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Raanes et al. [1] revised the iterative ensemble smoother of Chen and Oliver [2, 3],

denoted Ensemble Randomized Maximum Likelihood (EnRML), using the property that

the EnRML solution is contained in the ensemble subspace. They analyzed EnRML

and demonstrated how to implement the method without the use of expensive pseudo

inversions of the low-rank state covariance matrix or the ensemble-anomaly matrix. The

new algorithm produces the same result, realization by realization, as the original EnRML

method. However, the new formulation is simpler to implement, numerically stable, and

computationally more efficient. The purpose of this document is to present a simple

derivation of the new algorithm and demonstrate its practical implementation and use for

reservoir history matching. An additional focus is to customize the algorithm to be suitable

for big-data assimilation of measurements with correlated errors. The computational

cost of the resulting “ensemble sub-space” algorithm is linear in both the dimension of

the state space and the number of measurements, also when the measurements have

correlated errors. The final algorithm is implemented in the Ensemble Reservoir Tool

(ERT) for running and conditioning ensembles of reservoir models. Several verification

experiments are presented.

Keywords: EnRML, iterative ensemble smoother, history matching, data assimilation, inversemethods, parameter

estimation

1. HISTORY-MATCHING PROBLEM

Evensen [4] discussed the formulation of the history-matching problem for the strong-constraint
case where all model errors are associated with the uncertain model parameters. Evensen [5]
extended the strong-constraint formulation to the weak-constraint case to consistently account
for additional unknown model errors. These two papers discussed properties of iterative ensemble
smoothers like EnRML by Chen and Oliver [2, 3] and ESMDA by Emerick and Reynolds [6]. These
methods are designed to solve the high-dimensional and non-linear inverse problems that typically
arise in oil-reservoir history matching. The use of iterative ensemble smoothers is attractive for
solving such “weakly non-linear” and high-dimensional inverse problems since they efficiently find
approximate solutions of them.
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Suppose we have a deterministic forward model where the
prediction y only depends on the inputmodel parameterization x,

y = g(x). (1)

In a reservoir history-matching problem, the model operator
is typically the reservoir simulation model, which, given the
input forcing and a parameterization, which defines the model,
simulates the produced fluid rates. Some recent applications
use a full Fast-Model-Update workflow [7, 8] where the model
workflow can also contain, e.g., a geological forward model,
a reservoir simulation model, and a seismic forward model,
which, given the inputs to the geological description, predicts
the production of oil, water, gas, and the seismic response from
the reservoir.

Given a set of input parameters, x, the prediction of y is
precisely determined by the model in Equation (1). Also, we have
measurements, d, of the real value of y given as:

d = y+ e. (2)

From evaluating the model operator g(x), given a realization of
the uncertainmodel parameters x ∈ ℜn, we uniquely determine a
prediction y ∈ ℜm (corresponding to the real measurements d ∈
ℜm). Here n is the number of parameters, and m is the number
of measurements. We wish to use the observations of y to find
better estimates of the input parameters x. The measurements are
assumed to contain random errors e ∈ ℜm. Typical values for the
number of state variables is n ∼ 105 − 108, and for the number
of observations we havem ∼ 102 − 106, and most oftenm≪ n.

In history matching, it is common to define a prior
distribution for the uncertain parameters since we usually will
have more degrees of freedom in the input parameters than
we have independent information in the measurements. Bayes’
theorem with a perfect model gives the joint posterior pdf for x
and y as:

f (x, y | d) ∝ f (x, y)f (d | y)
= f (x)f (y | x)f (d | y).

(3)

In the absence of model errors, i.e., stochastic errors in the model
that are not represented by the uncertain parameters in x, the
transition density f (y | x) becomes the Dirac delta function, and
we can write:

f (x, y | d) ∝ f (x)δ(y− g(x))f (d | y). (4)

Evensen [5] showed that if additional model errors are present,
they can be augmented to the state vector x and Equation (4) still
applies. We are interested in the marginal pdf for x, which we
obtain by integrating Equation (4) over y, giving:

f (x | d) ∝
∫

f (x)δ(y− g(x))f (d | y) dy

= f (x)f (d | g(x)).
(5)

We now introduce the normal priors:

f (x) = N (xf,Cxx), (6)

f (d | g(x)) = f (e) = N (0,Cdd), (7)

where xf ∈ ℜn is the prior estimate of x with error-covariance
matrix Cxx ∈ ℜn×n, and Cdd ∈ ℜm×m is the error-covariance
matrix for the measurements. We can then write Equation (5) as:

f (x | d) ∝ exp

{

−
1

2

(

x− xf
)T

C−1xx

(

x− xf
)

}

× exp

{

−
1

2

(

g(x)− d
)T

C−1
dd

(

g(x)− d
)

}

.

(8)

Note that the posterior pdf in Equation (8) is non-Gaussian due
to the non-linear model g(x). Maximizing f (x | d) is equivalent to
minimizing the cost function:

J (x) =
1

2

(

x− xf
)T
C−1xx

(

x− xf
)

+
1

2

(

g(x)− d
)T
C−1
dd

(

g(x)− d
)

.

(9)

Most methods for history matching assume a perfect model
and Gaussian priors, and they either attempt to sample the
posterior pdf in Equation (8) or to minimize the cost function
in Equation (9).

Evensen [4] explained how Equation (8) could be
approximately sampled using both an iterative and a standard
Ensemble Smoother. The methods can be derived as minimizing
solutions of an ensemble of cost functions written for each
realization as:

J (xj) =
1

2

(

xj − xfj
)T
C−1xx

(

xj − xfj
)

+
1

2

(

g(xj)− dj
)T
C−1
dd

(

g(xj)− dj
)

.

(10)

Here xfj ← N (xf,Cxx) and dj ← N (d,Cdd) are realizations

of the parameters and measurements sampled from their
prior distributions.

