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This paper is devoted to establishing some criteria for the existence of non-trivial

solutions for a class of fractional q-difference equations involving the p-Laplace operator,

which is nowadays known as Lyapunov’s inequality. The method employed for it is

based on a construction of a Green’s function and its maximum value. Parallel to this

result, it is worth mentioning that the Hartman-Wintner inequality for the q-fractional

p-Laplace boundary value problem is also provided. It covers all previous results known

in the literature on the fractional case as well as that on the classical ordinary case. The

non-existence of non-trivial solutions to the q-difference fractional p-Laplace equation

subject to the Riemann-Liouville mixed boundary conditions will obey such integral

inequalities. The tools mainly rely on an integral form of the solution construction of a

Green function corresponding to the considered problem and its properties as well as its

maximum value in consideration where the kernel is the Green’s function. The example

that we consider here for applying this result is an eigenvalue fractional problem. To be

more specific, we provide an interval where an appropriate Mittag-Leffler function to the

given eigenvalue fractional boundary problem has no real zeros.
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1. INTRODUCTION

The field of fractional calculus and its applications to the class of partial differential equations,
as well as ordinary equations, gained a rapid development. Interesting fractional results turn, in
general, on the existence and non-existence of solutions. Such kinds of fractional equations come
from different disciplines in sciences, covering medical and engineering matters. Techniques used
in this kind of work recourse mainly to the use of Green’s function and its correspondingmaximum
values, which is not always an easy approach. The fractional differential equations with the p-
Laplacian operator involves this mathematical tool. However, to overcome this kind of difficulty,
another approach can be taken, namely the use of the Cauchy-Schwarz inequality and related
inequalities as holders. Different aspects have been considered by many different researchers in
this respect. They have treated the existence of either a single or multiple solutions for linearity, but
there have been few cases for non-linearity. In addition to this, the manner to extend these results
to a general case with more a general operator seems non-evident and requires a thorough analysis
of the maximum value of Green’s functions. This paper is devoted to tackling this problem with the
p-Laplace operator using the Green’s function method for the non-linearity case.
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Some results focusing on the existence of positive solutions
of boundary value problems for a class of fractional differential
equations with the p-Laplacian operator have been raised in
previous papers (see [1–22] and the references therein). Ren and
Chen [15] and Su et al. [17] established the existence of positive
solutions to four-point boundary value problems for non-linear
fractional differential equations with the p-Laplacian operator.
However, for papers on this line concerning the q-difference
type of fractional problems, we refer the reader to references
[1–4, 8–12, 15, 18, 19, 19–33].

It is worthy of notice that the q-fractional calculus was
introduced by Jackson [30, 31], as the reader may observe in
consulting the article of Ernst [28], where he attributed the work
to Jackson.

Accordingly, we mention the recent developments related to
this subject (see [5, 12, 13, 32, 34–46]) and the references therein.

For multiple solutions for the non-linear case, we refer to the
work done by El-Shahed and Al-Askar [47], whereas Graef et al.
[48] deal with positive solutions by applying different methods.

The first result came from Liapunov [6], in the second
ordinary differential equation. It was shown that if u is a non-
trivial solution of

{

u′′(t)+ q(t)u(t) = 0, a < t < b
u(a) = u(b) = 0,

where a < b, a and b are two real constants, and the function
q ∈ C([a, b];R), then the function q must satisfy the following
integral inequality:

∫ b

a
|q(t)| dt >

4

b− a
. (1)

After this result, several extensions are derived from this one,
and consequently, analogous inequalities are obtained for a class
of fractional differential equations subject to different kind of
boundary conditions (see [5, 12–14, 29, 32, 34–36, 39–41, 44,
45, 49, 50]). However, concerning the fractional q-difference
boundary value problem, it was shown in Jleli and Samet [42]
that a non-trivial solution of

{

aD
α
qu(t) + Q(t)(t)u(t) = 0, t ∈ (a, b), q ∈ [0, 1), 1 < α ≤ 2,

u(a) = 0, u(b) = 0,

(2)

where aD
α
q denotes the fractional q-derivative of Riemann-

Liouville type [43, 51], and Q :[a, b] → R is a continuous
function, exists if the following integral inequality

∫ b

a
(s− a)α−1(b− (qs+ (1− q)a)a

(α−1) |Q(s)| adqs

≥ Ŵ(α)(b− a)α−1 (3)

is satisfied.
In the opinion of the authors, there are no articles dealing with

these types of inequalities for the study of non-trivial solutions

for the p-Laplacian operator involving the q-fractional case. We
therefore fill the gap in the literature with this paper.

Our result generalizes that one investigated in Jleli and
Samet [42].

