t2 satisfy this assumption. We
also remark that numerous quantities such as the number of
linear regions [20], Betti numbers [21], VC-dimension [30], and
number of monomials [22] have been employed to measuring
the capacity of deep nets. To compare these measurements, it
is noted that covering numbers possess three advantages. Firstly,
the covering number is close to the coding length in information
theory according to the encode-decode theory proposed by
Donoho [31]. Thus, it is a powerful capacity measurement to
show the expressivity of deep nets. Secondly, covering numbers
determine the limitations of approximation ability of deep
nets [17, 29]. Therefore, studying covering numbers of deep
nets facilitates the verification of the optimality of the existing
approximation results in Chui et al. [6, 10, 17] and Mhaskar
[26]. Finally, covering numbers usually correspond to some
oracle inequalities [23] and can reflect the stability of learning
algorithms. All these features suggest the rationality of adopting
the covering number to measure the capacity of deep nets.

Under the Lipchitz assumption (5) for the activation function,
a bound of the covering number for the set

F : = {f = σ (w · x+ b) :w ∈ R
d, b ∈ R, ‖f ‖∗ ≤ 1}
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with ‖ · ‖∗ denoting some norm including the uniform norm was
derived in Kůrková and Sanguineti [32]. Based on this, Maiorov
[33] presented a tight estimate for shallow nets as

N (ε, S∗σ ,n) = O

(

nd log
Ŵn

ε

)

, (7)

where

S∗σ ,n : =
{

n
∑

j=1

cjσ (wj · x+ θj) : |cj|, |w(i)
j |, |θj| ≤ Ŵn,

1 ≤ j ≤ n, 1 ≤ i ≤ d

}

and Ŵn > 0 depending on n.
Estimates of covering number for deep nets were first studied

in Kohler and Krzyżak [34], where a tight bound for covering
numbers of deep nets with tree structures and two hidden layers is
derived. Using a similar approach, it was presented in Kohler and
Krzyżak [34] and Lin [9] an upper bound estimate for deep nets
with tree structures, five hidden layers and without the Liptchitz
assumption (5) of the activation function. Recently, Kohler and
Krzyzak [13] provided an estimate for covering numbers of deep
nets with L-hidden layers with L ∈ N. Furthermore, covering
numbers for deep nets with arbitrary structures and bounded
parameters were deduced in Guo et al. [29]. Our result, exhibited
in Theorem 1, establishes a covering number estimate for deep
nets with arbitrarily many hidden layers and tree structures. This
result improves the estimate in Guo et al. [29] by reducing the
exponent of AR,α,L from L2 to (L + 1), since AR,α,L > 1 is
usually very large. The main tool in our analysis is to use the
Liptchitz property of the activation function and boundedness
of the free parameters to decouple the depth layer by layer
due to tree structures. It should be mentioned that Theorem
1 also removes the monotonic increasing assumption on the
activation function while exhibits a similar covering number
estimate as Anthony and Bartlett [35, Theorem 14.5]. Due to
the boundedness assumption (5), our result excludes the covering
number estimate for deep nets with the widely used rectifier
linear unit (ReLU). Using the technique in Guo et al. [29, Lemma
1], we can derive upper bound estimates of deep nets in different
layers. But it leads to an additional power L on AL+1

R,α,L in (6), i.e.,

AL2+L
R,α,L . Thus, it requires a novel technique to derive the same

covering number estimate for deep ReLU nets as Theorem 1. We
leave it as a future work.

4. GENERALIZATION ERROR ESTIMATES
FOR DEEP NETS

In this section, we present the generalization error estimates
for empirical risk minimization on deep nets in the framework
of learning theory [23]. In this framework, samples Dm =
{(xi, yi)}mi=1 are assumed to be drawn independently according to

the Borel probability measure ρ on Z = X ×Y with X = I
d and

Y ⊆ [−M,M] for someM > 0. The primary objective is to apply
the regression function:

fρ(x) =
∫

Y

ydρ(y|x), x ∈ X

which minimizes the generalization error

E(f ) : =
∫

Z

(f (x)− y)2dρ,

where ρ(y|x) denotes the conditional distribution at x induced by
ρ. Let ρX be the marginal distribution of ρ on X and (L2ρX

, ‖ · ‖ρ)

be the Hilbert space of ρX square-integrable functions on X . For
f ∈ L2ρX , we have [23]

