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It is well-known that additive noise affects the stability of non-linear systems. Using a

network composed of two interacting populations, detailed stochastic and non-linear

analysis demonstrates that increasing the intensity of iid additive noise induces a phase

transition from a spectrally broad-band state to a phase-coherent oscillatory state.

Corresponding coherence resonance-like system behavior is described analytically for

iid noise as well. Stochastic transitions and coherence resonance-like behavior were

also found to occur for non-iid additive noise induced by increased heterogeneity,

corresponding analytical results complement the analysis. Finally, the results are applied

to burst suppression-like patterns observed in electroencephalographic data under

anesthesia, providing strong evidence that these patterns reflect jumps between random

and phase-coherent neural states induced by varying external additive noise levels.

Keywords: coherence resonance, burst suppression, phase transition, stochastic process, excitable system

1. INTRODUCTION

Noise is omnipresent in nature [1] playing a synergetic role in numerous organic and inorganic
processes [2]. Random spatial and/or temporal fluctuations in neural systems are essential for
brain function: noise is a key component of numerous neural processes, allowing brain networks to
enrich their dynamical repertoire [3], enhancing sensory processing and detection in animals [4],
improving signal-to-noise ratio [5], and even by sustaining cognitive brain functions [6].

Much insight about how noise shapes neural processes can be gained by studying how
noise impacts non-linear dynamical systems, especially their oscillatory properties. In contrast to
multiplicative noise, which reflect parametric fluctuations that are known to transform the stability
of numerous systems [7, 8], additive noise describes fluctuations originating from unknown
sources or external fluctuations from outside of the system. Previous studies of large-scale systems
have provided multiple examples of additive noise-induced phase transitions [9–12]. Recent
studies on the impact of additive noise on networks of simplified delayed non-linear oscillators
have demonstrated that noise shapes non-linear network interactions, hence tuning its spectral
features [13, 14]. However, most of these studies have focused on dynamics close to instability [15]
or on dynamics in weakly coupled networks [16]. It remains poorly understood how strong noise
impacts natural systems that are strongly connected and far from the stability threshold [8, 17, 18].
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To extend these results and explore how strong additive
noise impacts a more realistic network and its oscillatory
properties, the present work considers a generic non-linear
activation-inhibition network model built of excitable systems.
In addition to neural systems [19], such networks have also been
observed in enzymatic systems [20] and autocatalytic patterns
in sand dunes and other inorganic patterns [21]. In contrast
to previous studies, here the isolated excitable populations do
not oscillate on their own, and oscillatory behavior results from
collective interactions tuned by additive noise. We show how
additive (independent identically distributed or iid) Gaussian
and (independent non-identically distributed or non-iid) non-
Gaussian network noise shape non-linear interactions in the
model, specifically how it impacts its oscillatory dynamics.
Both iid and non-iid noise induce transitions from non-
coherent non-rhythmic states to coherent oscillating states. To
describe the observed phase transitions, we derive analytically a
deterministic order parameter equation [17] where additive noise
transforms the dynamics through a novel noise-dependent non-
linear response function. Using these results, we demonstrate
and fully characterize coherence resonance-like behavior for
varying iid noise and varying heterogeneity of non-iid noise.
In order to gain the analytical results, we assume homogeneity
of the networks, ergodicity in groups of neurons and statistical
independence of connectivity weights and system dynamics.
Taken together, our work provides convincing support for burst
suppression [22] dynamics observed in the mammalian brain
under anesthesia gathered through electroencephalography.
Indeed, our model and analysis shows that a decrease in
additive noise triggers a phase transition whose spectral
signature provides a physiological support of phenomena
seen experimentally.

2. METHODS

The subsequent sections show the derivation of mean-field
dynamics and random fluctuations about the mean fields. The
mean-field dynamics is determined by additive noise properties.

2.1. The Model
The present work considers a system of two networks with non-
linear activation-inhibition interactions. The networks under
study exhibit random connections motivated by network models
for associative memory in the brain [23, 24].

We consider two coupled homogeneous networks V andW of
number N whose nodes obey

L̂Vn =
N
∑

m= 1

Fnmh1[Vm]−
N
∑

m= 1

Mnmh2[Wm]

+ I(1)0 + ξn
(1)(t)

L̂Wn = −
N
∑

m= 1

Fnmh2[Wm]+
N
∑

m= 1

Mnmh1[Vm]

+ I(2)0 + ξn
(2)(t)

(1)

for n = 1, . . . ,N, Vn ∈ V , Wn ∈ W and the temporal
operator L̂ = d/dt + Î, where Î is the unity operator. This model
resembles the basic microscopic network model that yields the
famous population model of Wilson and Cowan [25] and that
can show oscillatory dynamics [26]. The network connectivity
matrices F ∈ ℜN×N and M ∈ ℜN×N are random with matrix
elements Fnm, Mnm ≥ 0. Since the network V excites other cells
andW inhibits other cells, the network V andW is excitatory and
inhibitory, respectively. Each network is homogeneous with

N
∑

m= 1

Fnm = F0 ,

N
∑

m= 1

Mnm = M0 (2)

for all n ∈ [1;N] and constants F0, M0 > 0. This is a
realistic assumption that has been affirmed experimentally [27].
In the following examples, without contraining generality we
choose Erdös-Rényi networks [28] for simplicity with connection
probability c, mean degree Nc, and connection weights Fnm =
F0/cN, Mnm = M0/cN. This means the network is not
fully connected.

Local node dynamics is linear and the non-linear transfer
functions h1,2[U] mediate non-local interactions with h1[U] =
H0H[U], H0 > 0, h2[U] = H[U], and the Heaviside function
H[V] = 0 ∀ V < 0, H[V] = 1 ∀ V > 0, and H[0] = 1/2. The
constant H0 denotes the ratio of maximum firing rates between

activation and inhibitory populations. The external inputs I(1,2)0
are constant in time and over the networks.

2.2. Additive Noise
Both populations in Equation (1) are subjected to additive noise
ξn

(1,2). However, we allow one population to be driven by iid
noise (W), while the other (V) can be driven by either iid- or non-
iid noise. Specifically, according to this, and given that the noise
processes are independent in time and between nodes we have

〈ξ (1)n (t)〉 = ξ̄ (1)n , 〈ξ (2)n (t)〉 = 0 ,

〈ξ (1)n (t)ξ (1)m (τ )〉 = D(1)
n δnmδ(t − τ ) ,

〈ξ (2)n (t)ξ (2)m (τ )〉 = D(2)δnmδ(t − τ ) ,

〈ξ (1)n (t)ξ (2)m (τ )〉 = 0

(3)

for all n,m = 1, . . . ,N with mean values ξ̄
(1)
n , noise intensities

D(1)
n , D(2) and 〈·〉 denotes the ensemble average. We point out

that all stochastic processes in network W have zero mean and
identical variance D(2) and thus are independent and identically
distributed (iid). In contrast, additive noise in network V may
be inhomogeneous over nodes with node-dependent mean and
variance. This case involves a superposition of different Gaussian
distributions in the network and the network noise is non-
identically distributed and thus non-iid.