In this work, we aim to investigate the following q-fractional
boundary value problem with the p Laplace operator











aD
β
q (φp( aD

α
qu(t)) + Q(t)φp(u(t)) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ξ ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ),

(4)

where aD
α
q , aD

β
q are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, 0 < ξ , δ < 1,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
We prove that the necessary condition of the existence of

non-trivial solutions of (4) is the following:

1 ≤

(

∫ b

a
G̃q(s) adqs

)(

∫ b

a
H̃q(s) adqs

)

, (5)

where G̃q(s) and H̃q(s) are defined respectively by

G̃q(s) :=
1

Ŵq(α)

q(s− a)(α−1)

(b− a)α−1

(

b− (qs+ (1− q)a
)(α−1)

a
(6)

+
Ag(ξ , (qs+ (1− q)a)(b− a)α−1

γ
,

H̃q(s) :=
1

Ŵq(β)

q(s− a)(β−1)

(b− a)β−1

(

b− (qs+ (1− q)a
)(β−1)

a
(7)

+
Ah(ξ , (qs+ (1− q)a)(b− a)β−1

γ̄
,

where

γ := (b− a)α−1 − A (ξ − a)α−1,

and

γ̄ := (b− a)β−1 − b(δ − a)β−1.

Besides, we show that from this inequality derive several existing
previous results in the literature as well as the standard Lyapunov
inequality (1): those of Hartman and Wintner [52], Ferreira [39],
and so on.

2. DEFINITIONS AND LEMMAS

In this section, we adopt the main tools that will be needed in
the subsequent sections; these belong to q fractional calculus.
Notations, definitions and lemmas are recalled in order to cover
the goal of this paper, whereas, for consistency, we conserve the
same notations for q fractional material as adopted in Jleli and
Samet [42].
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Let q ∈ (0, 1), N0 = {0, 1, 2, . . . }, and define

[a]q =
qa − 1

q− 1
, a ∈ R.

The similar q formula to the power (a− b)n with n ∈ N0 is

(a− b)0 = 1, (a− b)n =

n−1
∏

k= 0

(a− bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a− b)α = aα

∞
∏

n= 0

a− bqn

a− bqα+n
.

For the particular case when b = 0, we note a(α) = aα . Also, the
similar q formula to the power function

(x− y)n, with n ∈ N0 is

(x− y)(0)a = 1, (x− y)(k)a

=

k−1
∏

i= 0

(

(x− a)− (y− a)qi
)

, k ∈ N, (x, y) ∈ R
2.

For the general case, when γ ∈ R, then

(x− y)
(γ )
a = (x− a)γ

k−1
∏

i= 0

(

(x− a)− (y− a)qi

(x− a)− (y− a)qγ+i

)

, (8)

= (x− a)γ
k−1
∏

i= 0





1− qi
(y−a)
(x−a)

1− qγ+i (y−a)
(x−a)





= (x− a)γ
(

1− q
(y− a)

(x− a)

)

.

It has the following properties

• (t − s)
(β+γ )
q = (t − s)

(β)
q (t − qs)

(γ )
q

• (at − as)
(β)
q = aβ (t − s)

(β)
q .

When derivatives are involved, it holds:

• (t − a)α ≥ (t − b)α , for a ≤ b ≤ t, and α > 0.

We define the q-Gamma function by

Ŵq(x) =
(1− q)

(x−1)
0

(1− q)x−1
, x ∈ R\{0,−1,−2,−3, . . . }.

In particular one has

Ŵq(x+ 1) = [x]qŴq(x), ∀x > 0, Ŵq(1) = 1.

Here and further, we recall some properties of the q-fractional
derivative of a function f defined on [a, b], a < b, to R.

The q-fractional derivative of a function f :[a, b] → R, is
defined by

(aDqf )(t) =
f (t)− f (qt + (1− q)a)

(1− q)(t − a)
, t 6= a,

and

(aDqf )(a) = lim
t→a

(aDqf )(t).

Remark:

By using the following changes:

q :=
x− a

y− a
,

it is easy to conclude that if (aDq f )(t) ≤ 0 (respectively,
(aDq f )(t) ≥ 0) then f is decreasing (respectively, f
is increasing).
Remark:

If f is differentiable in (a, b) then

lim
q→1−

(aDqf )(t) = f ′(t).

The q-fractional derivative of a function f :[a, b] → R of higher
order is defined by

(aD
0
qf )(t) = f (t), and (aD

n
q f )(t) = (aDq((aD

n−1
q f )(t)), n ∈ N.

The q-derivative of a product and a quotient of functions f and g
defined on [a, b] follows as

(

aDq fg
)

(t) = f (t)(aDqg)(t)+ g(qt + (1− q)a)(aDqf )(t),

and

(aDq
f

g
)(t) =

(aDqf )(t)g(t)− (aDqg)(t)f (t)

g(t)g(qt + (1− q)a)
.

Lemma 2.1. [44] For t, s ∈ [a, b], the following formulas hold:

t(aDq(t − s)
(γ )
a ) = [γ ]q(t − s)

(γ−1)
a ,

and

s(aDq(t − s)
γ
a ) = −[γ ]q(t − (qs+ (1− q)a))γ−1

a ,

where i(aDq) denotes the q-derivative with respect to the variable i.