E(f )− E(fρ) = ‖f − fρ‖2ρ . (8)

Denote by ED(f ) : = 1
m

∑m
i=1(f (xi)−yi)

2 the empirical risk for the
estimator f . Before presenting the generalization error for deep
nets with tree structures, we derive an oracle inequality based
on covering numbers for the empirical risk minimization (ERM)
algorithm , i.e.,

fD,H = argmin
f∈H

ED(f ), (9)

where H is a set of continuous functions on X and is Htree
L,α,R in

our study. Since |y| ≤ M almost everywhere, we have |fρ(x)| ≤
M. It is natural to project an output function f :X → R onto the
interval [−M,M] by the projection operator

πMf (x) : =







f (x), if −M ≤ f (x) ≤ M,
M, if f (x) > M,
−M, if f (x) < −M.

Thus, the estimator we study in this paper is πMfD,H. The
following theorem presents the oracle inequality for ERM based
on covering numbers.

Theorem 2. Suppose there exist n′,U > 0, such that

logN (ε,H) ≤ n′ log
U

ε
, ∀ε > 0. (10)

Then for any h ∈ H and ǫ > 0,

Prob{‖ π MfD,H − fρ‖2ρ > ε + 2‖h− fρ‖2ρ}

≤ exp

{

n′ log
16UM

ε
− 3mε

512M2

}

+ exp

{

−3mε2

16(3M + ‖h‖L∞(X ))2
(

6‖h− fρ‖2ρ + ε
)

}

.

The proof of Theorem 2 will be given in the next section.
Theorem 2 shows that the covering number plays an important
role in deducing the generalization error. As a result of this
theorem and Theorem 1, we can derive tight generalization error
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bounds for ERM on deep nets with tree structures. Suppose that
there exist some β > 0, c̃ > 0,R > 0 and α > 0, such that

min
g∈Htree

L,α,R

‖fρ − g‖L∞(Id) ≤ c̃A
−β
L . (11)

Define

fD,L = arg min
f∈Htree

L,α,R

ED(f ). (12)

We then derive the following generalization error estimate
for (12).

Theorem 3. Let 0 < δ < 1. Suppose that there exist some
β , c̃,α,R > 0 such that (11) holds. If (5) holds and C′m1/(2β+1) ≤
LAL ≤ C′′m1/(2β+1), then with confidence at least 1− δ, we have

E(πMfD,L)− E(fρ) ≤ CL2βm
− 2β

2β+1 logm log
3

δ
, (13)

where C,C′,C′′ are constants independent of AL, L, N1, . . . ,NL,
m, or δ.

The proof of Theorem 3 will be given in the next section.
Assumption (11) describes the expressivity of Htree

L,α,R. For some
constants α,R, the exponent β in (11) implies the regularity
for the regression function fρ . In particular, it can be found in
Chui et al. [17] and Guo et al. [29] that the Liptchitz continuity
and radial property of fρ corresponds to β = 1/d and β = 1,
respectively. It was shown in (13) that there is an additional L2β

in our estimate, which is different from generalization errors of
shallow nets [36] and deep nets with fixed depth [10]. The main
reason is that there is an additional L in the exponent for the
covering numbers of Htree

L,α,R in (6). With the same number of
parameters, large depth of deep nets with tree structures usually
leads to large variance, as shown in (13). However, it was also
shown in Chui et al. [6, 10, 17], Guo et al. [29], Lin [9, 37],
Mhaskar and Poggio [12], and Pinkus [18] that the depth is
necessary in improving the performance of deep nets. It would
be of some interest to study the smallest depth of deep nets with
tree structures in extracting specific features. This study is left in
a future work.

5. PROOFS OF MAIN RESULTS

To facilitate our proof of Theorem 1, let us first establish the
following lemma:

Lemma 1. Let ι ∈ N, A ⊆ R
ι, B be a Banach space of functions

on A and R1,R2 > 0. For F ,G ⊆ B, set F ⊕ G : = {f + f ∗ : f ∈
F , f ∗ ∈ G} and F ⊙ G : = {f · f ∗ : f ∈ F , f ∗ ∈ G}. Then it follows
that for any ε, ν > 0,

N (ε + ν,F ⊕ G,B) ≤ N (ε,F ,B)N (ν,G,B). (14)