Specifically, each noise process in network V belongs to a

certain class Gm,m = 1, . . . ,M ofM classes. Noise processes ξ
(1)
n

in a class Gm, i.e., n ∈ Gm, share their means ξ̄m and variancesDm

ξ̄m = ξ̄ (1)n , n ∈ Gm ,

Dm = D(1)
n , n ∈ Gm ,

(4)
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while different classes may exhibit different means
and variances.

To derive the probability density function pV (ξ ) of the noise
process over the network V at a certain time instance we assume
that the noise processes in each class Gm are ergodic, i.e., all noise
processes in each class are stationary and hence the ensemble
average equals the average over nodes. Then the mean and
variance of class Gm is

1

Nm

∑

n∈Gm

ξ (1)n =ξ̄m

1

Nm

∑

n∈Gm

(

ξ (1)n − ξ̄m

)2
=Dm

(5)

where Nm is the number of nodes in class Gm. For the
network mean

ε̄ = 1

N

N
∑

n= 1

ξ (1)n

= 1

N





∑

n∈G1

ξ (1) +
∑

n∈G2

ξ (1) + · · · +
∑

n∈GM

ξ (1)





= 1

N1

N1

N

∑

n∈G1

ξ (1) + · · · + 1

NM

NM

N

∑

n∈GM

ξ (1)

=
M
∑

m= 1

pm
1

Nm

∑

n∈Gm

ξ (1)n

=
M
∑

m= 1

pmξ̄m

(6)

with the constant weights pm = Nm/N. Similarly

D̄ = 1

N

N
∑

n= 1

(

ξ (1)n − ε̄
)2

=
M
∑

m= 1

pm(Dm + ξ̄ 2m)− ε̄2

(7)

utilizing (5) and (6). These expressions for network mean and
network variance show sums over the mean and variances of the
noise classes {Gm}. This indicates that the probability function of
the network noise pV (ξ ) is a function of the probability density
functions of the single classes as well. Indeed, we find

pV (ξ ) =
M
∑

m= 1

pmN (ξ̄m,Dm) (8)

with
∫ ∞

−∞
ξpV (ξ )dξ = ε̄

∫ ∞

−∞
(ξ − ε̄)2pV (ξ )dξ = D̄ .

For completeness, we define the average of additive noise in

networkW to
∑N

n= 1 ξ
(2)
n (t)/N = ε̄2.

2.3. Mean-Field Dynamics
By virtue of the random network connectivity, no finite spatial
scale is prominent and the system converges to the mean field

solution. In addition the noiseless case D(1,2)
n = 0 stipulates a

single constant stationary solutionV0
n = I(1)0 +F0H0−M0, W

0
n =

I(2)0 − F0 −M0H0. Consequently, we expect that a solution, that
is constant over the network, describes the network dynamics. A
mathematical proof of this assumption would exceed the current
work and we refer the reader to forthcoming work. However,
as will be seen in later sections, this assumption holds true in
the network under study and permits to describe the network
dynamics very well.

We choose the ansatz

Vn(t) = V̄(t)+ υn(t)

Wn(t) = W̄(t)+ πn(t) ,
(9)

where V̄ , W̄ are the averages over the respective network activity
and υn, πn denote the deviations from the average activity,

1

N

N
∑

n= 1

υn = ῡ ,
1

N

N
∑

n= 1

πn = π̄

with the mean deviations ῡ , π̄ . Taking the sum
∑N

n= 1 /N on
both sides of Equation (1) we find

L̂V̄ = 1

N

N
∑

n,m= 1

FnmH0H[V̄ + υm]

− 1

N

N
∑

n,m= 1

MnmH[W̄ + πm]

+ I(1)0 + e1(t)

L̂W̄ = − 1

N

N
∑

n,m= 1

FnmH[W̄ + πm]

+ 1

N

N
∑

n,m= 1

MnmH0H[V̄ + υm]

+ I(2)0 + e2(t) .

(10)

where e1(t) = ε̄(t) − ῡ(t) − dῡ(t)/dt, e2(t) = ε̄2(t) − π̄(t) −
dπ̄(t)/dt. We point out that ε̄, ε̄2, ῡ , and π̄ do vanish forN → ∞
due the statistical law of large numbers and do not vanish for
finite-size networks. These values vary randomly in time and
hence e1,2(t) are random as well. In the following, we assume

large networks with |e1(t)| ≪ |I(1)0 |, |e2(t)| ≪ |I(2)0 |, and hence
e1,2 are considered as small stochastic forces that do not affect the
dynamics of the mean-fields.

Since Fnm and υm are independent random numbers

N
∑

m= 1

FnmH[V̄(t)+ υm]
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= N

(

1

N

N
∑

m= 1

FnmH[V̄(t)+ υm]

)

≈ N

(

1

N

N
∑

m= 1

Fnm

)(

1

N

N
∑

m= 1

H[V̄(t)+ υm]

)

(11)

utilizing the statistical independence between connectivity and
stochastic process

Em[FnmH(V̄ + υm)]

= Em[Fnm]Em[H(V̄ + υm)] (12)

with the expectation value Em[Xm] ≈
∑N

m= 1 Xm/N. We point
out that condition (12) holds for a large enough number of
connected nodes, i.e., for large enough mean degree cN ruling
out sparse networks.

Then condition (12) leads to

H0

N
∑

m= 1

FnmH[V̄(t)+ υm(t)] = F0S1(V̄(t))

(13)

and

S1(V̄(t)) = H0

N

N
∑

m= 1

H[V̄(t)+ υm]

= H0

∫ ∞

−∞
H[V̄(t)+ υ]pV (υ , t)dυ

+ε(V̄ , t) . (14)

with the probability density function pV (υ , t) of the deviations
υ at time t. The term ε represents the finite-size error of the
integral. Equivalently

M0S2(W̄(t)) =
N
∑

m= 1

MnmH[W̄(t)+ πm(t)]

(15)

S2(W̄(t)) =
∫ ∞

−∞
H[W̄(t)+ π]pW (π , t)dπ

+η(W̄, t) . (16)

with the estimation error η and the probability density function
pW (π , t) of deviations π . This yields the evolution equations for
the average activity

L̂V̄ = FS1(V̄)−MS2(W̄)+ I1

L̂W̄ = −FS2(W̄)+MS1(V̄)+ I2
(17)

with F =
∑N

n= 1 F
0/N = F0, M =

∑N
n= 1M

0/N = M0, and

I1,2 = I1,20 + e1,2.

Finally inserting Equations (17) and (9) into (1), one obtains

L̂υn = H0

N
∑

m= 1

FnmH[V̄ + υm]− FS1(V̄)

−
N
∑

m= 1

MnmH[W̄ + πm]+MS2(W̄)

+ e1(t)+ ξn
(1)

L̂πn = −
N
∑

m= 1

FnmH[W̄ + πm]+ FS2(W̄)

+H0

N
∑

m= 1

MnmH[V̄ + υm]−MS1(V̄)

+ e2(t)+ ξn
(2) .

