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Colorectal cancer (CRC) is one of the most common causes of cancer-related mortality

worldwide. Most cases of deaths result from metastases, assumed to be shed, in

many cases, before disease detection. Providing reliable predictions of the metastases’

growth pattern may help planning treatment. Available mathematical tumor growth

models rely mainly on primary tumor data, and rarely relate to metastases growth.

The aim of this work was to explore CRC lung metastases growth patterns. We used

data of a metastatic CRC patient, for whom 10 lung metastases were measured while

untreated by seven serial computed tomography (CT) scans, during almost 3 years. Three

mathematical growth models—Exponential, logistic, and Gompertzian—were fitted to

the actual measurements. Goodness of fit of each of the models to actual growth was

estimated using different scores. Factors affecting growth pattern were explored: size,

location, and primary tumor resection. Exponential growth model demonstrated good fit

to data of all metastases. Logistic and Gompertzian growth models, in most cases, were

overfitted and hence unreliable. Metastases inception time, calculated by backwards

extrapolation of the fitted growth models, was 8–19 years before primary tumor diagnosis

date. Three out of ten metastases demonstrated enhanced growth rate shortly after

primary tumor resection. Our unique data provide evidence that exponential growth of

CRC lung metastases is a legitimate approximation, and encourage focusing research

on short-term effects of surgery on metastases growth rate.

SIGNIFICANCE

Providing reliable predictions of the metastases’ growth pattern using mathematical

models may help determining the optimal treatment plan that fits a given patient best

and maximizes the probability of cure.

Keywords: lung metastases, mathematical growth models, exponential growth, logistic growth, gompertzian

growth, primary tumor resection

INTRODUCTION

Colorectal cancer (CRC) is one of the most common causes of cancer-related morbidity and
mortality worldwide. Most cases of deaths result from development of metastatic disease [1].
CRC has a slow natural history (i.e., development of disease) that provides a great opportunity
for early detection and prevention strategies. Surgery is the main curative treatment, but despite
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complete resection of the primary tumor, metastatic disease
might develop in a significant number of patients [2].

The exact dynamics of tumor and metastasis formation
is not well-established. It is assumed that many (if not
most) of metastases are shed before primary tumor is even
detectable [1, 3, 4]. Hence, preventing metastases growth by
adjuvant or perioperative treatments is indicated in many
cases after resection of primary tumor [5, 6]. Providing
reliable predictions of the metastases’ growth pattern using
mathematical models may help determining the optimal
treatment plan.

Growth laws of primary tumors are thoroughly investigated
[7, 8], however, not many mathematical models are dealing
with metastases growth dynamics in humans. Many of the
mathematical models for primary tumor growth are based
on fitting in-vivo data to relatively simple growth models,
such as exponential, logistic, Gompertzian, or power law
[9, 10], and models for metastases dynamics rely on the
same laws. The Gompertzian law is considered most reliable,
because it was found that generally, doubling time of tumors
usually decreases with time. Nevertheless, the assumption of
exponential growth is preferred over logistic or Gompertzian
because it includes one less parameter, which reduces the
degree of freedom in the model, consequently reducing
the difficulty in getting numerical convergence with limited
amount of data. Hence, exponential law is often assumed,
at least for the first period of growth [10–12]. However,
this assumption is hard to prove in vivo, since there are
very few available data of untreated metastases growth in
humans. Moreover, diversity between patients, and between
metastases of the same patient, further increases the challenge
when trying to find growth patterns that can be used
as predictors.

Here, we describe a CRC patient with 10 lung metastases, for
which uncommon data of in vivo growth over time is available.
The metastases were followed and measured—while untreated—
for over 2 years. Our aims were:

◦ To describe metastases growth pattern and decide which of the
three models—Gompertzian, exponential, logistic—fits best.

◦ To determine whether factors such as location and size of
metastases have an effect on growth pattern and rate.

◦ To estimate natural history of the disease (i.e., time of onset
of metastases).