In addition, if maxx∈A |f (x)| ≤ R1, maxx∈A |f ∗(x)| ≤ R2 for all
f ∈ F and f ∗ ∈ G, and F ⊙ G ⊆ B, then

N (ε + ν,F ⊙ G,B) ≤ N (ε/R2,F ,B)N (ν/R1,G,B). (15)

Proof: Let {f1, . . . , fN} and {f ∗1 , . . . , f ∗N′} be an ε-cover and a
ν-cover of F and G with

N = N (ε,F ,B), and N′ = N (ν,G,B). (16)

Then, for every f ∈ F and f ∗ ∈ G, there exist k ∈ {1, . . . ,N} and
ℓ ∈ {1, . . . ,N′}, such that

‖f − fk‖B < ε, ‖f ∗ − f ∗ℓ ‖B < ν.

By the triangle inequality, we have

‖f + f ∗ − fk − f ∗ℓ ‖B ≤ ‖f − fk‖B + ‖f ∗ − f ∗ℓ ‖B < ε + ν.

Thus, {fk + f ∗ℓ : 1 ≤ k ≤ N, 1 ≤ ℓ ≤ N′} is an (ε + ν)-cover of
F ⊕ G. Therefore, (16) implies

N (ε + ν,F ⊕ G,B) ≤ NN′ = N (ε,F ,B)N (ν,G,B).

This establishes (14).
To prove (15), let {f1, . . . , fN∗} and {f ∗1 , . . . , f ∗N′∗

} be an ε/R2-

cover and a ν/R1-cover of F and G, respectively, with

N∗ = N (ε/R2,F ,B), and N′
∗ = N (ν/R1,G,B). (17)

Then, for every f ∈ F and f ∗ ∈ G, there exist k ∈ {1, . . . ,N∗}
and ℓ ∈ {1, . . . ,N′

∗} that satisfy maxx∈A |fk(x)| ≤ R1 and
maxx∈A |f ∗ℓ (x)| ≤ R2 such that

‖f − fk‖B < ε/R2, ‖f ∗ − f ∗ℓ ‖B < ν/R1.

It then follows from the triangle inequality that

‖f · f ∗ − fk · f ∗ℓ ‖B ≤ ‖f · f ∗ − f · f ∗ℓ ‖B + ‖f · f ∗ℓ − fk · f ∗ℓ ‖B
≤ R1‖f ∗ − f ∗ℓ ‖B +R2‖f − fk‖B < ν + ε,

which implies that {fkf ∗ℓ : 1 ≤ k ≤ N∗, 1 ≤ ℓ ≤ N′
∗} is an

(ε + ν)-cover of F ⊙ G. This together with (17) imply

N (ε + ν,F ⊙ G,B) ≤ N∗N′
∗ = N (ε/R2,F ,B)N (ν/R1,G,B).

This completes the proof of Lemma 1.

We are now ready to prove Theorem 1 as follows.

Proof of Theorem 1: Define, for k ∈ {0, 1, . . . , L} and Eαk ∈
∏L

i=k+1{1, 2, . . . ,Ni},

Htree
k,α,R,L,Eαk : =

{

Hk ∈ Htree
Eαk ,k : |aj,Eαℓ ,ℓ|, |bj,Eαℓ ,ℓ|, |wj,Eαℓ ,0| ≤ AR,α,L,

0 ≤ ℓ ≤ k, 1 ≤ j ≤ Nℓ, Eαℓ ∈
k
∏

i=ℓ+1

{1, 2, . . . ,Ni}
}

.

(18)

Then, (14) implies that for ε > 0,

N (ε,Htree
k,α,R,L,Eαk ) ≤

(

max
1≤j≤Nk

N (ε/Nk,H
tree,∗
k,j,α,R,L,Eαk )

)Nk

, (19)
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where for 1 ≤ j ≤ Nk,

H
tree,∗
k,j,α,R,L,Eα : =

{

f ∗j (x) = aj,Eαk ,kφk(HEα,k−1(x)+ bj,Eα,ℓ)

: |aj,Eαℓ ,ℓ|, |bj,Eα,ℓ| ≤ AR,α,L,

Hj,Eαk−1 ,k−1 ∈ Htree
k−1,α,R,L,Eαk−1

,

0 ≤ ℓ ≤ k, Eαℓ ∈
k
∏

i=ℓ+1

{1, 2, . . . ,Ni}
}

.