(18)

Utilizing Equations (13) and (15) yields the expressions in (18)

H0

N
∑

m= 1

FnmH[V̄ + υm]− FS1(V̄)

=
(

F0 − 1

N

N
∑

n= 1

F0

)

S1(V̄)

= 0

N
∑

m= 1

MnmH[W̄ + πm]−MS2(W̄)

=
(

M0 − 1

N

N
∑

n= 1

M0

)

S2(W̄)

= 0

Then the equivalent calculus for the remaining terms in
Equations (18) yield for large networks (e1,2(t) → 0)

L̂υn = ξn
(1)(t)

L̂πn = ξn
(2)(t) .

(19)

These equations describe Ornstein-Uhlenbeck processes and
determine the probability density functions pV (υ , t) and
pW (π , t) [29].

Here, it is important to mention that the deviations υn, πn

decouple from the averages V̄ , W̄ and Equation (17) fully
describe the non-linear dynamics of the system. This holds true
only since the random variables {Fnm} and {H[V̄ + υm]} are
statistically independent what is used in Equations (11) and (18).
If this does not hold true, υn and πn depend on V̄ , W̄ and
Equation (17) are not sufficient to describe the system dynamics.

The evolution equations (17) depend on the probability
density functions pV (υ , t), pW (π , t). For large times, the
solutions of (19) are [29]

υn(t) =
∫ t

−∞
e−(t−τ )ξ (1)n (τ ) dτ . (20)
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Utilizing the noise properties (3) we gain

1

Nm

∑

k∈Gm

υk(t) = ξ̄m

1

Nm

∑

k∈Gm

(υk(t)− ξ̄m)
2 = Dm

and

1

N

N
∑

k= 1

υk(t) = ε̄ ,
1

N

N
∑

k= 1

(υk(t)− ε̄)2 = D̄

where ξ̄m, Dm, ε̄ and D̄ are taken from Equations (5)–(7). Then
the probability density function of network V is

pV (υ) =
M
∑

m= 1

pmN (ξ̄m,Dm). (21)

Additive noise in network W is iid and hence pW (π) =
N (0,D(2)).

2.4. Power Spectrum
Power spectra of the average activities provide evidence on phase
coherence in the interacting networks. To this end, we have
computed numerically the power spectra of simulated activity
V̄(t) by the Bartlett-Welch method with time window 100 s and
overlap rate 0.995.

This numerical power spectrum involves the full non-linear
dynamics of the system. To compute analytically the power
spectrum of the average activity, we can approximate the non-
linear dynamics by considering the stochastic system evolution
about an equilibrium. To this end, we can write Equation (17) as

dZ

dt
= N[Z]+ e

with the state vector Z = (V̄ , W̄), the non-linear vector function
N ∈ R

2 and the noise term e = (e1, e2). Neglecting the noise, the
equilibrium Z0 = (V̄0, W̄0) is defined by

V̄0 = FS1(V̄0)−MS2(W̄0)+ I10
W̄0 = −FS2(W̄0)+MS1(V̄0)+ I20 .

Then small deviations from the equilibrium u = Z − Z0 obeys
du/dt = Lu+ e with the linear matrix

L =
(

−1+ FS′1(V̄0) −MS′2(W̄0)

MS′1(V̄0) −1− FS′2(W̄0)

)

(22)

and the linear power spectrum of V̄(t) reads [30]

R(ν) = D0(L
2
22 + L212 + 4π2ν2)

4π2(L11 + L22)2ν2 + (detL− 4π2ν2)2
(23)

with frequency ν, the determinant detL and the matrix elements
Lmn of L in (22). The terms S′1,2(x) = dS1,2/dx are the non-linear

gains computed at the corresponding equilibrium. Since the noise
e(t) results primarily from finite-size effects, its properties are
hard to model. In Equation (23), we have assumed 〈e1,2〉 =
0, 〈ek(t)el(τ )〉 = D0δklδ(t − τ ) for simplicity. Consequently, the
linear analytical power spectrum (23) does not include all non-
linear stochastic effects and does not capture the correct noise
strength, but it conveys a good approximation of the numerical
power spectra while involving the additive noise-induced shaping
of the non-linear interactions.

2.5. Phase Coherence and Bandpass Filter
The Phase Locking Value (PLV) has been developed by Lachaux
et al. [31] and estimates the phase coherence between two signals
s1,2(t). The major idea is to compute the time-dependent phase,
e.g., by wavelet transform, of each signal φ1(f , t) and φ2(f , t)
in the frequency band about center frequency f at time t.
This approach follows the idea of an instantaneous amplitude
and phase of a signal (see e.g., [32–35] for more details). The
implementation is based on the general idea of a linear filter

s̃(f , t) =
∫ ∞

−∞
s(τ )w(f , t − τ )dτ ,

where a signal s(t) is filtered by a sliding window function w.
This window exhibits an amplitude-modulated complex-valued
oscillatory function with intrinsic frequency f . Heuristically, the
phase of the filtered signal s̃ at time t and frequency f is the mean
phase of the signal at time t with respect to the phase of the
window function w.

Then one computes the circular variance (or PLV) in a time
window of width w about each time instance tn

R1,2(f , tn) = 1

w

w/2
∑

s=−w/2

| cos2(1φ(f , tn+s))

+ sin2(1φ(f , tn+s))|2

with1φ(f , tn) = φ1(f , tn)−φ2(f , tn). If R1,2(f , t) = 1 both signals
are maximum coherent in the frequency band about f at time t,
R1,2(f , t) = 0 indicates no phase coherence.

This is the classical bi-signal phase coherence. To obtain a
measure for global phase coherence as considered in the present
work, one may average the PLV of two signals sn, sm over a set
of phase pairs M of mass M [35] and gain the global Phase
Locking Value

gPLV(f , t) = 1

M

∑

n,m∈M
Rnm(f , t) ,

that represents the degree of phase coherence in the system.
Similar to the two-phase PLV, gPLV(f , t) = 1 reflects maximum
phase coherence, i.e., all nodes in the system have identical
phases, and gPLV(f , t) = 0 indicates that all nodes are out
of phase.

In this context, it is important to note that instantaneous phase
values are defined properly only in a certain time-frequency
uncertainty interval for non-vanishing instantaneous amplitude
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in the same interval. To avoid spurious phase coherent values,
we consider those phase pairs only, whose instantaneous spectral
power exceeds 50% of the maximum spectral power at the
corresponding time instance [36].

In the present work we determine phases by a Morlet wavelet
transform [31] with center frequency fc = 5, choose M =
{n,m|n ∈ (1, 250),m ∈ {1, 3, 5, . . . , 499}}, i.e., M = 498 pairs
for phase pair averaging. Temporal averaging has been performed
in the center of the time window with time points of number
w = 3, 900.

Typical experimental electroencephalographic data (EEG)
is bandpass filtered to remove artifacts and focus on certain
frequency bands under study. To compare model solutions to
experimental data, we apply a Butterworth-bandpass filter of
6th order with lower and higher cut-off frequency 1.25 and 50
Hz, respectively.

3. RESULTS

This section presents the model topology for certain parameter
sets and its dynamics for weak and strong noise, where the
noise processes in the networks may be distributed uniformly
(iid) or non-uniformly as a superposition of noise processes
with different mean values (non-iid). The final application to
brain activity indicates the possible importance of the stochastic
analysis presented.