Remark :

If γ > 0, a ≤ b ≤ t, then

(t − a)
(γ )
0 ≥ (t − b)

(γ )
0 .

Next, we recall the q-integral of a function f defined on [a, b],
a < b, to R and its properties.

The q-integral of a function f :[a, b] → R is defined by

(aI
0
q f )(t) =

∫ t

a
f (s) adqs = (1− q)(t − a)6∞

i= 0 q
if (qit

+ (1− q)a), t ∈ [a, b].

One may see that the above series is convergent if f is continuous.
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If a < c < b, then the following integral equality is satisfied

∫ t

c
f (s) adqs+

∫ t

a
f (s) adqs =

∫ c

a
f (s) adqs, t ∈ [a, b].

The following two relations are also satisfied

(aI
0
q f )(t) = f (t), and (aI

n
q f )(t) =a Iq(aI

n−1
q f )(t), n ∈ N.

An essential and important theorem that is known for the
classical ordinary case is also valid for the fractional one; it is the
fundamental theorem of calculus. Once applied to the fractional
operator, we get

(aDq aIqf )(t) = f (t)− f (a)

if the continuity of the function f is provided. When the
continuity of f is avoided, we obtain

(aDq aIqf )(t) = f (t).

Another crucial integration that is very useful in dealing with
non-existence of solutions for a class of fractional boundary value
problems is the integration by parts. It follows as

∫ b

a
f (s)(aDqg)(s) adqs = [f (t)g(t)]t= b

t= a

−

∫ b

a
g(qs+ (1− q)a)(aDqf )(s) adqs.

The rule of q-integration by parts is also expressed by (see [24])

∫ a

0
g(t)Dqf (t) dqt = fg(a)− lim

n→+∞
fg(aqn)−

∫ a

0
Dqg(t)f (qt) dqt.

(9)
If and g are q-regular at zero, then the limit on the right-
hand-side of (9) can be replaced by (fg )̇(0). (For more details,
see [24]).

In what follows, we define the q-fractional Riemann-Liouville
integral of a function f defined on [a, b] as follows

(aI
0
q f )(t) = f (t).

Let us assume that f and g are two functions defined on [a, b] such
that f ≤ g, then the following properties are satisfied

∫ b

a
f (s)adqs ≤

∫ b

a
g(s)adqs,

and

∫ b

a
f (s)adqs ≤

∫ b

a
|f |(s)adqs.

As auxiliary results, we need to use the following two lemmas.
The reader may consult [23, 30, 31] for more details.

Lemma 2.2. [30, 50] Let f :[a, b] → R be a continuous
function. Then

(i) aD
α
q (aI

α
q f )(t) = f (t), α > 0, t ∈ [a, b],

(ii) aI
α
q aI

β
q f (t) =a I

α+β
q f (t), α,β > 0, t ∈ [a, b].

Lemma 2.3. [30, 50] Let α > p − 1 and p be a positive integer.
The following then holds:

(aI
α
q ) aD

p
qf (x) = (aD

p
q)aI

α
q f (x)

−6
p−1

k= 0

(t − a)α−p+k

Ŵq(α + k− p+ 1)
a

Dk
qf (a).

2.1. Results and Consequences
The method that we would like to apply here consists of getting
an equivalent integral representation of the non-trivial solution
of the considered fractional boundary value problem. It therefore
necessitates an appropriate construction of the Green function,
which plays a crucial role in getting Lyapunov’s inequalities.

In order to reduce the q fractional boundary value problem (4)
to an equivalent integral equation, an auxiliary result is needed.
It is formulated in the following Lemma.

Lemma 2.4. Let u ∈ AC([a, b]). The unique non-trivial solution
of the q fractional boundary value problem

{

aD
α
qu(t) + Q(t)z(t) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ǫ),

where 1 < α < 2, a < ǫ < b, and 0 ≤ A ≤ 1, is then given by

u(t) =

∫ b

a
G(t,

(

qs+ (1− q)a
)

z(s)Q(s) adqs, (10)

G(t, s) = g(t, s) +
Ag(ǫ, s)(t − a)α−1

(b− a)α−1 − A(ǫ − a)α−1
, (11)

where

Ŵq(α)g(t, s) =























(t−a)α−1

(b−a)α−1 (b− a)α−1(b− s)α−1 − (t − s)α−1,

a ≤ s ≤ t,

(t−a)α−1

(b−a)α−1 (b− s)α−1, t ≤ s ≤ b.

(12)

Proof. We apply Lemma 2.3 in order to reduce the fractional
boundary value problem (4) to an equivalent integral one

u(t) = −aI
α
q u(t)+ c1(t − a)α−1 + c2(t − a)α−2, (13)

where c1, c2 are real constants.
From u(a) = 0 and (4), we get c2 = 0. Therefore, the general

solution of (4) is given by

u(t) = −aI
α
q u(t)+ c1(t − a)α−1
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= −

∫ t

a

(t −
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs

+c1(t − a)α−1.