For each j ∈ {1, . . . ,Nk}, since |aj,Eαk ,k| ≤ AR,α,L and ‖φk‖L∞(R) ≤
1, we obtain, from (15) with ι = 1, B = L∞(R),R1 = AR,α,L and
R2 = 1, that

N (ε/Nk,H
tree,∗
k,jk,α,R,L,Eαk ) ≤ N (ε/Nk, {aj,Eαk ,k : |aj,Eαk ,k| ≤ AR,α,L})

N (ε/(NkAR,α,L),H
tree,∗∗
k,j,α,R,L,Eαk ), (20)

where

H
tree,∗∗
k,j,α,R,L,Eαk : =

{

f ∗∗j (x) = φk(Hj,Eαk ,k−1(x)+ bj,Eαk ,k) :

|bj,Eαk ,ℓ| ≤ AR,α,L,

HEαk−1 ,k−1 ∈ Htree
k−1,α,R,L,Eαk−1

, 0 ≤ ℓ ≤ k− 1,

Eαℓ ∈
k−1
∏

i=ℓ+1

{1, 2, . . . ,Ni}
}

.

Since φk satisfies (5), it follows from the definition of the covering
number that

N (ε/Nk, {aj,Eαk ,k : |aj,Eαk ,k| ≤ AR,α,L}) ≤
2NkAR,α,L

ε
(21)

and

N (ε/(NkAR,α,L),H
tree,∗∗
k,j,α,R,L,Eαk ) ≤ N (ε/(c1NkAR,α,L),

H
tree,∗∗∗
k,j,α,R,L,Eαk ), (22)

where

H
tree,∗∗∗
k,j,α,R,L,Eα : =

{

f ∗∗∗j (x) = HEαk−1 ,k−1(x)+ bj,Eαk ,k
: |bj,Eαℓ ,ℓ| ≤ AR,α,L,

Hj,Eαk−1 ,k−1 ∈ Htree
k−1,α,R,L,Eαk−1

, 0 ≤ ℓ ≤ k− 1,

Eαℓ ∈
k−1
∏

i=ℓ+1

{1, 2, . . . ,Ni}
}

.

Using (14) again, we have

N (ε/(c1NkAR,α,L),H
tree,∗∗∗
k,j,α,R,L,Eαk )

≤ N (ε/(2c1NkAR,α,L), {bj,Eαk ,k : |bj,Eαk ,k| ≤ AR,α,L})
N (ε/(2c1NkAR,α,L),H

tree
k−1,α,R,L,Eαk−1

)

≤ 4c1NkAR,α,L

ε
N (ε/(2c1NkAR,α,L),H

tree
k−1,α,R,L,Eαk−1

). (23)

Combing (19), (20), (21), (22), and (23), we get

N (ε,Htree
k,α,R,L,Eαk ) ≤

(

8c1N
2
k
A2

R,α,L

ε2

)Nk

(

N (ε/(2c1NkAR,α,L),H
tree
k−1,α,R,L,Eαk−1

))
)Nk

. (24)

Using (24), we have

N (ε,Htree
L,α,R,L,EαL ) ≤

(

8c1N
2
LA

2
R,α,L

ε2

)NL

[

N

(

ε

2c1NLAR,α,L
,Htree

L−1,α,R,L,EαL−1

)]NL

≤
(

8c1N
2
LA

2
R,α,L

ε2

)NL
(

8c1(2c1)
2N2

L−1N
2
LA

4
R,α,L

ε2

)NLNL−1

×
[

N

(

ε

(2c1)2A
2
R,α,LNLNL−1

,HF
L−2,α,R,L,EαL−2

)]NLNL−1

,

which implies by induction

N (ε,Htree
L,α,R,L,EαL ) ≤ (2c1)

2
∑L−1

k=1 (L−k)
∏L−k

ℓ=0 NL−ℓ

× (AR,α,L)
2
∑L

k=1(L−k+1)
∏L−k

ℓ=0 NL−ℓ

L
∏

k=1

(

L
∏

ℓ=k

Nℓ

)2
∏L

ℓ=k Nℓ

(

8c1

ε2

)

∑L
k=1

∏L−k
ℓ=0 NL−ℓ

×
[

N

(

ε

(2c1)LA
L
R,α,LNLNL−1NL−2 · · ·N1

,

Htree
0,α,R,L,Eα0

)]NLNL−1NL−2···N1

. (25)

For arbitrary ν > 0, using the same arguments as those in
proving (24), we get

N (ν,Htree
0,α,R,L,Eα0 ) ≤

(

8c1N
2
0A

2
R,α,L

ν2

)N0

×
(

max
1≤j≤N

N

(

ν/(2c1N0AR,α,L),

{

wj,Eα0 ,0x
(j0) + bj,Eα0 ,0

: |wj,Eα0,0|, |bj,Eα0 ,0| ≤ AR,α,L

}

)

))N0

.

