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We investigate synchronization patterns and chimera-like states in the modular multilayer

topology of the connectome of Caenorhabditis elegans. In the special case of a designed

network with two layers, one with electrical intra-community links and one with chemical

inter-community links, chimera-like states are known to exist. Aiming at a more biological

approach based on the actual connectivity data, we consider a network consisting of

two synaptic (electrical and chemical) and one extrasynaptic (wireless) layers. Analyzing

the structure and properties of this layered network using Multilayer-Louvain community

detection, we identify modules whose nodes are more strongly coupled with each other

than with the rest of the network. Based on this topology, we study the dynamics of

coupled Hindmarsh-Rose neurons. Emerging synchronization patterns are quantified

using the pairwise Euclidean distances between the values of all oscillators, locally

within each community and globally across the network. We find a tendency of the

wireless coupling to moderate the average coherence of the system: for stronger

wireless coupling, the levels of synchronization decrease both locally and globally, and

chimera-like states are not favored. By introducing an alternative method to define

meaningful communities based on the dynamical correlations of the nodes, we obtain a

structure that is dominated by two large communities. This promotes the emergence of

chimera-like states and allows to relate the dynamics of the corresponding neurons to

biological neuronal functions such as motor activities.

Keywords: synchronization, multilayer network, chimera state, neuronal oscillators, metastability, community

detection

1. INTRODUCTION

Synchronization phenomena are widely studied across fields, from classical mechanics [1] to
complex dynamical systems [2–5] and music [6, 7]. Surprising phenomena in nature, for instance,
the synchronized flashing of fireflies [8] or the unexpected motion of bridges due to the emergence
of synchronized walking [9] have sparked the interest in synchronization patterns. However, some
more peculiar patterns of synchronization can also be observed in complex systems. These include
the surprising coexistence of coherent and incoherent parts of coupled identical oscillators, a hybrid
state that became known as chimera.
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Chimera states were first reported in rings of non-locally and
symmetrically coupled identical phase oscillators [10]. Since their
discovery, they have been extensively studied both theoretically
[11–26] and experimentally [27–31] in a wide range of systems.
For recent reviews see references [32–35]. For a long time,
chimera states were believed to exist mostly for nonlocal coupling
schemes. This consensus was revised when chimeras were found
in systems of globally [36–41] and locally coupled oscillators
[42–47]. Although these regular topologies often capture the
nature of the interaction between the coupled elements, there
are many real-world systems where a more complex connectivity
description is required. Prominent examples of such systems are
biological neuron networks, where synchronization is important
for various cognitive functions, and chimera states, in particular,
can be used to interpret phenomena such as epileptic seizures
[48] and bump states [49, 50].

Previous works on the effect of nontrivial topologies
on chimera states have involved scale-free and random
networks [51, 52], hierarchical (fractal) schemes [53], modular
structures [54], and “reflecting" connectivities [55]. Our aim is
to contribute in this direction and take it one step further by
considering a multilayer structure. In recent years, the study
of multilayer networks has become highly popular owing to
their significant relevance in several complex systems [56–58].
In the context of neuronal networks, such a multilayer approach
is ideal for addressing the relationship between structure and
function, an essential question in theoretical neuroscience [59].
Concerning chimera states, studies on multilayer/multiplex
networks are limited and mainly deal with artificial coupling
schemes [23, 60–63]. For example, the case of two populations
with various coupling schemes has been systematically studied in
reference [22]. In the present work, we focus on the possibility to
observe chimera-like patterns in a multiplex structure of a real-
world system, namely the neuronal network of Caenorhabditis
elegans (C. elegans). Our main focus is to demonstrate the
existence and emergence of synchronization patterns in a
multilayer network obtained from the connection of this real
organism. In short, we will show that chimera-like states can
be hard to identify in real-world networks and suggest an
alternative approach to dynamically define communities, whose
dynamics can be related to biological functions to the involved
neurons. The C. elegans multilayer connectome is used as a case
study, but the proposed approach can be easily generalized to
other networks.

The nematode C. elegans has been studied for many decades
as a standard model organism for many processes of biological
interest and beyond [64]. Particularly for neurobiology, the
structure and connectivity of its nervous system has been
deducted from reconstructions of electron micrographs of serial
sections [65, 66]. Its nervous system includes sensory organs
in the head and can produce highly plastic behavior, e.g.,
disassociative and associative learning and memory as response
to taste, smell, temperature, touch and slightly to light, even
though the nematode has no eyes [67]. A number of molecular
mechanisms is involved in learning and memory, mediated
through the same neurotransmitters as in humans and every
species with a nervous system. In fact, neurons in C. elegans

are very similar to those of humans, and their synapses are also
classified as electrical or chemical.

It has been found that some of C. elegans’ neurotransmitters,
specifically the four monoamines dopamine, octopamine,
serotonin and tyramine, act at both neurons and muscles to
affect egg laying, pharyngeal pumping, locomotion and learning,
or in general, modulate behavior in response to changing
environmental cues [68]. Not only in C. elegans but also in many
animals, one important route of neuromodulation is through
monoamine signaling, and it is well known that this extrasynaptic
communication is critical to some human brain functions. In
both humans and C. elegans, many neurons expressing aminergic
receptors are not post-synaptic to releasing neurons, indicating
that a significant amount of monoamine signaling occurs outside
the wired connectome. This defines a wireless connectivity
network between neurons [69] for C. elegans. In general, this
wireless or extrasynaptic communication is known as volume
transmission in neuroscience [70–72], and is characterized by
three-dimensional signal diffusion in the extracellular fluid, for
distances larger than the synaptic cleft. This leads to multiple
extracellular pathways connecting intercommunicating cells that
are not well characterized from a structural perspective. For
further details about our implementation of this network please
refer to the Methods 5.1.