3.1. Additive iid-Noise
At first, we clarify the topology of Equation (17) providing
first insight into the dynamics of the network dynamics. The
subsequent numerical simulation of the full model (1) reveals a
noise-induced phase transition from a non-coherent state to a
phase-coherent state. The complementary analytical description
explains this transition.

3.1.1. Equilibria and Linear Stability
Themodel system (1) exhibits diverse dynamics dependent of the
matrices and the external input. From (17), we observe that the
means of the network F0, M0, the maximum firing rate H0, and
the statistical properties of the external input fully determines the
dynamics of the system. To achieve oscillatory activity, we have
chosen parameters F0, M0, I2 in such a way that bi-stable states
may exist for some values of I1, D1, and D2.

Since the additive noise processes {ξ (1)n } are normally
distributed, the probability density of υn at each node n in
Equation (19) converges over time to the stationary normal
distribution p(υn) ∼ N (ξ̄n,D1). For ξ̄n = 0 all stationary
fluctuations υn are iid and they obey the same probability density
function leading to pV (υ) ∼ N (0,D1) in Equation (14). This
yields the transfer function (14)

S1(V̄) = 1

2

[

1− erf

(

− V̄√
2D1

)]

︸ ︷︷ ︸

=S0(V̄)

+ε(V̄) . (24)

FIGURE 1 | Additive noise shapes non-linear transfer function. (Left)

Theoretical transfer function [integral in (24)] (dashed line) and numerical

estimation of (24) averaged over 1,000 time points in simulation shown in

Figure 4. (Right) distributions of difference between theoretical and numerical

estimation ε (dashed line denotes temporal mean, solid line is temporal

variance). Other parameters are D2 = 0.5, H0 = 1.7, results for the transfer

function S2 are equivalent.

Figure 1 compares the theoretical transfer function and the
numerical estimation in Equation (24) demonstrating very good
accordance. In addition, one observes that larger additive noise
level flattens the transfer function and hence affects the non-
linear interactions in the system [37].

The networks V and W excite and inhibit themselves (E − E
and I − I interactions) described by the connectivity matrix F

with strength F0. Their cross-interactions E − I and I − E are
given by the matrix M with strength M0. In neuroscience, the
balance between excitation and inhibition is supposed to play
an important role in neural information processing [30, 38, 39].
In spatially extended biological systems, the balance between
excitation and inhibition determines the type of emerging spatio-
temporal patterns [40]. To obtain a first insight into the possible
dynamics of the system (1), we define the ratio of excitation and
inhibition γ = F0/M0.

Then the equilibrium (V̄0, W̄0) of Equation (17) with e1,2 = 0
is gained by dV̄/dt = 0, dW̄/dt = 0. Utilizing Equation (24)
and the equivalent formulation for transfer function S2 and
linearization of Equation (17) about the equilibrium the ansatz
(V̄(t), W̄(t)) = zeλt with the eigenvector z allows to compute
the Lyapunov exponents λ1,2 ∈ C. For complex-valued Lyapunov
exponents, i.e., oscillation about the equilibrium, the imaginary
part reads

Im(λ) =

√

4
(

M0
)2
s1s2 −

(

F0
)2
(s1 + s2)2

2
(25)

where s1,2 = dS1,2(x)/dx are the non-linear gains evaluated at
the corresponding equilibrium. Then the eigenfrequency of the
oscillation is f = Im(λ)/2π .

Figure 2 shows the equilibrium (V̄0, W̄0) as a function
of the excitation–inhibition ratio γ . The linear stability of
the equilibrium is read off the maximum real part of the
Lyapunov exponent λmax = max(Re(λ1), Re(λ2)). Increasing
γ , the system exhibits a single stable focus at low values
followed by bistability with top stable node, bottom stable
focus, and a center saddle node. For larger γ , the lower
stable focus loses stability and transitions to an unstable focus.
This transition yields two unstable equilibria and a single

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 January 2020 | Volume 5 | Article 69

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hutt et al. Additive Noise Induces Phase Coherence

FIGURE 2 | Equilibria V̄0, W̄0 and their stability as a function of γ = F0/M0.

The top equilibrium is coded in blue line color, the center and bottom

equilibrium is coded as black and red line in all panels. The lower panel shows

the eigenfrequency of the bottom focus. The two top panels present stable

equilibria by solid line and unstable equilibrium by dashed line. Further

parameters are M0 = 3.87, H0 = 1.7, I1 = 1.45, I2 = 0.4 assuming iid-noise

in both networks with D
(1)
n = 0.2, D(2) = 0.5.

top stable node. Further increase of γ causes center and
bottom equilibrium to vanish while retaining the top stable
node that does not change its stability for larger γ . The
frequency of the bottom focus decreases monotonously with
increasing γ .

Decreasing the cross-network interaction strengthM0 retains
the bi-stability (Figure 3) and M0 → 0 but makes the lower
focus and center node vanish yielding the single equilibrium
V̄0 → I1, W̄0 → I2 (horizontal line in Figure 3). For large values
V̄0, W̄0 the top stable node converges to

V̄0(γ ) = M0H0γ −M0 + I1

W̄0(γ ) = −M0γ +M0H0 + I2 ,

see dotted line in Figure 3. Then M0 → ∞ leads to a single
equilibrium at γ = 1/H0 (vertical dotted line in Figure 3).
For M0 → ∞ but small values V̄0, W̄0, we obtain γ → 1
and S1(V̄0) → S2(W̄0), i.e., V̄0 ≈ W̄0 ≈ 0. Both latter
cases for M0 → ∞ are illustrated in Figure 3: the larger the
cross-interaction strength M0 the steeper the function V̄0(γ )
for large V̄0, W̄0 and the more the right-hand side bistability
border stretches to the right. This analysis shows that, for the
chosen constant external input and the given noise levels, the
bistability between top stable node and bottom oscillatory node
is present for γ ≤ 1, i.e., F0 ≤ M0. We point out that different
external input may yield bistability for γ > 1 and refer to
future work.

FIGURE 3 | Equilibria of V̄0 and their stability for various values of M0

(numbers in plot). Other parameter values are taken from Figure 2.

3.1.2. Numerical Results and Analytical Explanation
Figure 4A (left hand side) shows solutions of Equation (1) for
low noise levels fluctuating about the stationary solution V0, cf.
the time series of V̄(t) seen in Figure 4B (left hand side), and
equivalently about W0 (not shown). The stochastic stability of
V0, W0 for low noise intensity agrees with the deterministic
stability for D1, D

(2) = 0.
In contrast, strong noise (D1 = 0.8) yields a new lower

equilibrium at V0
n < 0, n = 1, . . . ,N (cf. Figures 4A,B).

New additive noise-induced states have been studied already
close to stability thresholds [9, 11, 42] for small noise intensities,
however not for large additive noise intensities far from stability
thresholds that we address here. The new lower state exhibits an
augmented spatio-temporal coherence that is observed both as a
prominent spectral peak at f ≈ 0.3 Hz in the power spectrum of
the spatial average V̄(t) and the prominent temporally averaged
spatial coherence gPLV (cf. Figure 4C). Similar results are gained
for networks with mediummean degree cN but not for low mean
degrees (cf. the Appendix).