For j ∈ {1, . . . ,N0} and 0 ≤ x(j0) ≤ 1, noting

that
{

wj,Eα0 ,kx
(j0) + bj,Eα0 ,k : |wj,Eα0 ,0|, |bj,Eα0 ,0| ≤ AR,α,L

}

is in a two

dimensional linear space whose elements are bounded by 2AR,α,L,
we get

N

(

ν/(2c1N0AR,α,L),
{

wj,Eα,0x(j0) + bj,Eα,0 : |wj,Eα,0|, |bj,Eα,0|
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≤ AR,α,L

})

≤
(

8c1N0A
2
R,α,L

ν

)2

.

This implies

N (ε/((2c1)
LAL

R,α,LNLNL−1NL−2 · · ·N1),H
tree
0,α,R,L,Eα0 ))

≤
(

8c1(2c1)
2LA2L+2

R,α,LN
2
LN

2
L−1 · · ·N2

0

ε

)N0

(

8c1(2c1)
LAL+1

R,α,LNLNL−1NL−2 · · ·N1N0

ε

)2N0

.

Inserting this estimate into (25), we have

N (ε,Htree
L,α,R,L,Eα0 ) ≤ (2c1)

2
∑L−1

k=0 (L−k)
∏L−k

ℓ=0 NL−ℓ

(AR,α,L)
2
∑L

k=0(L−k+1)
∏L−k

ℓ=0 NL−ℓ

×
L
∏

k=0

(

L
∏

ℓ=k

Nℓ

)2
∏L

ℓ=k Nℓ (

8c1

ε2

)

∑L
k=0

∏L−k
ℓ=0 NL−ℓ

×
(

8c1(2c1)
LAL+1

R,α,LNLNL−1NL−2 · · ·N1N0

ε

)2N0N1···NL

.

Recalling (3), Nk ≥ 2 for arbitrary k ∈ {0, 1, . . . ,N}, we have

2

L
∑

k=0

(L− k+ 1)

L−k
∏

ℓ=0

NL−ℓ + 2(L+ 1)

L
∏

ℓ=0

Nℓ ≤ 2(L+ 1)AL,

2

L
∑

k=0

L−k
∏

ℓ=0

NL−ℓ + 2

L
∏

ℓ=0

Nℓ ≤ 2AL

and






L
∏

k=0

(

L
∏

ℓ=k

Nℓ

)2
∏L

ℓ=k Nℓ













(

L
∏

k=0

Nk

)2
∏L

k=0 Nk







≤







(

L
∏

k=0

Nk

)(2L+4)
∏L

k=0 Nk






≤ A

(L+1)AL
L .

Thus,AL ≤ AR,α,L yields

N (ε,Htree
L,α,R) = N (ε,Htree

L,α,R,L,EαL ) ≤ (2c1AR,α,L)
(2L+2)AL

(

2
√
2c1

ε

)2AL

=
(

2
√
2c1(2c1AR,α,L)

2L+2

ε

)2AL

=
(

2L+5/2c
L+3/2
1 AL+1

R,α,L

ε

)2AL

.

This completes the proof of Theorem 1.

The proof of Theorem 2 depends on the following two
concentration inequalities, which can be found in Cucker and
Zhou [23], Wu and Zhou [38], and Zhou and Jetter [39],
respectively.

Lemma 2 (B-Inequality). Let ξ be a random variable in a
probability space Z with mean E(ξ ) and variance σ 2(ξ ) = σ 2.
If |ξ (z)− E(ξ )| ≤ Mξ for almost all z ∈ Z , then for any ε > 0,

Prob

{

1

m

m
∑

i=1

ξ (zi)− E(ξ ) > ε

}

≤ exp

{

− mε2

2
(

σ 2 + 1
3Mξ ε

)

}

.