From (14), we deduce that

u(b) = −

∫ b

a

(b−
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs

+ c1(b− a)α−1, (14)

and

u(ǫ) = −

∫ ǫ

a

(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs,

+ c1(ǫ − a)α−1. (15)

Now, the boundary condition u(b) = Au(ǫ) yields

c1 =

∫ b

a

(b−
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)u(s)adqs (16)

(17)

−

∫ ǫ

a

A(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)u(s)adqs,

where

γ := (b− a)α−1 − A(ǫ − a)α−1.

Thus, the non-trivial solution of (4) is uniquely given by

u(t) = −

∫ t

a

(t −
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs (18)

+

∫ b

a

(t − a)α−1(b−
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs

−

∫ ǫ

a

A(t − a)α−1(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs

= −

∫ t

a

(t −
(

qs+ (1− q)a
)

)(α−1)
a

Ŵq(α)
Q(s)z(s)adqs

+

∫ b

a

(t − a)α−1(b−
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs,

+

∫ b

a

A(t − a)α−1(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs

−

∫ ǫ

b

A(t − a)α−1(ǫ −
(

qs+ (1− q)a
)

)(α−1)
a

γŴq(α)
Q(s)z(s)adqs

=

∫ b

a
G(t, s)Q(s)z(s)adqs,

where the Green function G is defined in (11) and (12), and the
proof is finished.

Lemma 2.5. Let u ∈ AC[a, b]. The q fractional boundary value
problem











aD
β
q (φp( aD

α
qu(t)) + Q(t)z(t) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ), ,

(19)

1 < α, β < 2, , a < ǫ < b, and 0 ≤ A, B ≤ 1,
then admits a non-trivial unique solution defined by

u(t) =

∫ b

a
G(t,

(

qs+ (1− q)a
)

)φr (20)

(

∫ b

a
H(s,

(

qτ + (1− q)a
)

)z(τ )Q(τ )dqτ

)

dqs,

where G(t, s) is defined in (11), (12) and

H(t, s) := h(t, s)+
(B)p−1h(δ, s)(t − a)α−1

(b− a)β−1 − (δ − a)β−1
, (21)

where

Ŵq(α)h(t, s) =















(t−a)β−1

(b−a)β−1 (b− s)β−1 − (t − s)β−1, a ≤ s ≤ t,

(t−a)β−1

(b−a)β−1 (b− s)β−1, t ≤ s ≤ b.

(22)

Proof. We use Lemma 2.4 in order to reduce the fractional
differential Equation (4) to an equivalent integral one

φp( aD
α
qu(t)) = (aD

β
q u(t))+ c3(t − a)β−1 + c4(t − a)β−2. (23)

In view of the boundary condition aDqu(a) = 0 and (23), we
obtain c4 = 0. Hence the non-trivial solution of the fractional
boundary value (4) is given by

φp( aD
α
qu(t)) = (aD

β
q u(t))+ c3(t − a)β−1 (24)

=

∫ t

a

(t −
(

qs+ (1− q)a
)

a
)(β−1)

Ŵq(β)
Q(s)z(s) adqs

+ c3(t − a)β−1.

Now in light of (24), we get

φp( aD
α
qu(b)) =

∫ b

a

(b−
(

qs+ (1− q)a
)

)(β−1)
a

Ŵq(β)
Q(s)z(s) adqs

+ c3(b− a)β−1, (25)

φp( aD
α
qu(δ)) =

∫ δ

a

(δ −
(

qs+ (1− q)a
)

)(β−1)
a

Ŵq(β)
Q(s)z(s) adqs

+ c3(δ − a)β−1. (26)

By the boundary condition aD
α
qu(b) = B aD

α
qu(δ) yields

c3 =

∫ b

a

(b−
(

qs+ (1− q)a
)

a
)(β−1)

(

(b− a)β−1 − bp−1(δ − a)β−1
)

Ŵq(β)
Q(s)z(s) adqs
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−

∫ δ

a

(δ −
(

qs+ (1− q)a
)

)(β−1)
a

(

(b− a)β−1 − bp−1(δ − a)β−1
)

Ŵq(β)
Q(s)z(s) adqs.

=
1

γ̄

(

∫ b

a

(b−
(

qs+ (1− q)a
)

)(β−1)
a

Ŵq(β)
Q(s)z(s) adqs

)

−
1

γ̄

(

∫ δ

a

(δ −
(

qs+ (1− q)a
)

)(β−1)
a

Ŵq(β)
Q(s)z(s) adqs

)

, (27)

where

γ̄ :=
(

(b− a)β−1 − bp−1(δ − a)β−1
)

.