In our multilayer approach to modeling the neuronal
connectivity of C. elegans, the network’s nodes represent neurons
connected by either electrical, chemical, or wireless pathways,
which defines three layers. The electrical network is undirected,
while the chemical and wireless networks are directed. Taking a
closer look at the three layers’ hubs in Figure 1, a strong overlap
exists between hubs in the electrical and in the chemical network,
however not so in the wireless network. This is in agreement with
results from Bentley et al. [69], where a multilayer analysis of
the three networks delineates topological overlaps between the
two synaptic networks and discrepancies between the wireless
and the synaptic networks. These topological differences of
the different layers can be further explored by the degree
distributions depicted in Figure 1, where it is clear that all of
them present a heavy-tailed degree distribution with a maximum
degree/average degree of 40/4 (electrical layer), 53/16 (chemical
layer), and 137/15 (wireless layer). Since there are not many
monoamine-releasing neurons, we observemany nodes with zero
in- and out-degree. Note that the values of the wireless degree
distribution need to be interpreted as maximum possible values.
The underlying parameters that could lead to an equivalent of
link weights are disregarded due to their complexity. Biologically,
a source neuron in the wireless network influences a potential
target neuron depending on parameters related to the diffusion
processes of neurotransmitters throughout the body. Such
parameters can be the physical distance between the presynaptic
source and the postsynaptic target or the chemical concentration
of the released neurotransmitters [70–72].

In order to investigate the synchronization patterns of the
neuronal network at hand, we will first investigate the dynamics
based on a previous approach from Hizanidis et al. [54]. This
modeling approach is then extended to get closer to the biological
connectome of C. elegans. The synchronization of the network
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FIGURE 1 | Layers of the C. elegans network and their degree distributions. All networks are plotted undirected and in a ring for visualization purposes only, with the

same node positions across layers. ▽: in-degree, △: out-degree. (A) Electrical sub-network. (B) Chemical sub-network. (C) Wireless sub-network. (D) Electrical layer

degree distribution. (E) Chemical layer in- and out-degree distribution. (F) Wireless layer in- and out-degree distribution.

is computed based on the pairwise Euclidean distances of the
dynamical variables of nodes (cf. Methods 5.3 and Kemeth et al.
[73]). Furthermore, we introduce an alternative way of finding
meaningful communities in the neuronal network and relate
the observed synchronization patterns—including chimera-like
states – to biological functions of the involved neurons.

2. COUPLING BY DESIGN

Before investigating the C. elegans network using the actual
connectivity data, we discuss results following the modeling
approach of Hizanidis et al. [54], where first, the communities
are computed from the aggregated connectome irrespective of
the link type. Then, all intra-community links are assigned
to the electrical layer and all inter-community links to the
chemical layer. In other words, the designed network is
modular or multilayer, where the neurons of each module
and their intra-community links occupy a different layer. We
follow this approach in order to test the applicability of the
Euclidean distance method in evaluating the synchronization of
the network.

Figure 2 shows the six communities obtained from the
Walktrap algorithm [74] applied to the aggregated connectome
of C. elegans. The resulting topology is exactly the same as
in Hizanidis et al. [54]: electrical intra-community links and

chemical inter-community connections. Therefore, numerical
integration of the coupled Hindmarsh-Rose (Equation 1) using
this topology leads to similar time series of the dynamical variable
as in Hizanidis et al. [54]. See Methods 5.2 for details on the
Hindmarsh-Rose model.

In Figure 3, the level of synchronization of every community
γ1 to γ6, the global level of synchronization γ of the whole
network, the chimera-like index χγ as well as the metastability
index λγ are shown for a large range of electrical and chemical
couplings. Note that the global level of synchronization γ is
computed from the pairwise Euclidean distances of the three
dimensional coordinates defined by the dynamical parameters
p, q and n, between any pair of nodes in the network (cf.
Methods 5.3). Thus, γ , in contrast to χγ and λγ is independent
of the community structure.

It can be seen that for an electrical coupling strength of gel =
0.4 and no chemical coupling (gch = 0) the chimera-like index
based on Euclidean distances attains a value of χγ ≈ 0.25.
Furthermore, the metastability index for these coupling strengths
λγ ≈ 0.12 is only half as large as the chimera-like index. This
serves as justification why we may call the state a “chimera-like”
state, in contrast to a “metastable” state where the metastability
index prevails.

Figure 4A depicts a space-time plot of the p-variable of the
Hindmarsh-Rose model, which corresponds to the membrane
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FIGURE 2 | Topology of the artificial C. elegans network. The network of 277 neurons is divided into 6 communities of different sizes using the Walktrap algorithm. (A)

Neurons are colored according to their community [1: gray (19 neurons), 2: violet (69 neurons), 3: red (18 neurons), 4: yellow (108 neurons), 5: blue (20 neurons), 6:

black (43 neurons)]. Electrical and chemical connections are shown as black and green lines, respectively. In this approach, electrical junctions exist only within every

communities, whereas chemical synapses span only across communities. (B) The adjacency matrix with electrical (black) and chemical (green) edges, where the axes

represent the node indices. The vertical and horizontal lines divides the matrix in the ordered communities (1 to 6), from left to right in the horizontal axis, and from up

to down in the vertical axis, respectively.

potential (cf. Methods 5.2) for disconnected communities with
high electrical (intra-community) coupling. One can see that
every community operates in the synchronized regime. For
smaller electrical coupling, Figure 4B shows the space-time
plot of the p-variable with a pattern of mixed synchrony that
resembles a chimera-like state, that is, varying synchronization
across communities. This state is achieved for gel = 0.4 and
gch = 0, that is, that communities are not connected. It can
be seen that especially the nodes in the larger communities
2 and 4 are much more synchronized than the nodes in the
small communities. The chimera-like index is still large in
a close neighborhood of this point (cf. Figure 3). However,
when the chemical coupling is increased, the intra-community
synchronization weakens and inhibits the emergence of chimera-
like states. In summary, different levels of synchronization can
be achieved by means of reducing the inter-community coupling
strength. This raises to the hypothesis that, when observing
the designed model, the main driver of chimera-like behavior
is in fact the relative size of the communities, since larger
communities do not need a high intra-community coupling
strength to reach a high level of synchronization. Figure 4C
shows the mean order parameter depending on the size of the
community. As expected, the order parameter grows with the
number of nodes in the community. While the mean order
parameter of the three small communities (1, 3, and 5) is always
below 0.6, the largest community reaches a value of γ4 ≈ 0.95.