MATERIALS AND METHODS

Data
A 65 years old patient was diagnosed with rectal cancer
TNM stage [13] T3N0 (and colon polyp containing superficial
cancer TNM stage T1N0). A CT scan at the time of first
diagnosis showed also 8mm nodules in the lungs. A PET-
CT scan did not show FDG uptake in these nodules, which
may have implied that these nodules are not malignant. Fifty-
four days after first diagnosis, the primary tumor in rectum
(and colonic polyp) were resected. On post-surgery follow
up, six additional CT scans were conducted, roughly every 6

months, in which 10 lung metastases were evidently growing.
During this time period systemic treatment (chemotherapy,
targeted treatment) was offered, but not administered, because
of personal preference of the patient. The measured volumes
of metastases at these seven timepoints (marked as W1–
W7) are reported in Table 1. See Figure S1 for examples
of CT tomographic images and Figure S2 for illustration of
the locations of all diagnosed metastases (marked #1–#10)
in the lungs.

Modeling
Based on the data available, we wanted to set a growth model
(exponential, Gompertzian, or logistic) for each of the 10
metastases, and assess the values of growth rate parameters.

Exponential growth was modeled by the equation:

9 (t) = N
exp
0 eλt , (1)

where 9 (t) is the metastasis volume at time t, counted from the
day of primary tumor resection, N

exp
0 is the size of metastasis at

t = 0, and λ is the growth rate parameter.
Logistic growth was modeled by the equation:

2(t) =
K logistic

1+
(

K logistic

N
logistic
0

− 1

)

e−rt

, (2)

where 2(t) is metastasis volume at time t, N
logistic
0 is the size of

metastasis at t = 0, K logistic is the limiting tumor size—carrying
capacity, and r is a rate parameter.

Gompertzian growth was modeled by:

8(t) = Kgompe
ln

(

N
gomp
0

Kgomp

)

e−βt

, (3)

where 8(t) is metastasis volume at time t, N
gomp
0 is the size of

metastasis at t = 0, Kgomp is the limiting tumor size and β is a
rate parameter.

Direct fit of the data, by numerical minimization of the sum
of squared errors (SSE) was done for each of the metastases
separately, to optimize the parameter values for each of the

three equations: N
exp
0 and λ in Equation (1), N

logistic
0 , K logistic,

and r in Equation (2) and N
gomp
0 , Kgomp and β in Equation (3).

Specifically, the minimization was done for errors of the model
predictions of the log-volume of tumor size:

SSE =
∑n

i=1

(

ln
(

f
(

ti, p
))

− ln (Yi)
)2
, (4)

where Yi is the observed metastasis volume at time ti and
f
(

ti, p
)

is predicted metastasis volume at the same time, as
calculated by each of the model Equations (1)–(3), depending
on the estimated parameters vector p. The minimization
procedure was performed using the Matlab functions lsqnonlin
and nlinfit.
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TABLE 1 | Metastases sizes measured by CT scans of the patient, at different times marked W1–W7.

W1 W2 W3 W4 W5 W6 W7

Date 17/10/2012 08/05/2013 06/10/2013 22/04/2014 05/10/2014 27/04/2015 29/09/2015

MET1 0.014 0.016 0.050 0.099 0.177 0.326 0.776

MET2 0.178 0.236 0.309 0.754 1.466 3.613 6.589

MET3 0.004 0.101 0.197 0.356 0.544 0.940 1.371

MET4 0.128 0.330 0.506 0.921 2.384 5.370 9.292

MET5 0.108 0.205 0.349 0.674 1.039 3.933 14.547

MET6 – 0.077 0.347 0.479 0.887 3.031 4.475

MET7 – 0.058 0.197 0.410 0.675 1.565 2.138

MET8 0.292 0.807 4.944 8.548 12.718 32.654 66.693

MET9 0.108 0.209 0.361 0.543 0.954 1.338 1.897

MET10 0.175 0.429 2.719 8.045 19.250 55.708 91.538

Primary tumor was resected on 10/12/2012, 54 days after W1. First row is date of the CT scan, and other rows are metastases volumes in cm3.