One may observe that, in a similar way to Lemma 2.4, we get

φp( aD
α
qu(t) = −

∫ b

a
H(t,

(

qs+ (1− q)a
)

)aQ(s)z(s) adqs. (28)

Thus, the given fractional boundary value problem (4) may be
re-written equivalently as

( aD
α
qu(t) + φr

(

∫ b

a
H(t,

(

qs+ (1− q)a
)

)aQ(s)u(s) adqs

)

= 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(δ).

Again by Lemma 2.4, the non-trivial solution of (4) is uniquely
given by

u(t) =

∫ b

a
G(t,

(

qs+ (1− q)a
)

)φr

(

∫ b

a
H(s, qτ )z(τ )Q(τ )adqτ

)

adqs. (29)

The proof of the desired result is achieved.
Next we shall focus on finding the properties of the Green

functions as well as their maximum principle. In order to do so,
we express this fact in the following lemma.

Lemma 2.6. Let u ∈ C[a, b]. The Green functions G and H
defined respectively in (11), (12) and (21), (22) are then continuous
and satisfy

(a) G(t,
(

qs+ (1− q)a
)

) ≥ 0, and H(t,
(

qs+ (1− q)a
)

a
) ≥ 0,

∀ (t, s) ∈ [a, b]× [a, b], (30)

(b) G(t, qs+ (1− q)a) ≤ G(s, (qs+ (1− q)a)), and (31)

H(t, qs+ (1− q)a)) ≤ H((qs+ (1− q)a), (qs+ (1− q)a))

∀ (t, s) ∈ [a, b]× [a, b],

1 < α, β < 2, a < ǫ < b, and 0 ≤ A, B ≤ 1.

Proof. Before starting the proof of Lemma 2.6, let us mention that
γ and γ̄ are positive, since a < ǫ, δ < b, and 0 ≤ A, B ≤ 1.

We consider

G(t, s) = g(t, s) +
Ag(ǫ, s)(t − a)α−1

(b− a)α−1 − A(ǫ − a)α−1
. (32)

Let us differentiate g(t, s) defined in (12) with respect to t, for
s ≤ t, by

Ŵq(α)g(t, s) =















(t−a)α−1

(b−a)α−1 (b− s)α−1 − (t − s)α−1, a ≤ s ≤ t,

(t−a)α−1

(b−a)α−1 (b− s)α−1, t ≤ s ≤ b.

(33)

t( aDqg(t, s) = t( aDq((t − a)α−1)
(b− s)

(α−1)
a

(b− a)α−1

−t( aDq((t − s)(α−1)
a ,

=
[α − 1]q

Ŵq(α)

(

(b− s)(α−1)
a (t − a)α−2

)

−(t − s)(α−2)
a

(

(t − a)α−2
)

=
[α − 1]q

Ŵq(α)
(t − a)α−2

(

(1−
s− a

b− a
)α−1
0

)

−(t − a)α−2

(

(1−
s− a

t − a
)α−2
0

)

≤
[α − 1]q

Ŵq(α)
(t − a)α−2

(

(1−
s− a

b− a
)α−1
0

)

−

(

(1−
s− a

b− a
)α−2
0

)

, (34)

which is non-positive, since a < s < t < b.
Therefore, the function g is decreasing in its argument t, and the
following inequality is satisfied

0 = g(b, qs+ (1− q)a) (35)

≤ g(t, qs+ (1− q)a)

≤ g(qs+ (1− q)a), qs+ (1− q)a).

To this end, one may conclude that the right-hand-side of (35)
may be expressed as

g(qs+ (1− q)a), qs+ (1− q)a) =
1

Ŵq(α)
(
q(s− a)

b− a
)α−1

(

b− ((qs+ (1− q)a)a
)(α−1)

a
.(36)

Thus, G(t, ((qs+ (1− q)a))a) is non-negative and satisfies

G(t, ((qs+ (1− q)a))a) ≤ max
a≤t≤b

G(t, (qs+ (1− q)a))

= max
a≤t≤b

(g(t, (qs+ (1− q)a))

+
Ag(ǫ, (qs+ (1− q)a)(t − a)α−1

γ
)

≤
1

Ŵq(α)

q(s− a)(α−1)

(b− a)α−1

(

b− ((qs+ (1− q)a)
)(α−1)

a

+
Ag(ǫ, (qs+ (1− q)a)a(b− a)α−1

γ
:= G̃q(s). (37)

For t ≤ s, G is defined by

G(t, s) = g(t, s) +
Ag(ǫ, s)(t − a)α−1

(b− a)α−1 − A(ǫ − a)α−1
, (38)
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where

Ŵq(α)g(t, s) =
(t − a)α−1

(b− a)α−1
(b− s)α−1. (39)

Similarly to above, we make differentiation with respect to t, and
then we get

t(aDqg(t, s)) =
[α − 1]q

Ŵq(α)

(

(

1−
s− a

b− a

)α−1

a

(t − a)α−2

)

, (40)

which is non-negative, and consequently the function g is non-
decreasing in its argument t. We have

0 = g(a, qs+ (1− q)a) (41)

≤ g(t, qs+ (1− q)a)

≤ g(s, qs+ (1− q)a),

where g(s, qs + (1 − q)a) =
(q(s−a))(α−1)

(b−a)α−1

(

b− ((qs+ (1− q)a)
)(α−1)

a
.