The actual size of the community affects the order parameter
only in an indirect way. What seems to be more important is
the higher mean degree of nodes in the larger communities.
In Figure 4D, it can be seen that there is a strong correlation

between the number of nodes and the mean node degree of each
community. In other words, since the nodes in large communities
have more neighbors than the nodes in small communities, it
is easier for them to synchronize. Note that this does not imply
causality between node degree and level of synchronization.
To corroborate this, more general investigations, e.g., on
randomized versions of the network would be insightful. For our
purpose however, it suffices to know that different community
sizes influence the level of synchronization significantly.

3. COUPLING BY BIOLOGY

In order to investigate the synchronization of the C. elegans
network even further, a third layer is added to the graph,
representing the monoamine connections (wireless network).
Furthermore, the assumptions about electrical and chemical
synapses made in Hizanidis et al. [54] related to intra- and
inter-connectivity are dropped, and the three-layer neuronal
network is created using the actual connectivity data of the
three synapse types (see Methods 5.1). In this section, we
present two approaches to finding communities in this biological
multilayer network.

3.1. Communities Based on Topology
The communities are first evaluated using a Multilayer-Louvain
community detection algorithm (see Methods 5.4), which yields
8 communities instead of 6 as in the aggregated case discussed
in the previous section (cf. Figure 2). Figure 5 gives an overview
of the partition at hand. The adjacency matrices (Figures 5A–C)
highlight clear differences between the edge types: while the
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FIGURE 3 | Synchronization parameter scans of the designed network. Changes in the community dynamical properties and global dynamical properties as the

electric and chemical coupling strengths vary. (A–F) Level of synchronization of each community, γ1 to γ6. (G) The global level of synchronization γ of the whole

network. (H) The chimera-like index χγ . (I) The metastability index λγ . System parameters: a = 1, b = 3, c = 1, d = 5, s = 4, p0 = −1.6, Iext = 3.25, r = 0.005,

Vsyn = 2 and gwl = 0.

wireless network, presenting few intra-community links, is
distributed almost randomly across the network, the chemical
layer for instance strongly reflects the underlying community
structure in the adjacency matrix. Since chemical connections
make up most of the edges in the network, the algorithm
optimized the community partitionmainly based on the chemical
layer. Comparing this partition to the one in Figure 2, one
can observe that the clear separation between edge types into
intra- and inter-community edges is not achieved when using the
biological connectome without assumptions.

The unclear separation of edge types in the partition shows
its effects when analyzing the dynamics of the system using the
Hindmarsh-Rose equations (see Methods 5.2). Figure 6 shows
the parameter scans for the global level of synchronization
γ , the chimera-like index χγ and the metastability index λγ

for two different wireless coupling strengths. For the level of
synchronization γ1 to γ8 within the individual communities (see
Figures S1, S2). First of all, the global level of synchronization of
the system is highly reduced when using the real connectome,
which can be explained by the previously mentioned edge

distribution. Since the electrical layer synchronized the nodes
within communities in the designed partition, the inter-
community coupling could easily be tuned using the chemical
coupling strength. Therefore, a clear chimera-like region could be
observed in the parameter scans in Figure 3. In the case of the real
connectome, it is not possible to tune intra- and intercommunity
coupling separately, since all edge types are distributed across and
within communities.

Even though the parameters used to identify chimera-like
states (γ , χγ , and λγ ) are significantly lower than in the
model by design, the timeseries of the neuron membrane
potential p in Figure 7 suggest that the system adopts three
different synchronization patterns, depending on the dynamical
coupling strengths gwl, gel and gch. The corresponding coupling
strengths and synchronization parameters are noted in Table 1.
Figures 7A–C show the evolution of p for gwl = 0.0, and
Figures 7D–F show p for gwl = 0.2. One observes that for
high electrical coupling strengths (Figures 7A,D), the system is
synchronized, meaning that most of the nodes follow the same
periods of bursting (green) and quiescent (blue) states. However,
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FIGURE 4 | Space-time plots of the designed network. (A) Time series of the p-variables for a state in which every community is internally synchronized. The nodes

are ordered as in Figure 2 with communities 1 to 6 from left to right. This state is achieved for gel = 1.76, gch = 0. Keeping the chemical coupling at gch = 0 and

decreasing the electrical coupling to gel = 0.4 leads to the timeseries in panel (B), with the same color code and time scales as before, where the large communities

(2 and 4) are more synchronized than the smaller communities. We call this a chimera-like state. (C) Level of synchronization γm and (D) mean degree of each

community (m = 1, . . . , 6), vs. the size of the community, respectively, indicating a strong correlation between size and order. Parameters as in Figure 3.

one can see singular nodes that fall out of the synchronized
pattern (especially in communities 1 to 3), which correspond
to the nodes that are not electrically coupled. Figures 7C,F

depict the system in the desynchronized regime, where one
cannot distinguish any clear pattern of synchronization. The
desynchronization becomes higher when the wireless coupling
strength is increased. In Figure 7B, the system seems to exhibit
chimera-like behavior at first glance. However, the chimera-like
index for this coupling parameter set is very small (see Table 1).
Even though community 3 seems less synchronized, one can
read from the synchronization parameters (cf. Figure S1) that
in fact all communities present very low synchronization. This
behavior does not change significantly when adding wireless
coupling (cf. Figure 7E).

Using the Multilayer-Louvain community detection approach

to partition the network, one observes a system expressing
different synchronization patterns depending on the interplay

of the coupling strengths of the three layers. However, even
though these patterns are visible in the evolution of the p-variable
(Figure 7), the topological community partition cannot reflect
these patterns in the parameter scans (Figure 6). Therefore,
the question about the meaning of community detection can
be raised. The following section proposes an alternative way
of detecting communities in multilayer networks, which is not

based on the topology or link distribution, but on the correlation
of nodes with respect to their dynamic variable p.