Additive noise triggers multistability in the network. Indeed,
the analysis of equilibria of Equation (17) with e1,2 = 0 reveals
three states for low noise levels D1 and a single state for large
D1 (cf. Figure 5). Linear stability analysis of the equilibria (cf.
section 3.1.1), further reveals bistability with a stable node in the
top branch, an unstable center node and a stable focus at the
bottom equilibrium.

The eigenfrequency of the stable focus f diminishes with
increasing noise level since the transfer function flattens and
hence decreases s1 (cf. Equation 25). The eigenfrequency
approaches f ∼ 0.3Hz forD1 = 0.8 (cf. Figure 5) and agrees with
the oscillation frequency of the spatial mean, shown in Figure 4.
Summarizing, this analysis reveals that the transition from a top
activity state to a bottom activity state with increasing noise level
observed in Figure 4 is a phase transition from a stable node to a
stable focus.

Figure 4B shows stochastically evolving spatial averages V̄ .
The stochastic force originates from the error of the transfer
function ε seen in Figure 1 (cf. Equation 24), and the finite-size
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FIGURE 4 | Additive noise induces phase coherent oscillations. (A) D1 = 0.1 (low noise level) and D1 = 0.8 (high noise level). (B) Temporal snapshot of spatial

average V̄ (t) =
∑N

n=1 Vn(t)/N for both noise levels. (C, left) Power spectrum of V̄ for both noise levels. (C, right) Global phase coherence gPLV for both noise levels.

Other parameters are D2 = 0.5, F0 = 2.18, M0 = 3.87, H0 = 1.7, I1 = 1.45, I2 = 0.4, c = 0.95, N = 500, integration time step 1t = 0.1s with application of the

Euler-Maryuama integration technique [41]. Results for Wn are equivalent.

FIGURE 5 | Additive noise induces bistability. Equilibria of (17) as a function to

the noise level D1 showing noise-induced hysteresis. (Left) Asymptotically

stable (solid) and unstable states (dashed). (Right) Maximum real eigenvalues

of stable states (black) and eigenfrequency of bottom equilibrium (red). Other

parameters are taken from Figure 4. Results for Wn(t) are equivalent.

correction terms e1,2. Since ε and e1,2 are random and vary over
time, their sum represents a stochastic force in Equation (17).

3.2. Extension to Additive Non-iid Noise
We have seen above that the iid additive noise force shapes
the non-linear interactions. Now we relax the condition of a
vanishing noise average at each node and consider non-iid
noise, i.e., a non-Gaussian probability density function pV (υ).
Equation (21) allows to describe heterogeneous non-iid noise,
i.e., Gaussian processes with diverse means ξ̄ 1n and variances

D(1)
n . To demonstrate the effect of non-iid additive noise on our

system, we consider M = 2 classes of Gaussian processes with
identical variance and ξ̄1 = −ξ̄2 = 1µ, p1,2 = 0.5 and
distribute the additive noise processes of both classes uniformly
over the network. Here 1µ is the noise mean shift and quantifies
the degree of noise heterogeneity. Figure 6A presents the field
activity V(t) where 1µ increases linearly in time. We observe a
transition from an upper state to a lower state at 1µ ≈ 0.68.

Similar to Figure 5, this phase transition involves a jump from
a non-oscillatory non-coherent state to an oscillatory phase-
coherent state (cf. Figures 6B,C). To understand this transition,
we consider again the averages V̄ , W̄ and their temporal
evolution according to Equation (17). Figures 6D,E show the
corresponding equilibria and their linear stability subject to the
noise mean shift. For weak noise heterogeneity, i.e., small 1µ,
the system is bistable. Large heterogeneity transforms it to a
monostable system with an oscillating state via a saddle-node
bifurcation. The eigenfrequency of the oscillation state of f =
0.5Hz is close to the maximum power and phase coherence peak
frequency of f ≈ 0.25 Hz in Figures 6B,C. This difference
originates from the approximation error of the transfer functions
S (cf. Figure 1), resulting to an effective increase in additive
noise. For instance, increasing the additive noise variance to
D1 + 0.02 · H0F

0 (cf. Figure 1) decreases the eigen frequency at
1µ = 0.8 in Figure 6 to f = 0.3Hz, i.e., much closer to the
observed value. Figure 6F (top panel) compares the analytical
(Equation 8) and numerical solution of the probability density
pV (υ) for homogeneous and heterogeneous additive noise and
confirms good agreement between the analysis and numerics.
The corresponding transfer functions show good agreement as
well (cf. Figure 6F, bottom panel).

3.3. Link to Coherence Resonance
Coherence resonance is present when applied noise induces
regular rhythms in a system, although the noise-free system does
not [43–45]. We have investigated whether the noise-induced
transition from non-rhythmic non-coherent system dynamics
to rhythmic coherent dynamics shows this phenomenon over
a larger range of noise intensities as well. Figure 7 (left) shows
the power spectrum of V̄(t) subjected to additive iid-noise (cf.
Figure 4). We observe no rhythmic activity for small noise
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FIGURE 6 | Additive non-iid noise induces phase coherent oscillations. (A) Spatio-temporal activity V (t) and jump from non-oscillatory high-activity to oscillatory

low-activity state for increasing noise mean shift 1µ in the interval 1µ ∈ [0.4;0.8] over 200s. (B) Power spectral density of spatial mean V̄ (t) computed in a time

window of 800s. (C) Global phase coherence gPLV in a time window of 400s. (D) Equilibria V̄0 (black) and simulated spatial average V̄ (t), solid (dashed) lines denote

stable (unstable) states. (E) Maximum Lyapunov exponents of respective stable equilibria (black) and eigenfrequency of the bottom state (red). (F) probability density

function p(υ) (8) and resulting transfer functions (24) from analysis (solid line) and numerical solution (dashed line). D1 = 0.1 and other parameters are taken from

Figure 4; results for Wn(t) are equivalent. We have applied the Euler-Maryuama integration technique [41] with time step 1t = 0.1.

intensity (the system evolves on the top branch seen in Figure 4),
whereas coherent network activity is present for large noiseD1 ≥
0.5. In comparison to the analysis shown in Figures 4–7 (left)
shows a spectral peak that moves to lower frequencies for larger
noise intensities while diminishing in power. Finally, for very
large noise intensities D1 > 10.5, the spectral peak vanishes. This
means that coherent network activity is present for intermediate
noise levels and the system does not exhibit coherent activity
for very small and very large noise intensities. Qualitatively, this
resembles coherence resonance.

To evaluate our analytical description, Figure 7 (right) shows
the linear power spectrum about the corresponding equilibrium
and we observe a qualitatively similar power spectrum subject
to the noise intensity, i.e., no phase coherence rhythmic state
for very small and very large noise intensities but a spectral
peak for intermediate levels. We point out that the analytical
power spectrum reproduces quantitatively well the spectral peak
frequency at low noise intensities, while the spectral peak already
vanishes for noise intensities smaller than the ones observed in
the numerical study.