Now, to prove the inequality involving H, we consider H(t, s)
defined in (21)− (22) by

H(t, s) := h(t, s)+
(B)p−1h(δ, s)(t − a)β−1

(b− a)β−1 − (B)p−1(δ − a)β−1
, (42)

Ŵq(α)h(t, s) =



















(t−a)β−1

(b−a)β−1 (b− s)β−1 − (t − s)β−1, a ≤ s ≤ t,

(t−a)β−1

(b−a)β−1 (b− s)β−1, t ≤ s ≤ b.

(43)

For t ≤ s, we have

Ŵq(α)h(t, (qs+ (1− q)a)a =
(t − a)β−1

(b− a)β−1
(b− (qs+ (1− q)a))(β−1)

a

≤
(s− a)(β−1)

(b− a)β−1
(b− (qs+ (1− q)a))a

(β−1)

:= Ŵq(α) h(s, (qs+ ((1− q)a)). (44)

For t ≥ s, we consider

Ŵq(α)h(t, (qs+ (1− q)a)a) =
(t − a)β−1

(b− a)β−1
(b− (qs+ (1− q)a))a

(β−1)

− (t − (qs+ (1− q)a))a
(β−1). (45)

We claim that h(t, (qs + (1 − q)a)a) is non-negative too. It is
sufficient to replace α − 1 by β − 1 in all the steps of the proof
of Lemma 2.6 (b), and we get the same result. So the proof is
omitted, since it is similar to that of Lemma 2.6. Therefore

0 = h(a, (qs+ (1− q)a))

≤ h(t, (qs+ (1− q)a))

≤ h(s, (qs+ (1− q)a)).

Likely, one may conclude that the right-hand-side h(s, (qs+ (1−
q)a)) appearing in the previous inequality may be expressed as

h(s, (qs+ (1− q)a)) =
1

Ŵq(β)
(
q(s− a)

b− a
)β−1

(

b− (qs+ (1− q)a
)(β−1)

a
. (46)

Thus, H(t, (qs+ (1− q)a)) is non-negative and satisfies

H(t, (qs+ (1− q)a)) ≤ max
a≤t≤b

H(t, (qs+ (1− q)a))

= max
a≤t≤b

(

h(t, (qs+ (1− q)a))

+
Ah(δ, (qs+ (1− q)a)a(t − a)β−1

γ̄

)

≤
1

Ŵq(β)

q(s− a)(β−1)

(b− a)β−1

(

b− ((qs+ (1− q)a)
)(β−1)

a
(47)

+
Ah(δ, (qs+ (1− q)a)a(b− a)β−1

γ̄

:= H̃q(s).

The main result of this paper, which is a Lyapunov’s inequality
for a q- fractional difference p-Laplacian boundary value problem
(4), will be formulated in the next theorem. We state and prove it
in light of the previous lemmas.

Theorem 2.1. Assume that u is a non-trivial solution of the q
fractional boundary value problem











aD
β
q (φp( aD

α
qφp(u(t))) + Q(t)φp(u(t)) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ),

(48)

where aD
α
q , aD

β
q are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
The following integral inequality is then satisfied

1 ≤

(

∫ b

a
G̃q(s) adqs

)(

∫ b

a
H̃q(s) |Q(s)| adqs

)r−1

, (49)

where G̃q(s), and H̃q(s) are defined in (37) and (49), respectively.

Proof. Let us define the norm of u, where u is a non-trivial
solution of the q-fractional difference boundary value problem
(4) by

||u|| := max
t∈[a,b]

|u(t)|.

Then, in view of Lemma 2.5, the non-trivial solution u ∈

AC([a, b],R) may be re-written for all t ∈ [a, b] as follows

u(t) =

∫ b

a
G(t, qs+ (1− q)a)φq (50)
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(

∫ b

a
H(s, q σ )+ (1− q)a)Q(σ )φp(u(σ )) adqσ

)

adqs.

We then deduce

|u(t)| ≤

∫ b

a
|G(t, qs+ (1− q)a))| |φq

(

∫ b

a
H(s, σ )Q(σ )φp(u(σ )) adqσ

)

| adqs

=

∫ b

a
|G(t, qs+ (1− q)a))| (51)

|

(

∫ b

a
H(s, q σ )+ (1− q)a)Q(σ )φp(u(σ )) adqσ

)

|r−1
adqs

=

∫ b

a
|G(t, qs+ (1− q)a))|

|

(

∫ b

a
|H(s, q σ )+ (1− q)a)Q(σ )| ||u||

p−1
a dqσ

)

|r−1
adqs

=

∫ b

a
|G(t, s)|||u||

p−1
r−1

(

∫ b

a
|H(s, q σ )+ (1− q)a)| |Q(σ )| adqσ

)r−1

adqs.