3.2. Communities Based on Dynamics
In the previous section it was shown that the Multilayer-
Louvain partition already leads to significant differences in the
synchronization behavior of the distinct communities. Yet, as
this barely becomes apparent in the chimera-like index, we
investigated an alternative approach of finding communities,
based on dynamical correlations between the time series of the
p-variable. The heuristic algorithm leading to the correlation-
based partition is described in detail in Methods 5.5. It is worth
mentioning that this algorithm only changes the partition of the
network, it does not change the nodes’ dynamics when compared
to section 3.1, as the underlying graph itself remains untouched.
However, the synchronization measures (i.e. γm, χγ , and λγ , see
Methods 5.3) do intrinsically depend on the particular partition.

Figure 8 shows that the correlation-based partition strongly
differs from the partition found with the Multilayer-Louvain
algorithm. The most striking difference is the stronger
heterogeneity among inter-community links in the correlation-
based partition. The outgoing and incoming links between
communities are relatively evenly distributed in the topology-
based Multilayer-Louvain partition. In the correlation-based
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FIGURE 5 | Communities of the Multilayer-Louvain C. elegans network. The network is divided into 8 communities of different size using the Multilayer implementation

of the Louvain algorithm (see Methods 5.4). (A–C) Weighted adjacency matrices of the electrical (black), chemical (green) and wireless (red) networks, where the axes

represent the node indices. The vertical and horizontal lines divides the matrix in the counter-clockwise ordered communities, from left to right in the horizontal axis,

and from up to down in the vertical axis, respectively. Note that the maximum depicted weight is set to 10 in both the electrical and chemical layers for visualization

reasons, even though few higher weights exist. (D–F) Inter- and intra-community coupling of the three layers, where colored circles represent communities [1: gray (87

neurons), 2: violet (59 neurons), 3: orange (43 neurons), 4: red (31 neurons), 5: yellow (19 neurons), 6: pink (17 neurons), 7: blue (15 neurons), 8: black (8 neurons)],

and lines represent the cumulative link weight between two or within one community (self-loops).

partition however, the two largest communities (3 and 6)
are much stronger connected than the rest of the network.
Furthermore, it can be seen that the two smallest communities (5
and 8) present no electrical connection to any other community
in the network. In general, the electrical sub-network shows
only very few inter-community links compared to the strong
intra-community coupling (self-loops) of the two largest
communities (3 and 6).

Regarding the dynamical properties, the dynamical
correlation-based partition leads to qualitatively similar
results as the Multilayer-Louvain partition. Compare Figures 6

and 9. In particular, Figure 9B clearly shows that the highest
values of the chimera-like index χγ are still obtained for high
electrical couplings and small chemical couplings. Increasing the
wireless coupling as in Figure 9E reduces the value of χγ , similar

to what has been observed previously in the dynamical analysis
of the Multilayer-Louvain partition. However, the value of the
highest chimera-like index (χγ ≈ 0.14, obtained at gel = 1.96
and gch = 0.04) is significantly higher for the correlation-based
partition. Moreover, it is also higher than the corresponding
metastability index (λγ ≈ 0.07). Therefore, we may indeed call
the state “chimera-like" [38, 54, 75–78].

The reason for the high chimera-like index can be observed
in the space time plots of the p-variables in Figure 10. As
was mentioned before, the dynamics of single oscillators do
not depend on the partition. In order to compare the results
from the correlation-based partition with theMultilayer-Louvain
partition, we decided to show the time series of p using the
same coupling constants as in Figure 7. The different ordering
of the nodes, though, leads to a significantly higher homogeneity
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FIGURE 6 | Synchronization parameter scans of the Multilayer-Louvain network. Changes in the global dynamical properties as the electric and chemical coupling

strengths vary. (A–C) Absence of wireless coupling (gwl = 0) for different electrical and chemical couplings: the global level of synchronization of the whole network γ ,

the chimera-like index χγ and the metastability index λγ . (D–F) γ , χγ , and λγ for gwl = 0.2. The system parameters are the same as in Figure 3, except for gwl.

between nodes within one community, which is especially
apparent for the largest communities (3 and 6) in Figures 10A,D.
As a consequence, the respective levels of synchronization (γ3 ≈

0.40 and γ6 ≈ 0.67) are higher than for the other communities,
which raises the chimera-like index. The reason for this high
level of synchronization is the strong intra-community coupling
of the two large communities in the electrical layer, since
the electrical coupling strength is the very high in parameter
set (gel = 1.80).

For time series with small electrical coupling (see
Figures 10C,F), the communities are not separated as clearly,
particularly when wireless coupling is applied to the system,
which can be observed in Figure 10F. Especially the largest
community (3) is much less synchronized, which can be
explained by a stronger influence of the chemical and wireless
layers, where a high number of intra-community links exist. This
demonstrates that the dynamical correlation-based algorithm
seems to preferentially sort the network according to the
electrical sub-network, as this layer seems to be most important
for the overall synchronization of the network. The adjacency
matrices in Figures 8A–C support this observation: Only the
electrical layer shows a large number of intra-community links,
whereas the other layers present no clear visible structure. This is
again in contrast to the Multilayer-Louvain partition, where the
chemical layer also shows a pronounced community structure
(see Figure 5B).

TABLE 1 | Parameter sets used in Figure 7.

gwl gel gch γ χγ λγ

7 (A) 0.00 1.80 0.05 0.35 0.05 0.07

7 (B) 0.00 0.50 0.20 0.15 0.02 0.02

7 (C) 0.00 0.10 0.25 0.13 0.02 0.02

7 (D) 0.20 1.80 0.05 0.22 0.04 0.03

7 (E) 0.20 0.50 0.20 0.11 0.02 0.01

7 (F) 0.20 0.10 0.25 0.10 0.01 0.01

In the case of intermediate electrical, chemical coupling and
no wireless coupling (see Figure 10B), the distinct communities
can still be identified, yet the level of synchronization in the large
communities does not suffice to reach a high chimera-like index.
Adding wireless coupling as shown in Figure 10E does not lead
to significant changes in the values.