This approach relates to the Randomized Maximum
Likelihood (RML) method discussed by Oliver et al. [9];
Kitanidis [10]. Note that the minimizing solutions will not
precisely sample the posterior non-Gaussian distribution, but only
provides an approximate sampling of the posterior distribution.

In the following sections, we will derive a version of the
ensemble-subspace formulation of the EnRML as introduced by
Raanes et al. [1], discuss its practical implementation, and show
examples where it is used for reservoir model conditioning.

2. SEARCHING FOR THE SOLUTION IN
THE ENSEMBLE SUBSPACE

2.1. Definition of Ensemble Matrices
We start by defining the prior ensemble of N model realizations:

X =
(

xf1, x
f
2, . . . , xfN

)

, (11)
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and we define the zero-mean (i.e., centered) anomaly matrix as:

A = X
(

IN −
1

N
11T

)/√
N − 1, (12)

where 1 ∈ ℜN is defined as a vector with all elements equal to
1, IN is the N-dimensional identity matrix, and the projection
IN − 1

N 11
T subtracts the mean from the ensemble. Thus, the

ensemble covariance is:

Cxx = AAT. (13)

Correspondingly, we can define an ensemble of perturbed
measurements, D ∈ ℜm×N , when given the real measurement
vector, d ∈ ℜm, as:

D = d1T +
√
N − 1E, (14)

where E ∈ ℜm×N is the centered measurement-perturbation
matrix whose columns are sampled from N (0,Cdd) and divided
by
√
N − 1. Thus, we define the ensemble covariance matrix for

the measurement perturbations as:

Cdd = EET. (15)

2.2. Cost Function in the Ensemble
Subspace
It is easy to show that the EnRML solution is confined to the space
spanned by the prior ensemble since the leftmost matrix in the
gradient is the ensemble anomaly matrix. Thus, we will search
for the solution in the ensemble subspace spanned by the prior
ensemble by assuming that an updated ensemble realization, xaj ,

is equal to the prior realization, xfj , plus a linear combination of

the ensemble anomalies,

xaj = xfj + Awj. (16)

This equation differs from the one used by Raanes et al. [1]
where the prior was replaced by the ensemble mean. However,
the general algorithm will be rather similar. In matrix form
Equation (16) can be rewritten as:

Xa = Xf + AW, (17)

where column j ofW ∈ ℜN×N is just wj from Equation (16).
Following Hunt et al. [11] we write the following cost function

for wj,

J (wj) =
1

2
wT
j wj

+
1

2

(

g
(

xfj + Awj

)

− dj

)T
C−1
dd

(

g
(

xfj + Awj

)

− dj

)

.

(18)

Minimizing the cost functions in Equation (18) implies solving
for the minima of the original cost functions in Equation (10),
but restricted to the ensemble subspace and with Cxx in place
of Cxx, as explained by Bocquet et al. [12]. The ensemble of

cost functions in Equation (18), does not refer to the high-
dimensional state-covariance matrix, Cxx. The original problem,
where the solution was searched for in the state space, is now
reduced to a much simpler problem where we search for the
solution in the ensemble space. Thus, we solve for the N vectors
wj ∈ ℜN , one for each realization.

2.3. Iterative Solution in the Ensemble
Subspace
We will formulate a Gauss-Newton method for minimizing the
cost function in Equation (18). The Jacobian (gradient) of the cost
function ∇J (wj) ∈ ℜN×1 is:

∇J (wj) = wj +
(

GjA
)T
C−1
dd

(

g
(

xfj + Awj

)

− dj
)

, (19)

and an approximate Hessian (gradient of the Jacobian) H ∈
ℜN×N becomes:

H
(

wj

)

≈ I+
(

GjA
)T
C−1
dd

(

GjA
)

. (20)

We have defined the tangent linear model:

Gj =
(

∇g|xfj+Awj

)T ∈ ℜm×n. (21)

and in the Hessian we have neglected the second
order derivatives.

The iterative Gauss-Newton scheme for minimization of the
cost function in Equation (18) is:

wi+1
j = wi

j − γ

(

H(wi
j)
)−1
∇J (wi

j)

= wi
j − γ

(

I+
(

Gi
jA

)T
C−1
dd

(

Gi
jA

)

)−1

×
(

wi
j +

(

Gi
jA

)T
C−1
dd

(

g
(

xfj + Awi
j

)

− dj

)

)

,

(22)

where γ ∈ (0, 1] is introduced as a step-length parameter, and we
have the tangent linear operator evaluated for realization j at the
current iteration i as:

Gi
j =

(

∇g|xfj+Awi
j

)T
. (23)

Now using the following two identities that can be derived from
the Woodbury matrix lemma,

(

I+ BTR−1B
)−1
= I− BT(BBT + R)−1B, (24)

(I+ BTR−1B)−1BTR−1 = BT(BBT + R)−1, (25)

we can write the Gauss-Newton iteration in Equation (22) as:

wi+1
j = wi

j

− γ

(

wi
j −

(

Gi
jA

)T
(

(

Gi
jA

)(

Gi
jA

)T + Cdd

)−1

×
(

(

Gi
jA

)

wi
j + dj − g

(

xfj + Awi
j

)

)

)

,

(26)

where we compute the inversion in the observation space.
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2.4. The Expression Gi
j
A

We need to evaluate Gi
j for each realization at the local iterate,

while A is the matrix containing the initial ensemble anomalies.
The evaluation of Gi

j requires the existence of the tangent linear

operator of the non-linear forward model, which is generally not
available. Therefore, we will replace Gi

j by an average sensitivity

matrix [1, Theorem 1], estimated from the ensemble by linear
regression as Gi = YiA

+
i . We then write:

GiA = YiA
+
i A (27)

= YiA
+
i Ai�

−1
i (28)