To complete the study, Figure 8 compares the numerical
and analytical power spectra similar to Figure 7, but now
varying the degree of noise heterogeneity 1µ. We observe a
coherence resonance-like behavior with amaximum coherence at
intermediate levels of heterogeneity and vanishing coherence at

very low and very high degrees of heterogeneity. Both numerical
and analytical spectra are similar qualitatively, but differ in the
frequency of maximum coherence. This results from the linear
approximation of the analytical power spectrum and the finite-
size effect observed and discussed already in the context of
Figure 6.

3.4. Experimental Results
Finally, to illustrate the importance of the demonstrated
results, we consider experimental human brain data. An
electroencephalogram (EEG) was recorded during isoflurane
induced cardiac anesthesia from a polar FP1 to mastoid
derivation at 125 Hz sampling rate using a Narcotrend (R)
monitor (MT MonitorTechnik, Hannover, Germany). The EEG
was recorded as part of the EPOCAS study (National Clinical
Trials number 02976584). A bandpass filter from 0.5 to 45 Hz
was applied and cardiac artifacts minimized by subtracting an
artificial artifact reference signal from the EEG.

In Figure 9A the upper panel shows an episode with burst
suppression, i.e., an intermittent suppression of high-amplitude
to small-amplitude activity. Here, burst EEG shows a broad
frequency band and the suppressed EEG exhibits oscillations
in a narrow frequency band at about 8 Hz (lower panel).
This burst suppression was caused experimentally by a rapid
increase in isoflurane concentration from 0.8 to 1.8% (not
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FIGURE 7 | Power spectra of V̄ (t) for additive iid noise. (Left) Numerical power spectra. (Right) Analytical power spectra according to Equation (23). The numbers

give the noise intensity D1, parameters are taken from Figure 4.

FIGURE 8 | Power spectra of V̄ (t) for additive non-iid noise. (Left) Numerical power spectra. (Right) Analytical power spectra according to Equation (23). The

numbers give the degree of noise heterogeneity 1µ, noise intensity is D1 = 0.1, other parameters are taken from Figure 6.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 January 2020 | Volume 5 | Article 69

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hutt et al. Additive Noise Induces Phase Coherence

FIGURE 9 | Neural burst suppression. (A) Experimental EEG with burst broad-band high-amplitude activity (blue and black) and the low-amplitude narrow band

suppression (red) phase (top panel); the power spectral density of the burst (blue) and suppression (red) phase (bottom panel). (B, top) simulated EEG s(t) = F (V̄ (t))

where F represents a band pass filter (upper panel); high input has I0 = 2.0, A = 0.04, D1 = 1.2 for t ∈ [0s;12.8s] and t ∈ [19.2s;32.0s], low input

I0 = 0.5, A = 0.0, D1 = 0.3 for t ∈ [12.8s;19.2s]. (B, bottom) The dashed and solid line represents the equilibria for low (D1 = 0.3) and high (D1 = 1.2) additive noise

levels, respectively; circles mark the high and low input with corresponding equilibrium (left). The normalized power spectral density of the burst (blue) and suppression

(red) phase shows broad-band and phase-coherent states, respectively (right). In the model simulations, other parameters are taken from Figure 4 and time is

re-scaled by t → 0.04t.

shown). This jump from a broad frequency range activity to
a coherent oscillation in a narrow frequency band resembles
the additive noise effect described in the paragraphs above.
The electromagnetic source of EEG lies in the cortex and
the reticular activation system (RAS) in the brain sets the
excitation level of the cortex [46]. We assume that model (1)
describes cortical activity and the additive input is supposed to
originate directly or indirectly from the RAS. Under anesthesia,
RAS activity varies [47] and hence burst suppression may
result from reduced RAS input induced by increased isoflurane
concentration. Moreover, synaptic inhibition in local cortical
structures may also decrease the intrinsic noise level [36,
48]. Hence D1 reduces for larger isoflurane concentration.
Figure 9B (upper panel) shows corresponding simulation results
resembling well the experimental EEG. Band-pass filtered
simulated activity exhibits a frequency at about 7 Hz during
the burst suppression phase and a broad-band activity before
and after (cf. Figure 9B, bottom right panel). The underlying
model considers global Gaussian spectral-white input I10(t) =
e(I0 + η(t)), 〈η〉 = 0, 〈η(t)η(τ )〉 = Aδ(t − τ ) and A is the
global noise intensity. For large input the system evolves with a
high-amplitude broad band activity about the upper stationary
solution and jumps to a small-amplitude narrow band activity
about the lower equilibrium (Figure 9B, lower left panel) for
small additive input. We observe that the system is bistable
for the large input and monostable for low input. This finding
indicates that suddenly decreased and increased input directly
or indirectly from the RAS may induce burst suppression in
the cortex.

4. DISCUSSION

In the present work, we have shown that both additive iid noise
and non-iid noise, either through the form of fluctuations or
heterogeneity, shape the dynamics of our two population model.

This occurs because of an effective transformation of the non-
linear interaction function: from a step function for vanishing
noise over a symmetric sigmoid for non-vanishing homogeneous
noise to a double-sigmoid function for heterogeneous noise. We
present a fully analytical description of this system behavior
in the context of oscillatory activity, and demonstrate that the
system exhibits coherence resonance-like behavior. This enabled
us to connect the dynamics to experimental observations,
specifically the occurrence of burst suppression in human
electroencephalographic data during general anesthesia.

The stochastic analysis implies several major assumptions:

• Homogeneity in Equation (2),
• Independent and identically distributed stationary stochastic

processes in each noise class Gm in Equation (4) reflecting
ergodicity in each noise class and

• Statistical independence of connectivity matrix elements and
stochastic process in Equation (12).

These assumptions are major conditions for the mean-field
approach considered in the present work and they rule out
the application to other network models, such as sparsely
connected networks.

The network model in the present work is deliberately simple
in order to allow the identification of major elements of the
novel stochastic analysis. The model assumption of excitation-
inhibition interaction is motivated by the well-known fact,
that such interactions allows oscillatory activity. For instance,
the balance between excitation and inhibition is an important
mechanism in oscillatory biological neural networks [30, 38, 39].
Typical cortical neural networks have four times more excitatory
than inhibitory synapses. Conversely, the networks V and W

have identical number of nodes. This number relation has
been chosen for simplicity reasons since the major stochastic
effect is independent of the node number. Moreover, balanced
networks exhibit an identical level of excitation and inhibition,
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i.e., γ = 1 in Figures 2, 3. Conversely, parameters in the
model, e.g., the constant external inputs and the noise level,
have been chosen for simplicity in order to demonstrate and
visualize well the stochastic transitions by iid and non-iid noise.
These parameters imply γ < 1, i.e., smaller excitation than
inhibition, whereas different external input may allow γ > 1 as
well. Since a corresponding detailed parameter study would well
exceed the major aim of the present work, we refer the reader to
forthcoming work.