For a full review of the different coupling strengths of to the
system that lead to the time series in Figure 10, as well as the
consequent values of the synchronization parameters γ , χγ , and
λγ , please refer to Table 2.

4. DISCUSSION

Interesting synchronization patterns were found using different
modeling approaches in the multilayer network of C. elegans.
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FIGURE 7 | Space-time plots of the Multilayer-Louvain network. The system parameters are the same as in Figure 3, except for gwl. (A–C) Temporal evolution of the

p-variable for different gel and gch with gwl = 0. (D–F) Similar plots for gwl = 0.2. The values of all coupling strengths are summarized in Table 1. Red lines separate

different communities.

They were quantified based on the pairwise Euclidean distance
between the dynamical variables p, q and n of the underlying
Hindmarsh-Rose system (see Methods 5.3).

Following the approach of Hizanidis et al. [54], we first
assume purely electrical connections within the communities,
and chemical synaptic intercommunity coupling (section 2). This
results in a designed coupling scenario, where chimera-like states

are clearly visible due to a strong separation of connection types.
While the electrical sub-network synchronizes the communities
within themselves, the chemical sub-network only allows for
connections across communities.

Moving toward a more biologically-inspired modeling
(section 3), these synchronization states are more difficult
to observe. Since the edge types are not clearly separated
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FIGURE 8 | Communities of the dynamical correlation-based C. elegans network. The network is divided into 8 communities of different size using the correlation

matrices of the p-variable from the dynamical equations (see Methods 5.5). (A–C) Weighted adjacency matrices of the electrical (black), chemical (green) and wireless

(red) sub-network, where the axes represent the nodes indices. The vertical and horizontal lines divides the matrix in the counter-clockwise ordered communities, from

left to right in the horizontal axis, and from up to down in the vertical axis, respectively. Note that the maximum depicted weight is set to 10 in both the electrical and

chemical layers for visualization reasons, even though few higher weights exist. (D–F) Inter- and intra-community coupling of the three layers, where colored circles

represent communities [1: gray (25 neurons), 2: violet (20 neurons), 3: orange (91 neurons), 4: red (33 neurons), 5: yellow (15 neurons), 6: pink (75 neurons), 7: blue

(14), 8: black (6 neurons)]. Electrical and chemical connections are shown as black and green lines, respectively. Wireless connections are colored in red. In this

partition, edges are distributed more clearly than in the partition obtained from the Multilayer-Louvain approach in Figure 5.

anymore and it is therefore impossible to tune intra- and
intercommunity coupling separately, the nodes within one
community cannot synchronize as easily. This is especially the
case when partitioning the network with the Multilayer-Louvain
algorithm: the synchronization patterns are visible in the time
series (see Figure 7), but the synchronization indices are very
low (see Figure 6).

We also discussed an alternative way to identify correlated
clusters in the network, namely to sort nodes in communities
according to the Pearson correlation matrix of the p-variable (see
Methods 5.5). In this case, the community structure is dominated
by two large communities with a high amount of electrical
self-loops (see Figure 8) that present a strong synchronization
(see Figure 10). There are two small communities that share

no electrical links to the rest of the network and therefore
scarcely synchronize with nodes from the other communities.
This promotes the emergence of chimera-like states. Further
insights on the dynamical correlation-based partition can be
obtained by investigating the neuronal functions of the nodes. In
Table 3, one can see that the highly synchronized communities
(3 and 6) contain 75% of the motor neurons of the system.
The synchronization of motor neurons under varied coupling
strengths is in harmony with experimental findings, for example
in rats [79].

In this context, a question could be raised regarding the
multilayer nature of the studied network. Since the three layers
do not share the same number of neurons (only 253 of the 279
neurons are connected by electrical gap junctions), a certain
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FIGURE 9 | Synchronization parameter scans of the dynamical correlation-based network. Changes in the global dynamical properties as the electric and chemical

coupling strengths vary. (A–C) Absence of wireless coupling (gwl = 0) for different electrical and chemical couplings: the global level of synchronization of the whole

network γ , the chimera-like index χγ and the metastability index λγ . (D–F) γ , χγ , and λγ for gwl = 0.2. The system parameters are the same as in Figure 3, except

for gwl. Refer to Figures S3, S4 for the parameter scans including γi .

group of nodes are prone to remain desynchronized for certain
combinations of gel, gch and gwl. However, the strong biological
interplay between synapse types is crucial to the understanding
of the neuronal network as an entity [80, 81]. Therefore, the
connectome should be modeled as a multilayer network.

Keep in mind that the studied three-layer network
contains information only about the electrical, chemical
and monoamine connections. Another layer could be added
for the neuropeptide wireless network, which was not included
since many neuropeptide receptors, as well as ligands for many
neuropeptide receptors are unknown. Also, the distance over
which neuropeptide signaling can occur is uncharacterized for
many of them.

Furthermore, concerning the synchronization metric
based on Euclidean distances (see section 5.3), the threshold
parameter which defines the limit between synchronized
and desynchronized nodes has been set to δ = 0.01 as in
reference [73]. This value could be adapted to better suit the
system and the three-dimensional distances.

This work presents an approach for analyzing the complex
biological network of C. elegans using metrics of synchronization
based on Euclidean distances and a new method of finding
clustered nodes by correlating their dynamical variables. The
underlying framework can be extended for multiple complex
network applications.