The fit was done for each metastasis using data of all available
measurements in time, including at time W1, conducted 54
days before resection. Indeed, the growth law and rate may
change between W1 and W2 due to the resection, however we
assumed that the time between W1 and resection time was short
enough that it would change the measure only slightly, within the
measurement error.

Goodness of Fit Analysis
Different criteria for the goodness of fit were compared, in order
to determine the best growth model for each of the metastases,
and the reliability of the estimated parameter values [10, 14].
For this purpose, the root of mean square of errors (RMSE) was
calculated for each of the three models that were fitted to each of
the 10 metastases.

RMSE =
√
MSE =

√

SSE

(n− P)
, (5)

where SSE is defined by Equation (4). The MSE is normalized
to the number of measurements (n) available for the specific
metastasis, and to the number of model parameters (P), to enable
fair comparison between exponential model (where P = 2) and
the other models (where P = 3).

Another criterion used for the goodness of fit of predicted
curves to the data was the adjusted coefficient of determination:

R2 = 1−
n− 1

(n− P)

SSE

SST
, (6)

where SST =
∑n

i=1

(

ln (Yi) − ln (Yi)

)2
, and ln (Yi) is the

time average of the observed log-volumes measured at all n
time-points. This metric quantifies how much of the variability
in the data is described by the model, as the denominator is
proportional to the data variance. In this case, R2is adjusted

to the number of measurements (n) and number of model
parameters (P).

To quantify the reliability of the estimated parameter values,
the variance-covariance matrix of parameters was calculated, in
the context of non-linear least squares regression:

Cov = MSE ·
(

JTJ
)−1

, (7)

where J is the Jacobian of the model as a function of the

parameters vector p: Jij =
∂f (ti ,p)

∂pj
. pj is the jth element of p. The

variance of an estimated parameter pj is defined by the diagonal
element of the covariance matrix, Covjj. This is a measure of
the sensitivity of model prediction to the estimated value of the
parameter pj.

Evaluation of Metastases’ Natural History
After the best fitted models are chosen, and their reliability is
established, the fitted models can be used to estimate the time
of onset of metastasis. For this purpose, the fitted curve with
estimated parameters for each metastasis k was extrapolated
backwards to determine the time of onset of metastasis (Tk),
defined as time of appearance of the first malignant cell,
adopting the evaluation of 10−9 cm3 for the volume of a single
tumor cell. For example, in case of an exponential model the
value for Tk was derived from 9 (t = Tk) = 10−9 cm3. This
method was also used to assess the time of metastasis’ size
reaching to the threshold enabling detection by CT scan (Dk),
approximated as 0.002 cm3.

RESULTS

Fitting and Comparing Growth Models
For every one of the metastases, values for the parameters of each
of the three growth models examined were fitted to the dataset
of all available measurements at times W1–W7. Metastases #6
and #7 were not detectable at W1 timepoint (see Table 1). For
metastasis #3, the measure at W1 was omitted from the fit since it
was very small—close to the limit of detection. The parameters’
optimal values, as well as different scores for goodness of fit
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(see section Materials and Methods), are presented in Tables 2,
3. In general, all growth models provided good fit for most of
metastases, as their predicted curves are within or close to the
measurement error bounds (Figure 1). This accuracy reflects in
the adjusted R squared values (Table 3) which are almost all
>0.94. unlike R2, the SSE and RMSE values are not normalized
to variability of observed values. Hence, comparing SSE or RMSE
values of different metastases would reflect the variability in
absolute values of metastases volumes: metastases that grow
to high volumes would have higher SEE and RMSE values.
However, their values can be used to compare between goodness
of fit of different growth models for the same metastasis, as
detailed bellow.

For metastases numbered 1, 2, 4, 5, comparing goodness
of fit of the three models shows that the exponential
model demonstrated the closet prediction to actual growth
measurements for these metastases in all three scores (see
Table 3). Logistic and Gompertzian models converged with
extremely high values of carrying capacity parameter K
(marked orange in Table 2), which means that they essentially
degenerate into exponent. The variance of K could not
be calculated in those cases, because the Jacobian was
singular or close to singular, i.e., curve fit does not depend
on the value of K. This may point on redundancy in
these models.