Lemma 3 (C-Inequality). Let G be a set of continuous functions
on Z such that, for some B′ > 0, c̃ > 0, |f ∗ − E(f ∗)| ≤ B′ almost
surely and E((f ∗)2) ≤ c̃E(f ∗) for all f ∗ ∈ G. Then for every ε > 0,

Prob

{

sup
f ∗∈G

E(f ∗)− 1
m

∑m
i=1 f

∗(zi)
√

E(f ∗)+ ε
>

√
ε

}

≤ N (ε,G, L∞(X ))

exp

{

− mε

2c̃+ 2B′
3

}

.

We now turn to the proof of Theorem 2.

Proof of Theorem 2: For h ∈ H, from (9) we have ED(fD,H) ≤
ED(h), which together with ED(πMfD,H) ≤ ED(fD,H), implies

E(πMfD,H)− E(fρ) ≤ E(h)− E(fρ)+ ED(h)

−E(h)+ E(πMfD,H)− ED(πMfD,H).

In the following we set, for convenience,

D(H) : = E(h)− E(fρ) = ‖h− fρ‖2ρ ,
S1(m,H) : = {ED(h)− ED(fρ)} − {E(h)− E(fρ)}

and

S2(m,H) : = {E(πMfD,H)− E(fρ)} − {ED(πMfD,H)− ED(fρ)}.

Then we have

E(πMfD,H)− E(fρ) ≤ D(H)+ S1(m,H)+ S2(m,H). (26)

To apply the B-Inequality in Lemma 2, let the random variable ξ

on Z be defined by

ξ (z) = (y− h(x))2 − (y− fρ(x))
2.

Then since |y| ≤ M and |fρ(x)| ≤ M almost surely, we have

|ξ (z)| ≤ M′
ξ : = (3M + ‖h‖L∞(X ))

2, |ξ − Eξ | ≤ 2M′
ξ , and

σ 2 ≤ E(ξ 2) ≤ M′
ξD(H)

almost surely. It then follows from B-Inequality with
Mξ = 2M′

ξ , that

S1(D,H) ≤ ε (27)

holds with confidence at least

1− exp

{

− mε2

2
(

σ 2 + 1
3Mξε

)

}

≥ 1
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− exp

{

− mε2

2(3M + ‖h‖L∞(X ))2
(

D(H)+ 2
3ε
)

}

. (28)

On the other hand, for

G : =
{

f ∗ = (πMf (x)− y)2 − (fρ(x)− y)2 : f ∈ H
}

.

and any (fixed) f ∗ ∈ G, there exists an f ∈ H such that f ∗(z) =
(πMf (x)− y)2 − (fρ(x)− y)2. Therefore, it follows from (8) that

E(f ∗) = E(πMf )− E(fρ) = ‖πMf − fρ‖2ρ ,
1

m

m
∑

i=1

f ∗(zi) = ED(πMf )− ED(fρ),

and

f ∗(z) =
(

πMf (x)− fρ(x)
) [(

πMf (x)− y
)

+
(

fρ(x)− y
)]

.

Since |y| ≤ M and |fρ(x)| ≤ M almost surely, we have

|f ∗(z)| ≤ (M +M)(M + 3M) ≤ 8M2,

which implies

|f ∗(z)− E(f ∗)| ≤ B′ : = 16M2, and

E((f ∗)2) ≤ 16M2‖πMf − fρ‖2ρ = 16M2E(f ∗).

Hence, we may apply C-Inequality to G, with B′ = c̃ = 16M2, to
conclude that

sup
f∈H

E(πMf )− E(fρ)−
(

ED(πMf )− ED(fρ)
)

√

E(πMf )− E(fρ)+ ε
<

√
ε (29)

holds with confidence at least

1−N (ε,G, L∞(X × Y) exp

{

− 3mε

128M2

}

.

For any f1, f2 ∈ H , we have

∣

∣(πMf1(x)− y)2 − (πMf2(x)− y)2
∣

∣ ≤ 4M|πMf1(x)− πMf2(x)|
≤ 4M|f1(x)− f2(x)|.

Thus, an ε
4M -covering of H provides an ε-covering of G for any

ε > 0. This implies that

N (ε,G, L∞(X × Y)) ≤ N (ε/(4M),H, L∞(X )).

This together with (10) implies

N (ε,G, L∞(X × Y)) ≤ exp

{

n′ log
4MU

ε

}

.