= Yi�
−1
i if n ≥ N − 1 or if g is linear. (29)

Here we define Yi as the predicted ensemble anomalies
normalized by

√
N − 1, i.e.,

Yi = g
(

Xi

)

(

IN −
1

N
11T

)/√
N − 1. (30)

To get to Equation (28) we need a relation between the ensemble
anomalies Ai at iteration step i and the prior ensemble anomalies
A. This connection is derived as follows:

Ai = Xi

(

IN −
1

N
11T

)/√
N − 1

=
(

X+ AWi

)(

IN −
1

N
11T

)/√
N − 1

= A+ AWi

(

IN −
1

N
11T

)/√
N − 1

= A

(

I+Wi

(

IN −
1

N
11T

)/√
N − 1

)

= A�i,

(31)

and we define �i as:

�i = I+Wi

(

IN −
1

N
11T

)/√
N − 1. (32)

It is convenient that �i is of full rank and we have:

A = Ai�
−1
i . (33)

In the non-linear case, when n ≤ N − 1, we solve for
the projection operator A+i Ai, which is a trivial computation,
and we use Equation (28) instead of Equation (29). The final
expressions in Equation (29) obtained for three different cases are
explained next.

2.4.1. Case When n ≥ N − 1
When n ≥ N − 1 and rank(A) = N − 1 the right singular vector
corresponding to the zero singular value will be a vector with all
elements equal to 1/

√
N as explained in the Appendix of Sakov

et al. [13] and we can write:

A+i Ai =
(

IN −
1

N
11T

)

, (34)

and

YiA
+
i Ai�

−1
i = Yi

(

IN −
1

N
11T

)

�
−1
i = Yi�

−1
i . (35)

This result is valid for both a linear and non-linear dynamical
model and measurement operator, and is given by the definition
of Yi in Equation (30).

2.4.2. Case of Linear Operators

With a combined linear model and measurement operator G ∈
ℜm×n we can write:

YiA
+
i Ai�

−1
i

= GXi

(

IN −
1

N
11T

)/√
N − 1A+i Ai�

−1
i

= GAiA
+
i Ai�

−1
i

= GAi�
−1
i

= Yi�
−1
i .

(36)

We used the definition of Yi in Equation (30) but with the non-
linear model replaced by G. The result in Equation (36) is valid
for all values of n and N.

2.4.3. Case When n < N− 1 and Non-linear Operators

For n < N−1 and non-linear operators we do not have the same
simplification and we need to retain the projection A+i Ai in (28).
However, the projection is easily computed, using a singular value
decomposition, Ai = U6VT, and we get:

A+i Ai = V6
+UTU6VT = V

(

In×n 0

0 0

)

VT. (37)

Here,V has dimension equal to the ensemble sizeN, and we only
need to solve for the first n < N rows (right singular vectors)
of V.

2.5. Numerical Solution for Si = Yi�
−1
i

From Equation (29) we define:

Si = Yi�
−1
i , (38)

where Yi is replaced by the projected version YiA
+
i Ai in the non-

linear case with n < N − 1. We can solve this system of linear
equations using LU factorization if we rewrite it as follows:

�
T
i S

T
i = YT

i . (39)

The LU factorization of �
T
i can be computed once at the cost

of 2N3/3 operations followed by 2m back substitutions at a total
cost of 4mN2 [14, section 3.2.8].

2.6. “Innovation Term”
In Equation (26) the innovation term is:

hj =
(

Gi
jA

)

wi
j + dj − g

(

xfj + Awi
j

)

. (40)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 October 2019 | Volume 5 | Article 47

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evensen et al. Subspace IES Implementation

When introducing the average sensitivity, Gi, for G
i
j, and using

Equations (29) and (38), we can write Equation (40) in vector
form as:

H = SiWi +D− g
(

X+ AWi

)

. (41)

Here D is the ensemble of perturbed measurements defined in
Equation (14) and column j of H ∈ ℜm×N represents hj. The
matrix multiplication SiWi ismN2 operations.

2.7. Final Equation for Wi
We can now write Equation (26) in matrix form as:

Wi+1 =Wi − γ

{

Wi − STi
(

SiS
T
i + Cdd

)−1
H

}

, (42)

where S is defined from Equation (38) and H is defined in
Equation (41).

2.8. Final Update
Finally, we note that, from Equation (17),

Xi = X+ AWi

= X+ X
(

IN −
1

N
11T

)

Wi/
√
N − 1

= X
(

I+
(

IN −
1

N
11T

)

Wi/
√
N − 1

)

= X
(

I+Wi/
√
N − 1

)

.

(43)

Thus, the final update is computed at the cost of nN2 operations
and the updated ensemble is a linear combination of the
prior ensemble.

Here we have used that 1
N 11

TWi ≡ 0. This property of Wi

is seen from Equation (42), the definition of Si in Equation (39),
and the definition of �i in Equation (32). Multiplying �

T from
the left with 1T gives:

1T�
T
i = 1TI+ 1T

(

IN −
1

N
11T

)

WT
i /
√
N − 1

= 1T +
(

1T −
1

N
1T11T

)

WT
i /
√
N − 1 = 1T.

(44)

Thus, multiplying Equation (39) from the left with 1T gives:

1T�
T
i S

T
i = 1TSTi = 1TYT

i = 0, (45)

which proves that S is centered from Yi being centered by its
definition in Equation (30).

Now starting from W0 = 0 in Equation (42), we get W1 =
γ ST0

(

S0S
T
0 + Cdd

)−1
H with S0 = Y0. Here the leftmost matrix

is ST0 , and 1TST0 = 0 from Equation (45). From Equation (42) all
subsequent iterates ofWi will consist if a sum of terms where the
left-most matrix is one of Sj, for j = 0, . . . , i−1. Thus, 1TWi ≡ 0.