5. METHODS

5.1. Datasets
The gap junction and chemical synapse networks of a

hermaphrodite C. elegans have been obtained in [66], and are

available through WormAtlas [82]. The associated adjacency

matrices are computed for the electrical and chemical layers,

where we omitted the neuromuscular junctions since we are only

interested in neuronal interaction. Note that this dataset does

not include the 20 pharyngeal neurons. Hence, we work with the

somatic giant component of the neuronal network.
The electrical sub-network consists of 253 neurons and

890 synapses or gap junctions from 517 unique neuron pairs

(including 3 self-connections). A total of 352 out of 517

neuron pairs have only one synapse between them, while the

other 165 pairs show multiple parallel connections, with a

maximum value of 23. This means that the respective symmetric

(undirected) adjacency matrix has weights varying from 1 to 23

for connected neurons.
The chemical sub-network contains 253 source and 268 target

neurons, the union of both sets is composed of 279 neurons,

which is the total number of nodes of the modeled C. elegans

network. There are 6,294 synapses from 2,575 unique source-
target neuron pairs. A total of 1,362 out of the 2,575 neuron pairs

have only one synapse, while the other 1,211 pairs have multiple
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FIGURE 10 | Space-time plots of the dynamical correlation-based network. The system parameters are the same as in Figure 3, except for gwl. (A–C). Temporal

evolution of the p-variable for different gel and gch with gwl = 0. (D–F) Similar plots for gwl = 0.2. The values of all coupling strengths are summarized in Table 2. Red

lines separate different communities. The time series are identical to Figure 7, but for a different ordering of nodes.

synaptic connections with a maximum value of 37. Therefore, the
associated asymmetric (directed) adjacency matrix has weights
varying from 1 to 37 for connected neurons.

The wireless sub-network of this study is restricted to the
monoamine network in Bentley et al. [69] and is available
in Bentley et al. [83]. Again, the pharyngeal neurons are
excluded. This network by itself can be thought of as a

directed quadripartite network composed of a source neuron,
a neurotransmitter, a receptor and a target neuron. The
considered wireless network is composed of 16 source neurons,
4 monoamine neurotransmitters, 16 associated protein receptors
and 215 target neurons. As a first approach to the implementation
of the wireless connectivity within our dynamical model, we are
only interested in an effective connectivity between a source and
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TABLE 2 | Parameter sets used in Figure 10.

gwl gel gch γ χγ λγ

10 (A) 0.00 1.80 0.05 0.35 0.11 0.06

10 (B) 0.00 0.50 0.20 0.15 0.03 0.03

10 (C) 0.00 0.10 0.25 0.13 0.03 0.02

10 (D) 0.20 1.80 0.05 0.22 0.07 0.03

10 (E) 0.20 0.50 0.20 0.11 0.02 0.01

10 (F) 0.20 0.10 0.25 0.10 0.02 0.02

TABLE 3 | Neuron functions of nodes in the dynamical correlation-based partition.

Function

Community 1 2 3 4 5 6 7 8 All

Interneuron 10 7 32 11 5 16 8 0 89

Motor 7 2 32 7 3 49 6 2 108

Sensory 8 11 27 15 7 10 0 4 82

All 25 20 91 33 15 75 14 6 279

a target neuron. For this purpose, we reduce the quadripartite
nature by assigning binary weights to the adjacency matrix: 1,
if there is any path between the neurons and 0, if there is no
possible connection from a source to a target neuron through
any neurotransmitter and matching receptor. The final directed
adjacency matrix includes 2,282 edges.

The functional classification of the neurons in three categories
(sensory, motor and interneurons) has also been obtained from
[66] and manually created based on the dataset in WormAtlas
[84]. We excluded the male data, since we only consider the
hermaphrodite information. If the description of a particular
neuron includes both interneuron and motor characteristics,
we choose to describe it as motor neuron, as well as we
define amphid neurons to be sensory, following the approach in
Varshney et al. [66].

For details relevant to our study on the individual neurons and
their characteristics, please refer to the Table S1.

5.2. Hindmarsh-Rose Dynamics
We consider a network of neurons locally characterized by
Hindmarsh-Rose dynamics [85], a model intended to describe
the transition between the stable resting state and the stable
limit cycle of neurons. The model was intended for two types of
coupling (electrical and chemical), we propose extending it by a
third coupling term to account for the wireless connections in the
studied network, as described by the following equations:

ṗi = qi − ap3i + bp2i − ni + Iext + gel

N
∑

j=1

LijH(pj)

− gch(pi − Vsyn)

N
∑

j=1

Ach
ij S(pj),−gwl(pi − Vsyn)

N
∑

j=1

Awl
ij S̃(pj),

q̇i = c− dp2i − qi,

ṅi = r[s(pi − p0)− ni], (1)

where i = 1, . . . ,N is the neuron index, pi is the membrane
potential of the i-th neuron, qi is associated with the fast current,
either Na+ or K+, and ni with the slow current, for example
Ca2+. The parameters of Equation (1) are chosen such that
a = 1, b = 3, c = 1, d = 5, s = 4, p0 = −1.6, and
Iext = 3.25, for which the system exhibits a multi-scale chaotic
behavior characterized as spike bursting [86]. The parameter r
modulates the slow dynamics of the system and is set to 0.005
so that each neuron lies in the chaotic regime in the absence of
coupling [54]. For these parameters, the Hindmarsh-Rose model
enables the spike-bursting behavior of the membrane potential
observed in experiments made with single neurons in vitro. We
choose random initial conditions in the time series shown and
find that changing the initial conditions does not change the long-
term synchronization behavior. In our time series analysis, we
always remove the transients and average over a long time period.
The chaotic behavior of the Hindmarsh-Rose model has been
studied in earlier publications with slightly different parameters,
which led to the investigation of a plethora of chaotic phenomena
using spike-counting techniques [87] and detailed bifurcation
analysis [88].

The connectivity structure of the electrical synapses is
described in terms of the Laplacian matrix L, whose elements are
defined as Lij = Ael

ij − δijk
el
i , where k

el
i is the degree of node i in

the electrical layer and δij = 1 if i = j, δij = 0 otherwise. Ael is

the symmetric adjacency matrix whose elements are Ael
ij 6= 0 if

there are electrical synapses connecting the neurons i and j, and
Ael
ij = 0 otherwise. The strength of the electrical coupling is given

by the parameter gel and its functionality is governed by the linear
function H(p) = p.