Based on the non-triviality of the solution u and the fact that p
and r are conjugates, one may observe that

1 ≤

∫ b

a
|G(t, qs+ (1− q)a)| adqs

(

∫ b

a
|H(s, q σ )+ (1− q)a)| |Q(σ )| adqσ

)r−1

.

Due to Lemma 2.5 and Lemma 2.6, it holds that

1 ≤

∫ b

a
G̃q(s) adqs

(

∫ b

a
H̃q(s) |Q(σ )| adqσ

)r−1

.

To this end, it is worth noticing that, by letting q to 1−, we retrieve
the following integral inequality due to Hartman and Wintner
(see [52])

∫ b

a
(s− a)(b− s)|Q(s)| ds ≥ (b− a).

Due to this fact, the obtained integral inequality (49) may
be viewed as the q-fractional integral Hartman and Wintner
inequality for the p-Laplacian case. However, it is easy for the
reader to get an analogous result to this fundamental inequality
by considering p = 2,α = 2, and q → 1−.

Several types of Lyapunov’s inequality were derived from
Theorem 2.1. Hereafter, we formulate and express all of them
in the following corollaries. We shall focus on covering both
cases, ordinary differential equations and fractional differential
equations. In addition, we illustrate this Theorem by giving an
example. It consists of getting the interval of non-zeros of an
appropriate eigenvalue fractional boundary value problem.

Let us start with the first result derived from Theorem 2.1.

Corollary 2.1. Suppose that u is a non-trivial solution of the q
fractional boundary value problem











aD
β
q (φp( aD

α
qu(t)) + Q(t)φp(u(t)) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ), ,

(52)

where aD
α
q , aD

β
q are the fractional q-derivative of Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
The following integral inequality is then satisfied

1 ≤
1

Ŵq(α)

A

γ
(ǫ − a)(α−1) 1

Ŵq(β)

Bp−1

γ̄
(δ − a)β−1(b− a)

(

∫ b

a
|Q(s)| adqs

)r−1

. (53)

Proof. It is sufficient to let q → 0+ and consider two cases: t ≤ s
and s ≤ t. In the first case, G̃q(t, s) and H̃q(t, s) defined in (37) and
(47) tend to zero. In the second case, they take the following form

G̃q(t, s) :=
A(ǫ − a)α−1

γ
and H̃q(t, s) : :=

Bp−1(δ − a)β−1

γ̄
,

and we get the result of this corollary.

Corollary 2.2. Suppose that u is a non-trivial solution of the q
fractional boundary value problem











aD
β
q (φp( aD

α
qu(t)) + Q(t)φp(u(t)) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ),

(54)

where aD
α
q , aD

β
q are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
The following integral inequality is then satisfied

1 ≤

(

∫ b

a

1

Ŵq(α)
(
s− a

b− a
)α−1(b− s)α−1

adqs

+

∫ b

a

A

γ
g(ǫ, s)(b− a)α−1

adqs

)

(

∫ b

a

1

Ŵq(β)
(
s− a

b− a
)β−1(b− s)β−1 |Q(s)| adqs

+

∫ b

a

Bp−1

γ̄
h(δ, s)(b− a)β−1 |Q(s)| adqs

)r−1

.

Proof. The result is achieved by letting q → 1−

in (49).
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Remarks:

• The result of this corollary (Corollary 2.2) represents a
Hartman-Wintner inequality for the q-fractional difference p-
Laplacian boundary value problem (54). For the particular case
when A = B = 0 and α = β , we obtain

∫ b

a
(s− a)α−1(b− s)α−1Q(s)ds ≥ Ŵ(α)(

4

b− a
)α−1.

• When α = β = 2, we retrieve the necessary condition of
existence of non-trivial solutions investigated by Lyapunov
for the second ordinary differential equation subject to
the Dirichlet boundary conditions, and therefore one may
conclude that if the non-trivial solution corresponding to this
problem exists, then the non-trivial solution of (54) exists too,
and vice-versa.

Indeed, in that case, for α = β = 2, we find:

4

b− a
≤

∫ b

a
(s− a)(b− s) |Q(s)| ds.

Now we focus on a second mixed-order differential inequality
by taking α = β = 2. For the next derived result from
Theorem 2.1, we provide an important inequality that is very
useful. This is the arithmetic-geometric-harmonic inequality.
It says that:

(s− a)(b− s) ≤
(b− a)2

4
.