3. INVERSION ALGORITHMS

In the general case with a non-diagonal measurement error-
covariance matrix Cdd the inversion in Equation (42),

(

SiS
T
i + Cdd

)−1
, (46)

requires O(m3) operations but for large data sets we need to
introduce approximate and more efficient solvers.

3.1. Direct Inversion
The direct inversion requires the formation of the full matrix:

C = Cdd + SiS
T
i , (47)

at a cost of m2N operations. Then, a numerically stable
approach for computing this inverse is to compute the eigenvalue
decomposition:

C = Z3ZT, (48)

at a cost proportional to O(m3) operations. The eigenvalue
factorization is used to accommodate cases where C has poor
condition or low rank, which often is the case with redundancy
in the measurements (e.g., linearly dependent measurements)
or large number of measurements compared to the number of
realizations. The pseudo inverse is then defined as:

C−1 ≈ C+ = Z3
+ZT. (49)

Even using efficient numerical methods, the inversion of C

requiresO(m2) operations.Wewill below introduce approximate
methods that are linear in the number of measurementsm.

3.2. Exact Inversion
With the use of the Woodbury corollary in Equation (25), we can
write the iteration in Equation (42) as:

Wi+1 =Wi − γ

{

Wi −
(

STi C
−1
dd

Si + IN
)−1

STi C
−1
dd

H
}

, (50)

where the inversion is computed in the ensemble space (see also
Equation 22). In the case where either C−1

dd
or the square root

C
− 1

2

dd
is known we can compute the product STi C

−1
dd

Si at a cost

of 2m2N operations, and the inverse is computed at a cost of
O(N3) operations.

For the case of a diagonal error covariance matrix Cdd = Im,
Equation (50) reduces to:

Wi+1 =Wi − γ

{

Wi −
(

STi Si + IN
)−1

STi H
}

. (51)

The case with Cdd ≡ Im occurs if Cdd is diagonal and we scale the
equations with the square root of themeasurement error variance
(a scaling of the equations should always be done to ensure a
well-conditioned inversion).

In the numerical solution algorithm we will solve for the
singular value definition (SVD) of Si = Ui6iV

T
i , at a cost of

O(mN2), which leads to:

(

STi Si + IN
)−1 ≡ Vi

(

6
T
i 6i + IN

)−1
VT
i . (52)
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From the SVD decomposition we only need V ∈ ℜN×N and
the N singular values. Thus, for this commonly used case, the
inversion scales linearly with the number of measurements and
the algorithm can then be used with big data sets as long as the
use of a diagonal measurement error-covariance matrix is valid.

3.3. Ensemble Subspace Inversion Using
Full Cdd
The sub-space algorithm of Evensen [15] and [16, Chap. 14] can
be used to compute an approximate pseudo inversion to a cost of
O(m2N) when a full-rank Cdd is used. A central question is:Why
invert an m×m-dimensional matrix when solving for only N×N
coefficients with N≪m?With this question inmind and observing
that, in Equation (50), the product STi C

−1
dd

Si projects C
−1
dd

onto
the ensemble subspace, we devise the following algorithm where
the inversion is reduced from an m-dimensional problem to a
N-dimensional one, (we have dropped the subscript i in the
derivation):

(

SST + Cdd

)

(53)

≈ SST + (SS+)Cdd(SS
+)T (54)

= U6
(

IN +6
+UTCddU(6

+)T
)

6
TUT (55)

= U6
(

IN + Z3ZT
)

6
TUT (56)

= U6Z
(

IN +3
)

ZT
6

TUT. (57)

Thus, we start by introducing an approximation in Equation (54)
where we project the measurement error-covariance matrix, Cdd,
onto the subspace defined by the predicted and “deconditioned”
ensemble anomalies, S. The singular value decomposition (SVD)
of S is defined as:

S = U6VT, (58)

and we insert it in the expressions SST and SS+ in Equation (54).
In the pseudo inversion, S+ = V6

+UT, we retain a maximum of
N−1 significant singular values. Note that we define the diagonal
6 ∈ ℜm×N and 6

+ ∈ ℜN×m. To obtain (56) we compute
the matrix product in Equation (55) followed by its eigenvalue
decomposition:

6
+UTCddU(6

+)T = Z3ZT. (59)

The product results in a matrix of size ℜN×N and the
cost of forming it is m2N operations. Then the eigenvalue
decomposition requires O(N3) operations. We can then use the
orthogonal property of Z to move it outside the parentheses, and
we obtain the final expression in Equation (57). The dominant
cost is thematrixmultiplication in Equation (55), i.e., the product
on the left-hand side of Equation (59), ofm2N operations.

Finally, the inversion is computed from:

(

SST + Cdd

)−1 ≈
(

U(6+)TZ
) (

IN +3
)−1 (

U(6+)TZ
)T
, (60)

where thematrix to invert is square and diagonal of dimensionN.

3.4. Ensemble Subspace Inversion Using
Low-Rank Cdd
We now introduce a low-rank representation of Cdd which
reduces the computational cost of the inversion to O(mN2) as
explained by Evensen [15] and [16, Chap. 14]. We approximate
the measurement error-covariance matrix by:

Cdd ≈ EET, (61)

where E contains the measurement perturbations defined from:

E = D
(

IN −
1

N
11T

)

/
√
N − 1. (62)

In this algorithm we follow the same procedure as in the
derivation (53–57) but we do not form Cdd and instead we work
directly with E:

(

SST + EET
)

(63)

≈ SST + (SS+)EET(SS+)T (64)

= U6
(

IN +6
+UTEETU(6+)T

)

6
TUT (65)

= U6
(

IN + Z3ZT
)

6
TUT (66)

= U6Z
(

IN +3
)

ZT
6

TUT. (67)

We notice that in Equation (65) we have now replaced the costly
m2N product UTCdd with a much simpler mN2 computation
UTE, and we define the following eigenvalue decomposition, to
be compared to Equation (59),

6
+UTEETU(6+)T = Z3ZT. (68)

The product on the left side in Equation (68) results in a matrix
of size ℜN×N and the cost of forming it is O(mN2). Finally, the
inversion is computed from:

(

SST + EET
)−1 ≈

(

U(6+)TZ
) (

IN +3
)−1 (

U(6+)TZ
)T

(69)

Thus, we now have an inversion algorithm that is suitable for
big-data assimilation. Also, the specification of cross-correlation
of measurement errors is easier when working directly with the
perturbations than with a full rank error covariance matrix. It is
then possible to simulate correlated measurement perturbations
directly, rather than specifying all the elements of a full
covariance matrix.