For metastases numbered 6, 8, 10 the exponential fit scores
were inferior than those of the other two models. However,
Gompertzian fit has the same problem of parameter redundancy,
where curve fit does not depend on the value ofK (marked orange
in Table 2). The logistic fit is also not reliable in these cases,
since the variance of the parameter K is very large, 10–100 times
its value (marked pink in Table 2). Hence, in these metastases,
exponential model is also the preferable one.

For metastases 3, 7, 9 the logistic curve seems reliable, and it
has better scores than exponential. However, these metastases are
very small in size hence measurement error is relatively large,
and exponential curve is also within this error. Gompertzian
fit is not reliable from the same reasons mentioned above for
other metastases.

For all metastases described above, it seems that using
exponential approximation for the growth law is a good
enough approximation, at least for a range of 2 years from
the time of primary tumor detection and resection (for
the first timepoints of measure W1–W5, or W2–W5 for
metastases #3, #6, and #7).

Variability of Growth Rates of Metastases
Looking at the fitted exponential model parameters, the value of
exponent of the growth rate λ (see Equation 1) is in the same
order of magnitude for all metastases, and its value is estimated
to be the average of their fitted values: 1.48 years−1, with standard
deviation of 0.34 years−1 (Table 2). Their distribution (assumed
to be normal) is presented in Figure 2A. Note, that themetastases
most distant from this mean value are #9 and #10, which are
both located in the left lung, while all other metastases are in
the right lung. Other than that, no relation was found between
fitted growth rates to the metastasis location in the lungs, nor T
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TABLE 3 | Different measures of the goodness of fit, for each of the 10 observed metastases, for the three fitted models.

SSE RMSE Adjusted R2

Exp Logistic Gomp Exp Logistic Gomp Exp Logistic Gomp

MET #1 0.267 0.267 0.297 0.231 0.258 0.272 0.977 0.976 0.967

MET #2 0.317 0.317 0.415 0.252 0.281 0.322 0.968 0.968 0.947

MET #3 0.046 0.016 0.009 0.107 0.074 0.054 0.988 0.996 0.997

MET #4 0.080 0.080 0.112 0.126 0.141 0.167 0.993 0.993 0.988

MET #5 0.761 0.762 0.973 0.390 0.436 0.493 0.948 0.948 0.917

MET #6 0.443 0.424 0.401 0.333 0.376 0.366 0.950 0.953 0.940

MET #7 0.305 0.137 0.083 0.276 0.214 0.167 0.958 0.981 0.985

MET #8 0.959 0.703 0.525 0.438 0.419 0.362 0.949 0.963 0.965

MET #9 0.076 0.020 0.017 0.123 0.071 0.066 0.986 0.996 0.996

MET #10 0.782 0.340 0.402 0.396 0.292 0.317 0.972 0.988 0.982

See Equations (4)–(6).

to its size at the time of detection. The distribution of initial
metastases sizes (at time W1), and the lack of correlation to
growth rate λ can be seen in Figure 2B. The similarity of
exponential growth rates of metastases can be also seen in
Figure 3A, where fitted models for all metastases are presented
on the same graph (note that the figure is presented in log-scale,
and volumes are also normalized to the initially detected volume,
at time W1).

Metastases’ Natural History
If we assume each metastasis has followed the same growth
law since its formation, then for each metastasis k the onset
time (i.e., time of emergence of the first malignant clonogenic
cell,) TK , could be estimated. The earliest possible detection
time (i.e., time of metastasis’ size reaching to the threshold
enabling detection by CT scan,) Dk, could also be evaluated.
These evaluations were obtained by extrapolating backwards
of the fitted exponential growth model, assuming growth rate
was the same through all the time of metastasis’ existence.
Results, presented in Figure 3, show that according to the
model, all metastases were formed 8–19 years before primary
tumor was detected (Figure 3B), however, earliest possible
time on which they could be detected, assuming detection
limit is 0.002 cm3, was years later −1–5 years before primary
tumor detection (This can be seen in Figure 3B, and more
clearly in Figure 3A).