We point out that the gained results are expected in other
network topologies as well, just retaining the homogeneity
condition (2) and the statistical independence of connectivity and
external noise (12). For instance, previous studies have proposed
different network topologies to model the brain that fulfill these
conditions [3, 49]. However, these conditions may not hold for
othermodels, such as sparsely connected networks [23], clustered
networks [38], or scale-free networks [50]. Moreover, we point
out that the present model describes the microscopic dynamics of
two single interacting populations similar to the Wilson-Cowan
model [25] and the homogeneity assumption is reasonable.
This means the resulting model describes the dynamics on
a larger, mesoscopic, scale. Conversely, previous studies using
connectivity data from the brain connectome [3, 26] target the
global brain dynamics, where each node may obey a Wilson-
Cowan population dynamics. In such studies, the underlying
connectivity matrices are macroscopic and non-homogeneous.

Our work adds to previous work [13, 36, 49] highlighting
the importance of noise in shaping mesoscopic-scale brain
activity. The considered network model may represent a single

mesoscopic node in a larger macroscopic network model of the

brain. In such macroscopic networks, the noise considered in our
model may originate from other mesoscopic populations. Since
such distant populations may oscillate and fluctuate randomly,
future work will investigate a superposition of oscillatory and
noisy external input.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

This study was approved by the Canton of Bern Ethics
Committee. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

AH and JL conceived the study and performed all calculations.
DH and HK have provided the data and expertise in anesthesia
and EEG. All authors have written the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2019.00069/full#supplementary-material

REFERENCES

1. Sagues F, Sancho J, Garcia-Ojalvo J. Spatiotemporal order out of

noise. Rev Mod Phys. (2007) 79:829–82. doi: 10.1103/RevModPhys.

79.829

2. Bratsun D, Volfson D, Tsimring L, Hasty J. Delay-induced stochastic

oscillations in gene regulation. Proc Natl Acad Sci USA. (2013) 102:14593–8.

doi: 10.1073/pnas.0503858102

3. Deco G, Jirsa V, McIntosh A, Sporns O, Kötter R. Key role of coupling,

delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA. (2009)

106:10302–7. doi: 10.1073/pnas.0901831106

4. Doiron B, Lindner B, Longtin A, LMaler, Bastian J. Oscillatory activity

in electrosensory neurons increases with the spatial correlation

of the stochastic input stimulus. Phys Rev Lett. (2004) 93:048101.

doi: 10.1103/PhysRevLett.93.048101

5. Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise: from

ice ages to crayfish and squids. Nature. (1995) 373:33–6. doi: 10.1038/

373033a0

6. Faisal A, Selen L, Wolpert D. Noise in the nervous system. Nat Rev Neurosci.

(2008) 9:292–303. doi: 10.1038/nrn2258

7. Garcia-Ojalvo J, Sancho J.Noise in Spatially Extended Systems. New York, NY:

Springer (1999).

8. Nicolis G, Prigogine I. Self-Organization in Non-Equilibrium Systems: From

Dissipative Structures to Order Through Fluctuations. New York, NY: J. Wiley

and Sons (1977).

9. Pradas M, Tseluiko D, Kalliadasis S, Papageorgiou D, Pavliotis G.

Noise induced state transitions, intermittency and universality in the

noisy Kuramoto-Sivashinsky equation. Phys Rev Lett. (2011) 106:060602.

doi: 10.1103/PhysRevLett.106.060602

10. Bianchi L, Bloemker D, Yang M. Additive noise destroys the

random attractor close to bifurcations. Nonlinearity. (2016) 29:3934.

doi: 10.1088/0951-7715/29/12/3934

11. Hutt A, Longtin A, Schimansky-Geier L. Additive noise-induced

turing transitions in spatial systems with application to neural fields

and the Swift-Hohenberg equation. Phys D. (2008) 237:755–73.

doi: 10.1016/j.physd.2007.10.013

12. Lefebvre J, Hutt A. Additive noise quenches delay-induced oscillations.

Europhys Lett. (2013) 102:60003. doi: 10.1209/0295-5075/102/60003

13. Lefebvre J, Hutt A, Knebel J, Whittingstall K, Murray M. Stimulus statistics

shape oscillations in nonlinear recurrent neural networks. J Neurosci. (2015)

35:2895–903. doi: 10.1523/JNEUROSCI.3609-14.2015

14. Hutt A, Mierau A, Lefebvre J. Dynamic control of synchronous activity

in networks of spiking neurons. PLoS ONE. (2016) 11:e0161488.

doi: 10.1371/journal.pone.0161488

15. Lee KE, Lopes MA, Mendes FFF, Goltsev AV. Critical phenomena and noise-

induced phase transitions in neuronal networks. Phys Rev E (2014) 89:012701.

doi: 10.1103/PhysRevE.89.012701

16. Brunel N. Dynamics of networks of randomly connected excitatory

and inhibitory spiking neurons. J Physiol. (2000) 94:445–63.

doi: 10.1016/S0928-4257(00)01084-6

17. Haken H. Synergetics. Berlin: Springer (2004).

18. Kelso J. Dynamic Patterns: The Self-Organization of Brain and Behavior.

Cambridge: MIT Press (1995).

19. Deghani N, Peyrache A, Telenczuk B, Le Van Quyen MEH, Cash S,

Hatsopoulos N, et al. Dynamic balance of excitation and inhibition in human

and monkey neocortex. Sci Rep. (2016) 6:23176. doi: 10.1038/srep23176

20. Mahler H, Cordes E. Biological Chemistry. New York, NY: Harper and Row

(1966).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 January 2020 | Volume 5 | Article 69

https://www.frontiersin.org/articles/10.3389/fams.2019.00069/full#supplementary-material
https://doi.org/10.1103/RevModPhys.79.829
https://doi.org/10.1073/pnas.0503858102
https://doi.org/10.1073/pnas.0901831106
https://doi.org/10.1103/PhysRevLett.93.048101
https://doi.org/10.1038/373033a0
https://doi.org/10.1038/nrn2258
https://doi.org/10.1103/PhysRevLett.106.060602
https://doi.org/10.1088/0951-7715/29/12/3934
https://doi.org/10.1016/j.physd.2007.10.013
https://doi.org/10.1209/0295-5075/102/60003
https://doi.org/10.1523/JNEUROSCI.3609-14.2015
https://doi.org/10.1371/journal.pone.0161488
https://doi.org/10.1103/PhysRevE.89.012701
https://doi.org/10.1016/S0928-4257(00)01084-6
https://doi.org/10.1038/srep23176
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hutt et al. Additive Noise Induces Phase Coherence

21. Ball P. The Self-made Tapestry–Pattern Formation in Nature. Oxford: Oxford

University Press (1999).

22. Niedermayer E. The burst-suppression electroencephalogram.

Am J Electroneurodiagn Technol. (2009) 49:333–41.

doi: 10.1080/1086508X.2009.11079736

23. Amari S. Characteristics of sparsely encoded associative memory. Neural

Netw. (1989) 2:451–7. doi: 10.1016/0893-6080(89)90043-9

24. Hopfield J, Tank D. Computing with neural circuits: a model. Science. (1986)

233:625–33. doi: 10.1126/science.3755256

25. Wilson H, Cowan J. Excitatory and inhibitory interactions in

localized populations of model neurons. Biophys J. (1972) 12:1–24.

doi: 10.1016/S0006-3495(72)86068-5

26. Daffertshofer A, Ton R, Pietras B, Kringelbach ML, Deco G. Scale-freeness or

partial synchronization in neural phase oscillator networks: pick one or two?