Evensen [16, Chap. 14] examined the impact of the
approximations made when the measurement error
covariance matrix is represented by the perturbations and
additionally projected onto the ensemble subspace of predicted
measurements. He could not find any significant impact of
these approximations and recommended this last algorithm
for practical use. Note also that, to reduce sampling errors,
it is possible to increase the number of columns in E when
used in (63).
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Algorithm 1: Ensemble subspace EnRML (SIES).

1: Inputs: X,D, γ
2: W = 0, X1 = X
3: for i = 1, Convergence do

4: Y = g(Xi)
(

IN − 1
N 11T

)

/√
N − 1

5: � = I+W
(

IN − 1
N 11T

)

/√
N − 1

6: �
TST = YT Solve for ST O(mN2)

7: H = SW+D− g(Xi) O(mN2)

8: W =W− γ

(

W− ST
(

SST + EET
)−1

H
)

O(mN2)

9: Xi+1 = X
(

I+W
/√

N − 1
)

O(nN2)

10: end for

4. FINAL ALGORITHM

The final Subspace Iterative Ensemble Smoother (SIES) is
illustrated in Algorithm 1 for the case where we represent
the measurement error-covariance matrix using the ensemble
of measurement perturbations. In this algorithm, the input
ensembles of model states, X, and measurements D, contain all
the prior information. We start by setting the initial W = 0
meaning that the input ensemble, X, is the first guess.

The most expensive computation is usually the evaluation
of the forward model for the current iterate of each ensemble
member to compute the predicted measurements g(Xi). This
computation is at a minimum of O(nN) per time step. In line 4
we subtract the mean from the predicted measurements and scale
the measurement anomaly matrix by

√
N − 1.

In line 5 we evaluate the transition matrix for the ensemble
anomalies�, which is factorized by an LU decomposition to solve
for S in line 6 to a cost 4mN2.

The “innovation” matrix H is then evaluated in line 7, where
we need to compute the matrix multiplication SW at a costmN2,
and we again use the model prediction g(Xi).

We compute the next estimate of W using the iteration in
line 8, where we can compute the inversion using any of the
schemes discussed in section 3. However, the most efficient
scheme for the case with correlated measurement errors is the
one described in section 3.4.

With the updated W from line 8 we can compute the new
estimate for Xi+1 in line 9 at a cost of nN2.

Algorithm 1 is truly linear in the number of measurements as
well as the dimension of the state vector and provides a mean
for efficient big-data model conditioning. We also note that there
are no required SVDs or pseudo inversions of the ensemble
anomaly matrix for the state vector. The update algorithm is also
independent of X and A. The convergence only depends on the
non-linearity of the forward model, possibly the ensemble size,
the amount of independent information in the measurements,
and of course the step-length γ .

4.1. Localization
It is possible to implement a scheme for local analysis, although
we have not implemented this functionality yet. In reservoir
models, a consistent localization is difficult because there are
long-range correlations and pressure transients in the reservoir.

Thus, a purely spatial localization can normally not be used.
However, a localization scheme can be implemented where the
state vector is split into segments, and each segment is updated
based on a selected subset of measurements. In this case, we need
to run several parallel updates, one for each segment and each
having a different coefficient matrixWi. These localWi matrices
will also have a column sum equal to zero. Localization allows for
the overall solution to depart from the ensemble subspace, but
the solution is still confined to the ensemble subspace for each
localization segment.

4.2. Step Size
In the Gauss-linear case, a step length of one will give the
global minimum in one iteration. However, we are solving N
non-linear minimization problems, one for each realization, and
we are using the same approximate model sensitivity matrix
for all ensemble members. It is therefore likely that for some
realizations a step length of one may lead to unphysical updates
or updates giving an increased value of the cost function. We
observe numerical problems in this case, and it seems to be a
better strategy to use a shorter, more conservative step length for
non-linear problems. We choose to use a step length that leads
to a reduction of the averaged cost function and where most of
the realizations will have a lower value of their respective cost
function after each iteration. We have so far used a strategy
where we start with a conservative value for the step length,
typically γi = 0.6. If we begin with a too-long step length, which
may lead to instabilities, the iterations would be restarted from
the prior with a smaller step length. The step length is likely
to depend on the particular case and ensemble size. Thus, the
recommendation is to increase or decrease the initial guess of
γi = 0.6 with increments of 0.1, until the iterations converge for
all realizations.

The termination of the iterations can be based on a truncation
value of the gradient, or one can use the relative change of the
cost functions from one iteration to the next. For real reservoir
applications, the time required per iteration can vary from hours
to days, and one will always be limited in the number of iterations
that can be run. Thus, a practical procedure is to manually
stop the iterations when one sees that the cost functions for the
realizations are “almost” identical from one iteration to the next.

4.3. Computational Cost
We have presented algorithms where the computational cost is
proportional to mN2 and nN2, where N is the ensemble size,
m is the number of measurements, and n is the state size.
Thus, the algorithm is linear in the state size n and number of
measurementsm, and we typically have N≪m≪ n.