The connectivity structure of the chemical synapses is
described by the adjacencymatrixAch, whose elements areAch

ij 6=

0 if there are chemical synapses between neurons i and j, and
Ach
ij = 0 otherwise. The nonlinear chemical coupling is described

by the sigmoidal function S(p) = {1+ exp[−λsyn(p− θsyn)]}
−1 ,

which acts as a continuous mechanism for the activation and
deactivation of the chemical synapses. The associated coupling
strength is noted as gch. For the chosen set of parameters, |pi| < 2
and thus (pi − Vsyn) is always negative. Therefore, the chemical
coupling is excitatory if Vsyn = 2. The other parameters are
θsyn = −0.25 and λsyn = 10, following references [89, 90].

The wireless connectivity structure is described by the
adjacency matrix Awl. It is also considered nonlinear; however,
much slower than the chemical synaptic coupling [69].
Intuitively, the exponential function S(p) in the denominator can
be decreased by replacing λsyn with λ̃syn≪λsyn. We chose λ̃syn =

1, Vsyn = 2 and θsyn = −0.25, as for the chemical coupling.
Furthermore, the wireless coupling is considered as an additional
disrupting signal to the synchronization of the network. It is
therefore treated like excitatory chemical synapses.

5.3. Level of Synchronization
We adapt an approach based on Kemeth et al. [73] in order
to compute a level of synchronization of the studied network.
Instead of considering the local curvature, which is optimized
for a ring network, we calculate the pairwise Euclidean distances
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between the variables {x1, x2, . . . , xN} at every time step t, with
xi = (pi, qi, ni). For all t, we obtain a set of all possible distances
between a set of N nodes:

D̂x(t) : = {||xi(t)− xj(t)|| , ∀ i, j ∈ {1, . . . ,N} } . (2)

Two nodes i and j are now defined to be synchronized if ||xi(t)−
xj(t)|| ≤ δ and desynchronized if ||xi(t)− xj(t)|| > δ, where
δ = 0.01 · Dmax is a threshold value. The value Dmax is the
maximum possible Euclidean distance between a pair of nodes:

Dmax =

√

(xmax − xmin)
2, (3)

where xmax = (pmax, qmax, nmax) and xmin = (pmin, qmin, nmin)
are vectors containing the maximum and minimum values of the
dynamical variables for all time steps t and nodes N. Therefore,
two nodes are defined to be synchronized at time t if their
Euclidean distance does not exceed 1% of the maximum possible
distance, which is well defined for every space-time series.

Based on the set of Euclidean distances, we can measure the
amount of spatially coherent nodes at each time step t. For this
purpose, we consider a different set of distances, containing only
those that are smaller than the threshold value δ:

D̂δx(t) : = {||xi(t)− xj(t)|| < δ , ∀ i, j ∈ {1, . . . ,N} } . (4)

The fraction between the number of distances within the range
of the threshold value and the possible number of distances then
results in the amount of synchronized node pairs. Note that
the number of node pairs grows at a rate of N2. It is therefore
necessary to take the square root of this value, in order to make
it comparable across network sizes. We call the resulting value
“level of synchronization:”

γ (t) : =

√

|D̂δx(t)|

|D̂x(t)|
. (5)

If γ (t) is only computed for a certain community m, it is called
γm(t), representing the level of synchronization of communitym
at time t. For a network consisting of M communities, it is now
possible to compute the chimera-like index:

σγ (t) : =
1

M − 1

M
∑

m=1

(

γm(t)−
〈

γm(t)
〉

M

)2
(6)

at time t as proposed in Shanahan [91] and also used in
Hizanidis et al. [54], where

〈

γm(t)
〉

M
denotes the average level

of synchronization at time t over all communities m. Thus,
the only difference to Shanahan [91] is the application of the
Euclidean-distance-based level of synchronization γ (t) instead of
the Kuramoto order parameter. The temporal mean then defines
the time-averaged chimera-like index of the network:

χ̃γ : =
〈

σγ (t)
〉

T
. (7)

Similarly we can compute the metastability index:

σmet,γ (m) : =
1

T − 1

T
∑

t=1

(

γm(t)−
〈

γm(t)
〉

T

)2
(8)

of community m, where
〈

γm(t)
〉

T
denotes the temporal mean of

γm(t) over all time steps. The average over all communities yields
the metastability index of the whole network:

λ̃γ =
〈

σmet,γ (m)
〉

M
. (9)

The subscript γ is utilized to emphasize that these parameters
differ from the parameters in Shanahan [91] and Hizanidis
et al. [54] in the way the underlying level of synchronization
is computed.

In order to compare community partitions with different
numbers of communities, it is important to know that the ranges
of χγ and λγ depend on the number of communities M of
the studied network. The chimera-like index of a chimera state,
where half of the communities is completely synchronized and
the other half is desynchronized, becomes:

χ̃γ ,max =
M

4(M − 1)
, (10)

since the deviation from the mean is 0.5 for every community.
The same considerations lead to a maximum metastability
index of:

λ̃γ ,max =
T

4(T − 1)
, (11)

which is approximately 0.25, since the total number of time steps
T is large. Hence, we obtain the chimera-like and metastability
indices normalized to unity:

χγ =
χ̃γ

χ̃γ ,max
(12)

and,

λγ =
λ̃γ

λ̃γ ,max

. (13)

5.4. Multilayer-Louvain Community
Detection
The communities discussed in section 3 are computed based on a
multiplex Louvain community algorithm [92]. In single-layered
graphs, the key to finding communities usually lies in optimizing
the modularity function Q [93]:

Q =
1

2ml

N
∑

i,j=1

[

Aij −
kikj

2ml

]

δ
(

gi, gj
)

, (14)

whereAij is the graph’sN×N adjacencymatrix,ml =
1
2

∑N
i,j=1 Aij

is the total link weight in the network, and ki =
∑N

j=1 Aij is the

weight incident to node i. The weight of a link between i and
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FIGURE 11 | Community partitions of the biological C. elegans network. (A) The network is divided into 8 communities of different size using the Multilayer-Louvain

algorithm (see Methods 5.4). Neurons are colored according to their community as in Figure 5. (B) The same network is partitioned using the correlation matrix

approach (see Methods 5.5). Refer to Figure 8 for community sizes.

j corresponds to the number of connections between these two
nodes (see Methods 5.1). δ

(

gi, gj
)

= 1 if nodes i and j are in
the same community, and δ

(

gi, gj
)

= 0 otherwise. Therefore,

the term Aij −
kikj
2ml

quantifies how strongly the two nodes will be

coupled in the studied network, compared to how strongly they
would be coupled in a random network. In the algorithm, the
function Q is computed for every pair of nodes iteratively until it
reaches a maximum value.