Hence, (29) implies that

S2(D,H) ≤ 1

2
(E(fD,H)− E(fρ))+ ε (30)

holds with confidence at least

1− exp

{

n′ log
4MU

ε
− 3mε

128M2

}

. (31)

Inserting (27), (28), (30), and (31) into (26), we conclude that

E(πMfD,H)− E(fρ) ≤ 2D(H)+ 4ε

holds with confidence at least

1− exp

{

− mε2

2(3M + ‖h‖L∞(X ))2
(

D(H)+ 2
3ε
)

}

− exp

{

n′ log
4MU

ε
− 3mε

128M2

}

.

This completes the proof of Theorem 2 by re-scaling 4ε to ε.

To complete the discussion in this paper, we now prove
Theorem 3 by applying Theorem 1 and Theorem 2, as follows.

Proof of Theorem 3: Due to (11), there exists some h ∈ Htree
L,α,R

such that

‖fρ − h‖2ρ ≤ c̃2A
−2β
L , ‖h‖L∞(Id) ≤ M + c̃.

Since (5) holds, Theorem 1 implies

logN (ε,Htree
L,α,R) ≤ 2AL(L+ 3) log

(

2c1AR,α,L

ε

)

.

Applying Theorem 2 with n′ = 2AL(L + 3), U = 2c1AR,α,L to

Htree
L,α,R and setting LAL =

[

C∗
1m

1
2β+1

]

with C∗
1 giving below, we

have that for

ε ≥ 2c̃2A
−2β
L logAL ≥ 2‖h− fρ‖2ρ , (32)

so that

Prob{‖πMfD,L − fρ‖2ρ > 2ε} ≤ Prob{‖πMfD,L

−fρ‖2ρ > ε + 2‖h− fρ‖2ρ}

≤ exp

{

2AL(L+ 3) log
2c1AR,α,L

ε
− 3mε

512M2

}

+ exp







−3mε2

16(4M + c̃)2
(

6c̃2A
−2β
L + ε

)







≤ exp

{

c̃1LAL logAL −
3mε

512M2

}

+ exp

{ −3mε

112(4M + c̃)2

}

,

where c̃1 is a constant independent of AL or L. Setting C∗
1 to be

a constant independent of L or AL such that LAL =
[

C∗
1m

1
2β+1

]

,

ε ≥ 2c̃2A
−2β
L logAL and c̃1LAL logAL ≤ 3mε

1024M2 , we have
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Prob{‖πMfD,L − fρ‖2ρ > 2ε} ≤ exp

{

− 3mε

1024M2

}

+ exp

{

− −3mε

112(4M + c̃)2

}

≤ 2 exp

{

− 3mε

112(4M + c̃)2

}

≤ 3 exp







− 3m
2β

2β+1 ε

112(4M + c̃)2 logAL







, (33)

Then setting

3 exp







− 3m
2β

2β+1 ε

112(4M + c̃)2 logAL







= δ,

we obtain

2c̃2A
−2β
L logAL ≤ ε ≤ 112

3
((C∗

1)
2β4M + c̃)2L2βm

− 2β
2β+1

logAL log
3

δ
.

Thus, it follows from (33) that with confidence of at least 1 − δ,
we have

‖πMfD,L − fρ‖2ρ ≤ C∗
2L

2βm
− 2β

2β+1 logm log
3

δ
,

where C∗
2 : = 112

3 ((C∗
1)

2β4M + c̃)2. This completes the proof of
Theorem 3.

6. CONCLUSION

In this paper, we provided a novel tree structure to equip deep
nets and studied its theoretical advantages. Our studied showed
that deep nets with tree structure succeeded in reducing the
free parameters of deep fully-connected nets without sacrificing
their excellent approximation ability. Under this circumstance,
implementing the well known empirical risk minimization on
deep nets with tree structures yields fast learning rates.
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32. Kůrková V, Sanguineti M. Estimates of covering numbers of convex sets with

slowly decaying orthogonal subsets. Discrete Appl Math. (2007) 155:1930–42.

doi: 10.1016/j.dam.2007.04.007

33. Maiorov V. Pseudo-dimension and entropy of manifolds formed

by affine-invariant dictionary. Adv Comput Math. (2006) 25:435–50.

doi: 10.1007/s10444-004-7645-9
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