Chen and Oliver [3] also introduced an approximate form
of EnRML where the updates from the model mismatch term
were neglected to eliminate the expensive SVD of A needed
to compute A+. In SIES we have already eliminated this
SVD without introducing any approximations. As such the
approximate form of EnRML solves a different problem but it
is not likely to be more computationally efficient than SIES,
per iteration.
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Each iteration in SIES and each update step in ESMDA can be
computed at the same cost given that the same approximations
and numerical schemes are used. Note that the SIES scheme
can also be used in ESMDA, if we set the step length equal to
1.0, resample measurement perturbations in each step, and we
correctly inflate Cdd and the measurement perturbations. On the
other hand, ESMDA may require many more steps to converge
than the number of iterations required by SIES [4].

Localization is often used to reduce the computational cost
of the update steps. This will be the case with large number
of measurements in schemes where the Kalman-gain matrix is
explicitly computed to a cost proportional to m2. Localization
will in SIES lead to an increase in the computational cost when
we use the exact inversion with a diagonal Cdd, or when we use
the approximate subspace inversion where Cdd is represented
by measurement perturbations. In these two cases, the inversion
is linear in the number of measurements, and solving many
small problems becomes more expensive than solving one large
problem. Also, the algorithm is independent of the state size
except for in the final update equation, and the cost of the final
update equation is the same with or without localization.

5. VERIFICATION EXPERIMENTS

We will now show results from three vastly different experiments
to verify the robustness of the new subspace EnRML scheme. The
first model is a non-linear scalar case with one unknown and one
measurement where we can compute the theoretical solution of
Bayes theorem. Then, using a vast ensemble size, we can examine
the convergence of the probability density functions in the limit
of infinite ensemble size. For this case, we used a separate and
more straightforward implementation of the algorithm.

The second case is slightly more complicated than the scalar
case with a state size of three and five measurements, and using
the full implementation in the Ensemble Reservoir Tool (ERT).
This model resembles polynomial curve fitting, and we currently
use it for extensive testing of the ERT code. Finally, we run ERT
for a full history-matching case with a synthetic reservoir model.

In the following, we will use the notation ES for Ensemble
Smoother and IES for the iterative ensemble smoothers where we
compute the gradient of the cost function with respect to the state
vector. For the subspace implementation of IES, we use SIES.
Additionally, we refer to one case where we run the ensemble
smoother with multiple data assimilation (ESMDA).

5.1. Scalar Case With Large Ensemble Size
A first experiment is the scalar case of Evensen [4] where we
use an immense ensemble size to examine the convergence of
the SIES scheme in the limit of infinite ensemble size. The scalar
model is:

y = g(x) = x+ βx3 (70)

where, in the linear case β = 0.0 and in the non-linear case
β = 0.2. We sample the prior ensemble for x from N (1, 1) and
we define the likelihood for the measurement d of the prediction
y as N (−1, 1). Thus, we run a case with state dimension equal

to one and condition on a single measurement. The ensemble
size is 40,000 realizations for both the SIES and the original IES
methods, and the initial ensembles are identical in both cases. The
IES scheme used a Gauss-Newton iteration as given in Evensen
[5, section 5.2] but with model errors set to zero. Additionally,
we ran an original IES case where we used 107 realizations to
examine the limiting behavior of the IES scheme with practically
zero sampling errors. Note that, we have designed the SIES for
efficiency in the case with an ensemble size smaller than the state
size, and the required storage of W ∈ ℜN×N poses a constraint
for large ensemble sizes.

Since we are running both ES and IES, it is useful to see the
difference between the methods in how they attempt to minimize
the ensemble of cost functions in Equation (10). In the upper plot
of Figure 1, we show the cost functions of five realizations in a
linear scalar case. The full line shows the ES step from the prior
estimate to the global minimum while the dashed lines are the
corresponding IES iterative solution. In this linear case, both ES
and IES converge to the same result. In the lower plot, we use
a non-linear model and observe that in this case, ES is giving a
poorer estimate of the global minimum than we get from the IES.
Note also that IES does not solve for the exact minimum since
we introduced the averaged model sensitivity instead of using the
exact tangent-linear model in Equation (23).

The results are shown in Figure 2 for the linear and non-
linear scalar cases. In both the linear and non-linear cases, the
IES and SIES results are identical, realization per realization. In
the linear case, the IES with 107 realizations converges to the
Bayesian posterior and so would SIES if we could run with a large
enough ensemble size. In the non-linear case, IES and the SIES
with equal initial ensemble and ensemble size again converge
precisely to the same distribution. However, the methods do
not correctly sample the posterior in the non-linear case as was
pointed out by Oliver et al. [9], but see also the more recent
discussions in Bardsley et al. [17], Liu et al. [18], and Evensen
[4]. The minimization of the ensemble of cost functions, even if
solved correctly does not accurately sample the posterior Bayes’.
There is also an additional approximation introduced by using
an ensemble-averaged model sensitivity. These results prove the
consistency of the SIES formulation and that it exactly replicates
the solution of the original IES method.

In the bottom plot in Figure 2, we show the convergence per
iteration for the scalar example. After about six iterations it is
practically not possible to distinguish the distributions from one
iteration to the next.

As will be illustrated below, for the SIES method, we
can extrapolate this convergence rate to higher-dimensional
problems since the algorithm does not depend on the state
dimension. The only factors that influence the convergence of the
SIES algorithm are the non-linearity of the model, the ensemble
size, possibly themeasurement configuration, and the step-length
scheme. The code used for these examples is available from
Github at https://github.com/geirev/scalar.