Neuroimage. (2018) 180:428–41. doi: 10.1016/j.neuroimage.2018.03.070

27. Hellwig B. A quantitative analysis of the local connectivity between pyramidal

neurons in layers 2/3 of the rat visual cortex. Biol Cybern. (2000) 82:111–21.

doi: 10.1007/PL00007964

28. Erdös P, Rényi A. On random graphs. I. Publ Math. (1959) 6:209–97.

29. Risken H. The Fokker-Planck Equation|Methods of Solution and Applications.

Berlin: Springer (1989).

30. Hutt A. The anaesthetic propofol shifts the frequency of maximum spectral

power in EEG during general anaesthesia: analytical insights from a linear

model. Front Comp Neurosci. (2013) 7:2. doi: 10.3389/fncom.2013.00002

31. Lachaux JP, Lutz A, Rudrauf D, Cosmelli D, Le Van Quyen M, Martinerie J,

et al. Estimating the time course of coherence between single-trial signals:

an introduction to wavelet coherence. Neurophysiol Clin. (2002) 32:157–74.

doi: 10.1016/S0987-7053(02)00301-5

32. Boashash B. Estimating and interpreting the instantaneous frequency

of a signal–part 1: fundamentals. Proc IEEE. (1992) 80:520–38.

doi: 10.1109/5.135376

33. Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Martinerie

J, et al. Comparison of hilbert transform and wavelet methods for the

analysis of neuronal synchrony. J Neurosci Methods. (2001) 111:83–98.

doi: 10.1016/S0165-0270(01)00372-7

34. RosenblumM, Pikovsky A, Schafer C, Tass P, Kurths J. Phase synchronization:

from theory to data analysis. Handb Biol Phys. (2000) 4:279–321.

doi: 10.1016/S1383-8121(01)80012-9

35. Hutt A, Munk M. Mutual phase synchronization in single trial data. Chaos

Complex Lett. (2006) 2:6.

36. Hutt A, Lefebvre J, Hight D, Sleigh J. Suppression of underlying neuronal

fluctuations mediates EEG slowing during general anaesthesia. Neuroimage.

(2018) 179:414–28. doi: 10.1016/j.neuroimage.2018.06.043

37. Herrmann CS, Murray MM, Ionta S, Hutt A, Lefebvre J. Shaping intrinsic

neural oscillations with periodic stimulation. J Neurosci. (2016) 36:5328–39.

doi: 10.1523/JNEUROSCI.0236-16.2016

38. Litwin-Kumar A, Doiron B. Slow dynamics and high variability in balanced

cortical networks with clustered connections. Nat Neurosci. (2012) 15:1498.

doi: 10.1038/nn.3220

39. Deneve S, Machens CK. Efficient codes and balanced networks. Nat Neurosci.

(2006) 19:375. doi: 10.1038/nn.4243

40. Murray J.Mathematical Biology. Berlin: Springer (1989).

41. Klöden PE, Platen E. Numerical Solution of Stochastic Differential Equations.

Heidelberg: Springer-Verlag (1992).

42. Bloemker D. Amplitude equations for locally cubic non-

autonomous nonlinearities. SIAM J Appl Dyn Syst. (2003) 2:464–86.

doi: 10.1137/S1111111103421355

43. Pikovsky A, Kurths J. Coherence resonance in a noise-driven excitable system.

Phys Rev Lett. (1997) 78:775–8. doi: 10.1103/PhysRevLett.78.775

44. Beato V, Sendina-Nadal I, Gerdes I, Engel H. Coherence resonance in a

chemical excitable system driven by coloured noise. Philos Trans A Math Phys

Eng Sci. (2008) 366:381–95. doi: 10.1098/rsta.2007.2096

45. Yu Y, Liu F, Wang W. Synchronized rhythmic oscillation in a noisy neural

network. J Phys Soc. (2003) 72:3291–6. doi: 10.1143/JPSJ.72.3291

46. Steriade M. Arousal–revisiting the reticular activating system. Science. (1996)

272:225. doi: 10.1126/science.272.5259.225

47. Carstens E, Antognini J. Anesthetic effects on the thalamus,

reticular formation and related systems. Thal Rel Syst. (2005) 3:1–7.

doi: 10.1017/S1472928805000014

48. Glackin C, Maguire L, McDaid L, Wade J. Lateral inhibitory networks:

synchrony edge enhancement and noise reduction. In: Proceedings on IEEE

International Joint Conference on Neural Networks. San Jose, CA (2011).

p. 1003–9.

49. Lefebvre J, Hutt A, Frohlich F. Stochastic resonance mediates

the state-dependent effect of periodic stimulation on cortical

alpha oscillations. eLife. (2017) 6:e32054. doi: 10.7554/eLife.

32054

50. Di Santo S, Villegas P, Burioni R, Munoz MA. Landau-Ginzburg theory of

cortex dynamics: scale-free avalanches emerge at the edge of synchronization.

Proc Natl Acad Sci USA. (2018) 115:E1356–65. doi: 10.1073/pnas.1712989115

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Hutt, Lefebvre, Hight and Kaiser. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 January 2020 | Volume 5 | Article 69

https://doi.org/10.1080/1086508X.2009.11079736
https://doi.org/10.1016/0893-6080(89)90043-9
https://doi.org/10.1126/science.3755256
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/j.neuroimage.2018.03.070
https://doi.org/10.1007/PL00007964
https://doi.org/10.3389/fncom.2013.00002
https://doi.org/10.1016/S0987-7053(02)00301-5
https://doi.org/10.1109/5.135376
https://doi.org/10.1016/S0165-0270(01)00372-7
https://doi.org/10.1016/S1383-8121(01)80012-9
https://doi.org/10.1016/j.neuroimage.2018.06.043
https://doi.org/10.1523/JNEUROSCI.0236-16.2016
https://doi.org/10.1038/nn.3220
https://doi.org/10.1038/nn.4243
https://doi.org/10.1137/S1111111103421355
https://doi.org/10.1103/PhysRevLett.78.775
https://doi.org/10.1098/rsta.2007.2096
https://doi.org/10.1143/JPSJ.72.3291
https://doi.org/10.1126/science.272.5259.225
https://doi.org/10.1017/S1472928805000014
https://doi.org/10.7554/eLife.32054
https://doi.org/10.1073/pnas.1712989115
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Phase Coherence Induced by Additive Gaussian and Non-gaussian Noise in Excitable Networks With Application to Burst Suppression-Like Brain Signals
	1. Introduction
	2. Methods
	2.1. The Model
	2.2. Additive Noise
	2.3. Mean-Field Dynamics
	2.4. Power Spectrum
	2.5. Phase Coherence and Bandpass Filter

	3. Results
	3.1. Additive iid-Noise
	3.1.1. Equilibria and Linear Stability
	3.1.2. Numerical Results and Analytical Explanation

	3.2. Extension to Additive Non-iid Noise
	3.3. Link to Coherence Resonance
	3.4. Experimental Results

	4. Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References