For metastases #3, #6, and #7, the fitted models imply that
they have reached detection limit 3–4 years before primary
detection time (see Figure 3A), and were far larger than this
threshold at the day of disease detection (see smooth lines
compared to the asterisks in corresponding subplots in Figure 1).
This result stands in contrast with the fact that they were
not observed at the CT done on primary tumor detection
(timepoint W1). We assume that these metastases were either
undetectable because their size was bellow detection limit, or
small enough to be missed at the scan, i.e., their size was above
detection limit but close to it. Either way, for these metastases
it seems that growth law was not the same all the time; it
was dramatically changed in the 6 months between W1 and

W2, the beginning of the period for which exponential curve
was well-fitted. The enhanced growth rate for these metastases
between W1 and W2 was evaluated by assuming exponential
growth and fitting it to these two timepoints (taking maximal
possible metastasis size at W1, when it was not detectable, as
0.002 cm3). Results showed its minimal possible value was 5.85,
6.55, and 6.05 years−1 for metastases #3, #6, and #7, respectively.
This is at least four times higher than the growth rate at the
following period of time, between W2 and W7 (Table 2). For
all other metastases, the exponential curve is well-fitted to the
measure at W1, which means that the exponential growth rate
remained the same.

DISCUSSION

Understanding metastases growth is crucial for treating cancer
patients. However, little is known about the dynamics of
untreatedmetastases, because such dynamical data in humans are
rare. In this paper, we used rare data of a metastatic CRC patient,
for which CT measurements of growth of 10 untreated lung
metastases during 3 years are available. We aimed to examine
the common hypothesis that metastases growth rate can be
approximated as exponential. Our results showed that all the
metastases could be regarded as growing exponentially, at least
for the first 2 years after disease detection and primary tumor
resection. Logistic and Gompertzian growth models were also
examined, but in most cases, they are overfitted and could not
be used.

In addition, we found evidence that the exponential growth
curve does not always demonstrate the closet prediction to
actual growth measurements throughout all the follow-up time
period. That was true for the first time period after primary
tumor resection. Our results imply that some of the metastases
(#3, #6, and #7) grew more rapidly between the time of first
diagnosis and shortly after primary tumor surgery, while during
the period of the next 2 years the growth rate was exponential
with a constant, slower rate. This result is supported by literature
describing implications of surgery on metastases growth rate,
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FIGURE 1 | Exponential (smooth red line), logistic (dashed black line), and Gompertzian (dashed-dotted blue line) growth law fits for each of the 10 metastases. Model

parameters were fitted to observed volumes of metastases as measured by CT scans at times W1–W7 (see Table 1). Circles are clinical measurements that models

were fitted to. Asterisk at time W1 (t = 54 days) in met #3 is detected size, that was not used for the fit. Asterisks in mets #6 and #7, which were not detected at time

W1, mark detection limit 0.002 cm3. Vertical line at t = 0 marks the day of primary tumor resection.

especially in the short term. There is emerging evidence that
the stress response caused by surgery as well as anesthesia and
analgesia may promote growth of pre-existing micro-metastasis
[5, 15–18]. Such post-surgery metastatic acceleration (PSMA)
might be related to surgical stress through several mechanisms,
such as suppression of anti-tumor immune response, stimulatory
effects on tumor cells, and activation of the coagulation system
[5, 16–19]. There are mathematical models that assume PSMA

is caused by removal of the suppression that the primary
tumor induces on metastases, through systemic inhibition of
angiogenesis [15, 20, 21]. This mechanism may explain changes
in growth rate between the time before primary resection and
the time after it (which was not examined in this work), but it
does not explain the change in the growth rate during the period
after resection, i.e., in the first month after resection compared
to the next following years. Our results show that the most
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FIGURE 2 | (A) Distribution of the growth rate parameter λ in the fitted exponential models for the 10 metastases. Circles are the specific values of λ, for all

metastases (as detailed in Table 2), and a gaussian curve is presented, assuming normal distribution around the mean value: 1.48 years−1, with standard deviation of