5.2. Verification on ERT Poly Case
We have implemented the SIES method for operational history
matching where we condition reservoir models on various
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FIGURE 1 | Examples of IES cost functions in the linear (upper plot) and

non-linear (lower plot) cases. The full straight lines are the ES updates from the

prior value to the estimated solution for each realization. The dashed lines

show the IES steps. The ES and IES solutions are identical in the linear case

and finds the global minimum. In the non-linear case IES gives an approximate

estimate for the minimum that outperforms ES.

dynamic data. The implementation is written in C and is available
from the libres library at Github https://github.com/equinor/
libres, used in the Ensemble Reservoir Tool https://github.com/
equinor/ert. The implementation is configured to handle the
conditioning on big-data with correlated errors, and the potential
loss of observations or realizations from one iteration to the next.
The handling of big data is becoming increasingly important
since reservoir models are now being conditioned on big seismic
data sets with correlated errors, and there is a need for algorithms
that scale linearly in the number of measurements (such as the
ensemble-subspace algorithm discussed in section 3.4).

A loss of observations from one iteration to the next might
arise because there is a filter operating on the measurements in
each iteration to exclude outlier observations. This algorithm
depends on the standard deviation of the ensemble, which
changes in each iteration. This issue is relatively easy to handle,
by keeping track of which observations are lost from one
iteration to the next, and by removing the corresponding rows
in the matrices.

A loss of ensemble members might typically happen because
of unstable computational clusters where some nodes may crash,
or a model realization may have an unstable configuration

FIGURE 2 | Scalar model: IES and SIES solutions in the linear case (upper

plot) and non-linear case (middle plot). The same random seed is used in all

experiments. The black pdf is the theoretical solution defined by Bayes’. The

green pdf, denoted IES(7) is the converged IES solution using 107 realizations.

The blue pdf denoted IES(4) is the IES solution using with 40,000 realizations,

and it is exactly equal to the red dashed pdf denoted SIES(4), which is the SIES

with 40,000 realizations. The lower plot shows SIES iterations in the non-linear

case using 40,000 realizations. After 6 iterations the pdfs are indistinguisable.

that leads to divergence and the model crashes. The approach
for handling the loss of realizations is to keep track of which
realizations are active and to remove the rows and columns in the
W matrix corresponding to inactive realizations. The algorithm
is configured to converge to the ES solution with the same active
realizations in a Gauss-linear case.

The implementation in libres follows a test-based
implementation, where several tests are implemented to
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check the consistency of the code. Several tests are run using a
simple example with the following “linear” model:

y(x) = ax2 + bx+ c. (71)

Here the coefficients a, b, and c are random variables, while y(x) is
evaluated at x = 0, 2, 4, 6, 8, to create the predictedmeasurements
d1 = y(0), d2 = y(2), d3 = y(4), d4 = y(6) and d5 = y(8). Thus,

FIGURE 3 | Coefficients a, b, and c for the polynomial Gauss-linear case: The

solution using ES and SIES in the Gauss-linear case should all be identical

realization per realization. The dark blue circles are the realizations of the initial

ensemble. The green circles are the original ES in ERT, which are identical to

the SIES scheme with a single iteration of step-length equal to 1.0 (denoted

SIES1.0) shown as the red circles. The cyan circles denote iteration steps

using SIES with a step length of 0.5, which also converges exactly to the ES

solution.

we are computing polynomial curve fitting to the 5 data points.
In the case with a, b, and c sampled from a normal distribution,
this model comprises a Gauss-linear problem which is solved
correctly by the ES, and where the ES and SIES solution becomes
identical. If we sample a, b, and c from a non-normal distribution,
ERT handles this by defining underlying normal distributions
that through a non-linear transformation results in the specified
non-normal distribution (e.g., starting from a Gaussian sample
the inverse Box-Muller transformation will result in uniform
samples). Thus, the same polynomial case can be made non-
linear by using, e.g., uniformly distributed ensembles for a,
b, and c.

We show an example of the estimated parameters of a, b, and c,
in the upper, middle, and lower plots in Figure 3. The blue circles
(case INI) are the prior ensembles for a, b, and c, the green circles
(ES) are estimated values using the original Ensemble Smoother
scheme in ERT, the red circles (SIES1.0) are estimated values from
the SIES scheme using one iteration with step length one, and
finally, we show the seven first iterations using SIES with a step
length of 0.5. From these plots, the different schemes seem to
provide the same solution as is expected, and the convergence
of the SIES iterations is quite fast.

In Figure 4, where we cross plot the estimated coefficients
a and b in the upper plot and a and c in the lower plot, for

FIGURE 4 | SIES verification using cross plots of coefficients a, b, and c for the

polynomial Gauss-linear case. The solution using Ensemble Smoother (ES) and

SIES with step length 1.0 (SIES1.0) are identical for each realization. The SIES

converges to the ES solution as well (the result is shown after 12 iterations).
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the ES and SIES. It is clear that the results from SIES, the
original ES scheme, and SIES with a step length of one and one
single iteration (SIES1.0) all give identical results realization per
realization. Also, in this linear case, we can continue iterating the
IES scheme with step length one, and the solution is unchanged.
This experiment is a first verification test of the new algorithm
showing that the results are the same to within numerical
truncation errors.

In Figure 5, we repeat the plots in Figure 4 but for ESMDA.
ESMDA will lead to different results than SIES if we compare
individual realizations. However, ESMDA should in the Gauss-
linear case converge to the same mean and standard deviation as
ES over many repeated experiments. From the plots, it appears
that the ESMDA gives a result that is statistically consistent with
the ES solution.

It is difficult to verify the numerical implementation of
advanced methods in applications with full reservoir models
where we do not know the correct result. One would observe
that different methods give different results but it is impossible
to know which one is correct. These examples demonstrates
the usefulness of introducing simple tests for verification of
the algorithms.