Corollary 2.3. Suppose that u is a non-trivial solution of the q
fractional boundary value problem











aD
β
q (φp( aD

α
qu(t)) + Q(t)φp(u(t)) = 0, t ∈ (a, b),

u(a) = 0, u(b) = Au(ǫ),

aD
α
q (a) = 0, aD

α
qu(b) = B aD

α
qu(δ),

(55)

where aD
α
q , aD

β
q are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b,
φp(s) = |s|p−2s, p > 1, φ−1

p = φr ,
1
p + 1

r = 1, and Q :[a, b] → R

is a continuous function on [a, b].
The following integral inequality is then satisfied

1 ≤

(

∫ b

a

1

Ŵ(α)

(b− a)2(α−1)

4α−1
ds+

∫ b

a

A

γ
g(ǫ, s)(b− a)α−1 ds

)

(

∫ b

a

1

Ŵ(β)
(
(b− a)2(β−1)

4β−1
|Q(s)| ds

+

∫ b

a

Bp−1

γ̄
h(δ, s)(b− a)β−1 |Q(s)| ds

)r−1

.

Proof. We use the result of Corollary 2.2 by considering
the arithmetic-geometric-harmonic inequality, and we get the
desired result. Nowwe focus on a secondmixed-order differential
inequality by taking α = β = 2, p = 2 and therefore r = 2, since
p and r are conjugates.

Corollary 2.4. Suppose that u is a non-trivial solution of the
fractional q-difference boundary value problem







aD
′′( aD

′′u(t) + Q(t)u(t) = 0, t ∈ (a, b),
u(a) = 0, u(b) = Au(ǫ),

aD
′′(a) = 0, aD

′′u(b) = B aD
′′u(δ),

(56)

where aD
′′, aD

′′ are the fractional derivative of the Riemann-
Liouville type of order 2, 0 ≤ A, B ≤ 1, a < ǫ, δ < b, and
Q :[a, b] → R is a continuous function on [a, b].

The following integral inequality is then satisfied

1 ≤

(

∫ b

a
(
s− a

b− a
)(b− s) ds+

∫ b

a

A

γ
g(ǫ, s)(b− a) ds

)

(

∫ b

a
(
s− a

b− a
)(b− s) |Q(s)| ds+

∫ b

a

B

γ̄
h(δ, s)(b− a) |Q(s)| ds

)

,

where g and h are defined in (12) and (22), respectively (with
α = β = 2), and γ and γ̄ are defined by

γ := (b− a)− A(ǫ − a), and γ̄ := (b− a)− Bp−1(δ − a).

Proof. We set α = β = 2, p = r = 2, and we let q → 1− in
Corollary 2.2, and the desired result is therefore established.
Remark:

The result obtained in Corollary 2.4 is more general than
the Hartman Wintner inequality. For the particular case when
A = B = 0, we get the classical Hartman-Wintner inequality.

Corollary 2.5. Suppose that u is a non-trivial solution of the
fractional boundary value problem







aD
′′( aD

′′u(t) + Q(t)u(t) = 0, t ∈ (a, b),
u(a) = 0, u(b) = 0,

aD
′′u(a) = 0, aD

′′u(b) = 0,
(57)

where aD
′′, aD

′′ are the fractional derivative of the Riemann-
Liouville type of order 2, and Q :[a, b] → R is a continuous
function on [a, b].

The following integral inequality is then satisfied

4

b− a
≤

∫ b

a
(s− a)(b− s)|Q(s)| ds. (58)

Proof. It is sufficient to use the arithmetic-geometric-harmonic
inequality to the conclusion of Corollary 2.4 and set A = B = 0,
and the result will follow.

Corollary 2.6. Suppose that u is a non-trivial solution of the
fractional boundary value problem







aD
′′( aD

′′u(t) + Q(t)u(t) = 0, t ∈ (a, b),
u(a) = 0, u(b) = 0,

aD
′′(a) = 0, aD

′′u(b) = 0,
(59)

where aD
′′, aD

′′ are the fractional derivative of the Riemann-
Liouville type of order 2, and Q :[a, b] → R is a continuous
function on [a, b].

The following integral inequality is then satisfied
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(

4

b− a

)2

≤

∫ b

a
|Q(s)|ds. (60)

Proof. Similarly to the above, we apply two times the arithmetic-
geometric-harmonic inequality to the result of Corollary 2.4, and
the desired result is achieved.

3. ON AN INTERVAL OF REAL ZEROS OF

THE MITTAG-LEFFLER FUNCTION

In this section, we are interested in getting the interval of real
zeros of the following Mittag-Leffler function [43]:

Eα(λ) = 6∞
k= 0

λk

Ŵ(kα + β)
, λ, β ∈ C, and Re(α) > 0,

where C denotes the set of complex numbers, and R(α) is the
real part of α. The key tool in proving this result consists of
an appropriate integral inequality of the following fractional
boundary value problem.

Theorem 3.1. Let u be a non-trivial solution of

0D
α(0D

α(u(t)))+ λu(t) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, u(1) = 0,

0D
αu(0) = 0, 0D

αu(1) = 0, (61)

then |λ| ≥ (Ŵ(α)4α−1)2.

Proof. We apply Corollary 2.3 with A = B = 0, α = β ,
p = 2, r = 2, and a = 0, b = 1. We obtain

|λ| ≥ (Ŵ(α)4α−1)2,

and the proof is completed.
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