For multilayer networks, the modularity as defined in
Equation (14) is not well suited as it does not differentiate if
nodes are connected by different layers. In order to extend the
modularity to multilayer applications, consider a network with S
layers. We define the degree of node j within the same layer as

k
(σ )
j =

∑N
i=1 A

(σ )
ij , σ = 1, . . . , Swith A

(σ )
ij denoting the adjacency

matrix in layer σ . The generalized modularity functionQmultilayer

for a multilayer network with S layers is defined as [92]:

Qmultilayer =
1

2µ

N
∑

i,j=1

S
∑

σ=1







A
(σ )
ij −

k
(σ )
i k

(σ )
j

2ml,σ



 δ

(

g
(σ )
i , g

(σ )
j

)



 ,

(15)

where ml,σ = 1
2

∑N
j=1 k

(σ )
j is the total link weight within layer σ ,

and µ =
∑S

σ=1 ml,σ is used for normalization similar to ml in
Equation (14). Note that in the case of the considered C. elegans
network, there are no inter-layer connections, since every
connection type (electrical, chemical, and wireless) represents an
independent sub-network. In this study, we consider 3 layers
with σ ∈ {el, ch, wl} that are shown by black, red and green
link color in Figures 11A,B for the multilayer connectome and
correlation-based matrix, respectively. However, Equation (15)
can be extended to be used for the study of multiplex networks,
in which inter-layer connections exist [92].

5.5. Dynamical Correlation Community
Detection
We present a heuristic approach to finding meaningful
communities based on the dynamics of the system. While
previous approaches aimed to find a community structure based
on the topology, we propose an algorithm which partitions the
network based on the nodes’ correlations of the p-variable.

Figure 12 shows a schematic description of the algorithm. In
order to gain insight on the synchronization of the time series for
each pair of nodes, we compute the Pearson-correlation matrix
from the p-time series of all nodes

Pij =
〈[pi(t)− 〈p〉][pj(t)− 〈p〉]〉

√

〈pi(t)2〉 − 〈p〉2
√

〈pj(t)2〉 − 〈p〉2
. (16)

In the hereby created matrix, every entry represents the
correlation value of two time series of the two respective nodes
(cf. the matrix in Figure 12, top left corner).

In order to find a community partition in the correlation
matrix, we employ the stochastic block model approach from
the graph_tool framework [94]. Since this framework does not
intrinsically support weights in the network, we created a graph
with a discrete number of edges between two distinct nodes that
depends on the link weight in the correlation matrix; higher link
weight therefore corresponds to a larger number of edges.

For every parameter set (i.e. every combination of the three
different coupling strengths gel, gch and gwl) we obtain one
correlation matrix, on which we apply the graph_tool algorithm.
Note that, for some parameter sets, the algorithm will not
find a “reasonable” partition. In particular, some partitions may
consist of very small communities with only very few nodes.
This is problematic in terms of the level of synchronization
γm, since one node in a small community m plays a bigger
role in the synchronization of this community; this implies
stronger fluctuations of γm. Therefore, very small communities
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FIGURE 12 | Schematic description of the dynamical correlation-based community detection algorithm. In the sorted matrices red lines represent the borders

between two communities.

(especially communities consisting of only two or three nodes)
can have a significantly stronger influence on the chimera-like
and the metastability index than large communities. This is why
we only consider community partitions with at least six nodes
per community.

Another constraint applied to the partitions is a lower
boundary for the level of synchronization in at least one
community. The constraint is needed, because nodes do not
synchronize as easily in the system based on the connectivity data
(see section 3). However, a highly synchronized community is
crucial to finding chimera-like states. The threshold value used
to filter out partitions containing low-synchronized communities
was set to γthr = 0.30. This is a reasonable compromise
between reaching a high level of synchronization in at least
one community and still keeping a relatively high number
of partitions.

The algorithm finds 582 partitions that satisfy the constraints
out of an initial set of 50 · 15 · 7 = 5250 possible partitions

(gel ∈ [0.04, 0.08, ..., 2.00], gch ∈ [0.02, 0.04, ..., 0.30] and
gwl ∈ [0.00, 0.05, ..., 0.30]). Subsequently, we iterate over all
pairs of nodes (i, j) and count how often they are found in the
same community for the 582 partitions. In other words, if a
pair of nodes always finds itself in the same community, the
counter will be 582, while a pair that is always found in distinct
communities will receive a counter of 0. This then leads to a 2-
dimensional histogram as can be seen in Figure 12 in the bottom
right corner.

As a final step, this histogram is sorted using the graph_tool
algorithm in order to find a merged community partition
that contains information over a large set of parameter values
gel, gch, and gwl. The resulting sorted histogram is shown in
Figure 12 in the bottom left corner and the network is visualized
in Figure 11B. There is one community consisting of nodes
that almost always find themselves in the same community.
This implies that the time series of the corresponding nodes
have a high correlation value for almost every parameter
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set. All the results from section 3.2 were created using this
community partition.

Please note that the proposed algorithm is only one possible
way of finding partitions based on a system’s dynamical behavior.
In fact, it invites to further explore the interplay between topology
and dynamics.
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