FIGURE 5 | Cross plots of coefficients a, b, and c for the polynomial

Gauss-linear case: The solution using ESMDA (here with 5 steps) differs from

the SIES for each realization due to resampling of measurement errors in each

ESMDA step, but the methods sample the same posterior in the Gauss-linear

case.

5.3. Verification on a Reservoir Case
The next verification considers a relatively simple synthetic
reservoir model with 27755 active grid cells on a 40-times-64
grid with 14 layers. The uncertain parameters include the three-
dimensional porosity field and six fault multipliers F2–F7. There
are five producing wells, OP1–OP5 and three injectors I1–I3. As
the model is a simplification of a real reservoir model, it provides
a reasonably realistic reservoir case. We will not describe the
model at length here but rather focus on the properties of the
SIES when used for parameter estimation in a reservoir case. In
these cases we used a step-length scheme where for the three first
iterations the step length is 0.6, then for the next three iterations
it is reduced to 0.3, for subsequent iterations it is further reduced
to 0.15.

In Figure 6 we show in the upper plot, the ensemble of
cost functions for the experiment with exact inversion using
Equation (51). We see that the first iteration significantly reduces
all cost functions from their initial values. The second iteration
reduces most of the cost functions, but a few also increase.
However, in the subsequent iterations, all cost functions reduce
their value. We decided to use a long step length while ensuring
that almost all cost functions reduce their values after each

FIGURE 6 | The upper plot shows the values of the individual cost functions

for each ensemble member as a function of iterations. The lower plot shows

three average cost functions (averaged over the ensemble of cost functions)

for the three versions of the inversion schemes. See section 5.3 for

explanation of the different cases. The subspace schemes used a truncation

at 99.9% of the variance.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 October 2019 | Volume 5 | Article 47

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evensen et al. Subspace IES Implementation

update. The algorithm converges quickly, and for engineering
applications, about five to six iterations should suffice to reach
acceptable convergence.

In the lower plot in Figure 6 we used three different inversion
schemes to compute the update. We used the exact inversion
from Equation (51) where it is implicitly assumed that Cdd =
I (denoted as SIES0), the subspace inversion from section 3.3
with Cdd = I exactly prescribed (denoted by SIES1) and
finally the subspace inversion scheme from section 3.4 with
Cdd = I ≈ EET (denoted by SIES3) which introduces
an approximation due to the limited ensemble size of 100
members. In both the subspace schemes, we used a truncation
where we retained 99.9% of the spectrum when computing
the singular value decomposition of S. From the plot we see

that SIES0 and SIES1 give almost identical results, the only
difference is due to the use of the truncation of some singular
values, since with a diagonal Cdd the subspace scheme does
not introduce any additional approximation. The approximation
in the SIES3, where we represent Cdd by the measurement
perturbations E, results in a small but visible difference in the
cost function.

In Figure 7, we plot the ensembles of fault multipliers for the
six faults in the model, as computed by the three schemes SIES0,
SIES1, and SIES3. All three inversion schemes give similar results,
and there would be no reason to prefer one particular approach
based on these results. We see that the faults F2 and F7 retains
a more substantial variance while we should probably close the
faults F3 to F6.

FIGURE 7 | Reservoir case: the plots show the initial and estimated fault multipliers (after 8 iterations) for the six faults F2–F7, using the three different inversion

schemes (for the plot of F2, we conveniently removed the figure legend). These plots show consistency between the different inversion schemes. The results are

slightly different but qualitatively the same. See section 5.3 for explanation of the three different inversion schemes used.
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FIGURE 8 | Reservoir case: The plots show oilrates from two different wells OP3 (left plots) and OP5 (right plots) using the exact inversion (upper plots) and the

subspace inversion with Cdd ≈ EET.

In Figure 8 we show the ensembles of prior and posterior
oil rates for two wells OP3 and OP5, where we used the
exact inversion SIES0 and the subspace inversion SIES3 in the
upper and lower plots, respectively. The results indicate that
the estimation of parameters leads to a posterior ensemble that
matches the observations well, without under-estimating the
variance. Note, also that there is almost no visual difference
between the results in the upper and lower plots.

These experiments serve as a first verification of the subspace
schemes when history matching a non-linear reservoir model.
The current experiments use a diagonal measurement error-
covariance matrix, and we could not examine the schemes
with correlated measurement errors. We will carry out more
extensive such comparisons in a future publication, where the
focus is on the impact of assimilating data with correlated
errors. For now, Evensen [16] compared the inversion schemes
for data assimilation in a linear advection equation, with
correlated measurement errors, and in those cases, the results
were consistent and similar using the different inversion schemes.

A final note is that the number of significant singular
values in the subspace schemes decreased from 38 in the first
iteration to 15 in iteration eight when we used a truncation
of 0.999. In experiments with a truncation of 0.99, the
corresponding decrease went from 15 to 5 significant singular
values. The number of active observations was 452. This
result is a clear indication of substantial redundancy in the
rate data, as was discussed in more detail in Evensen and
Eikrem [19].

6. SUMMARY

We have discussed the derivation and implementation of the
recently proposed subspace EnRML method by Raanes et al. [1]
for practical use in reservoir history matching. We have tried to
provide a complete and easy to follow sequential derivation from
the fundamental Bayesian formulation to the final implemented
algorithm. We include discussions on practical choices of
numerical methods that lead to an efficient implementation
capable of handling big datasets. In particular, the use of
subspace inversion methods allows for processing of extensive
data sets also in the case with correlated measurement errors.
We have used a test-driven development strategy and present
several examples where the numerical algorithms are run on
simple examples with known solutions to verify both the
theoretical fundament of the methods and the actual coding of
the algorithm. Finally, we have tested our implementation in
publically available software for ensemble modeling and history
matching of reservoir models, Ensemble Reservoir Tool (ERT).
All in all, this paper should serve as a useful guide for anyone
implementing an iterative ensemble data-assimilation algorithm
for operational use.
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