0.34 years−1. (B) Scattering of the growth rate parameter λ vs. initial metastases’ volumes, measured at time W1. Circles are the specific values, for all metastases,

and a linear model trendline of their correlation is presented. No significant correlation was observed (correlation coefficient 0.43).

significant impact of surgery is in the short term, at least for
some of the metastases. It implies that other mechanisms, which
decay shortly after surgery, for example—increased angiogenesis
factors production due to wound healing [22], are dominant and
should be investigated.

For the period of 6 months up to 2–3 years after surgery, all
the metastases could be modeled as exponentially growing. The
value of the growth rate parameter λ (see Equation 1) is quite
similar for all of them, with a mean value of 1.5 years−1. Based on
these results, we can assume that exponential growth assumption
is legitimate for most of metastases. Moreover, it is reasonable
to assume a single value for the growth rate parameter that
would fit all metastases found at the same site, as done in some
mathematical models [11, 23]. No relation was found between
fitted growth laws or rates to the metastases sizes or locations
within the lungs.

A timeline of disease progression was constructed and
estimated that onset of metastases occurred 8–19 years before
primary tumor was detected (Figure 3B), and that they grew
slowly and became detectable several years later. This was done
by backwards extrapolation of the exponential fitted curves,
assuming that growth rates before and after resection were the
same. However, if we assume that the growth rate was faster—
or at least not slowed—after surgery, then the real inception
time was no later (and possibly earlier) than at the estimated
times shown in Figure 3B. This result reinforces the notion
that metastases were formed many years before detection of
primary tumor [1, 5, 12]. The growth dynamics of metastases
before primary tumor resection may be further investigated

by applying a natural history model on this patient’s data,
developed by Hanin et al. [23]. As validated here, we can use
this model under the assumption of exponential growth after
resection, with one value for the growth rate parameter for
all metastases.

It is well-known that great variability exists between different
primary tumors, between different patients with the same
primary tumor and even between metastases at different
locations in the same patient [24–26]. The main limitation of
this work is that it is based on data of a single patient with
rectal cancer metastatic to lungs. Different growth patterns
might apply to other sites of metastases or to other primary
tumors. Also, all measurements are prone to minute deviation
errors especially when millimetric lesions are measured on a
bidimensional CT scan. It would be interesting to analyze in
the same way data of other patients with measurable metastases
either in the lungs or other sites, either from CRC or other
primary tumors. Another limitation is the fact that metastases
were measured along 3 years period only. The dynamics of
metastases growth before first diagnosis and more than 3 years
after primary tumor resection are lacking. Hence other factors
that could influence growth patterns in time are beyond the scope
of this case.

In summary, our unique and uncommon data provide
firm evidence that exponential growth model demonstrated
precise prediction to actual growth measurements of CRC lung
metastases, at least for a limited time period, starting half a
year after surgery until about 2 years afterwards. In addition,
the results imply that growth rate of some metastases might
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FIGURE 3 | Exponential growth law fits for all 10 metastases (colored lines), with estimated date for each metastasis onset (filled triangles, marked by Tk for each

metastasis #k), and estimated date for its earliest possible detection (filled circles, Dk ). Tk and Dk values were extrapolated from the fitted models, assuming growth

rates did not change since metastasis’ onset. In (A), measured volumes are normalized to each metastasis initial volume at time W1. Early growth of metastasis

(<0.005 cm3 ) is not presented, hence Tk values are not shown. In (B), early growth of metastasis is presented, and the whole timeline of the disease natural history is

shown. Blue and black vertical lines represent the days of disease detection (W1) and of primary tumor resection (WR), respectively.

accelerate shortly after primary tumor surgery, getting more
moderated later. These results encourage further research of the
suggested mechanisms for metastases growth acceleration caused
by short-term effects of surgery, and of the effects of adjuvant
treatment in this period of time.
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