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We consider fractional stochastic volatility models that extend the classic Black–Scholes

model for asset prices. The models are general and motivated by recent empirical results

regarding the behavior of realized volatility. While such models retain the semimartingale

property for the asset price the associated European option pricing problem becomes

complex, with no explicit solution. In a number of canonical scaling regimes it is possible,

however, to derive asymptotic and sparse representations for the option price and the

associated implied volatility, that are parameterized by a few effective parameters and

that involve power law dependencies on time to maturity. These effective parameters may

depend in a complicated way on the volatility model, but they can be easily estimated

from the observation of a few option prices. The effective parameters associated with

a particular underlying asset can be calibrated with respect to liquid contracts written

on this asset and then used for pricing less liquid contracts written on the same

underlying asset. Therefore, the effective parameters provide a robust link between

financial products written on a particular underlying asset.

Keywords: stochastic volatility, long-memory process, fractional process, volterra process, asymptotics, time

scales, option price, implied volatility

1. INTRODUCTION

In the classic Black–Scholes modeling framework the asset price has independent Gaussian
returns and a constant volatility (see [1]). However, European option prices predicted by this
idealized model often do not capture well market-traded option prices. The discrepancy is typically
parameterized by the implied volatility, that is, the volatility that needs to be used in the Black–
Scholes pricing formula to replicate the market-traded option prices. The implied volatility is then
a function of the contract parameters, the maturity, and the strike in the case of European options,
while in the ideal Black–Scholes situation the implied volatility should be constant. In fact, the
implied volatility calibrated from past option pricing data can be seen as a proxy for prices and
used in the pricing of tomorrow’s options. This is in contrast to an approach where calibration of
the underlying asset model, in particular its volatility, is used to price options.

In order to carry out a robust calibration it is desirable to have a good model for the implied
volatility, a model that somehow captures the essence of how the market drives and modulates
the option prices. Stochastic volatility models have been very successful in explaining the behavior
of the implied volatility. Here the volatility of the underlying asset price process is modeled as a
stochastic process itself, which leads to a particular form for the implied volatility. For background
on stochastic volatility models we refer to the books and surveys [1–6], and the references therein.
The form of the implied volatility is explicit only for some special classes of stochastic volatility
models, in particular the Heston [7] model. It has been observed that the Heston [7] model does
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not always fit the observations well. Therefore, other models
have been introduced in the literature, models where there is
no explicit expression for the implied volatility. That is why
it is of interest to use asymptotic techniques to get explicit
expressions that approximate the implied volatility in specific
parameter regimes as explained by Fouque et al. [1]. The main
idea is to identify a set of canonical scaling regimes where
asymptotic techniques can be used to determine accurate option
price approximations giving sparsely parameterized models for
the implied volatility. The estimation of the parameters from
market-traded option prices is then possible and robust. Most of
the literature on stochastic volatility has focussed on situations
when the volatility process is a Markov process, typically some
sort of a jump diffusion process. However, a number of empirical
studies such as Gatheral et al. [8] suggest that the volatility
process possesses power-law correlations that decay relatively
slowly compared to the exponential rate of Markov models.
Here we develop a general framework for modeling of non-
Markov processes and use it in the context of stochastic volatility.
This general framework for modeling of non-Markov stochastic
processes is based on a fractional Volterra process formulation.
The distribution of the future evolution of such a non-Markov
process cannot be described knowing only the present value of
the process, the past history of the process is also needed and we
say that the process hasmemory.

The main asymptotic regimes considered here are the ones
where (1) the standard deviation of the stationary fluctuations
of the stochastic volatility is of the same order as the average,
(2) the time to maturity is of the same order as the diffusion
time, and (3) the mean reversion time of the stochastic volatility
is either shorter or longer than the diffusion time. Thus, we
address both the rapid and slow mean reversion regimes in this
paper. Here the diffusion time refers to the natural evolution
time scale of the asset price (it can be defined as the reciprocal
of the square effective volatility). In these regimes the leading-
order expression of the implied volatility surface is linear in
log-moneyness, with moneyness being the option strike relative
to the current asset value. This may seem somewhat restrictive
from the point of view of fitting since a strong skew in log-
moneyness can be observed in certain markets. This has been
observed for the stock market, but less so for other markets
like fixed income markets. However, if one considers higher-
order approximations, then our framework generates strong
skew effects. A number of other modeling issues like transaction
costs, bid-ask spreads, interest rate, market price of risk, and
liquidity issues may also affect the skew shape, but are not
considered here. The fractional volatility model we set forth here
incorporates empirical “stylized facts,” like heavy tails of returns,
volatility clustering, and mean reversion, moreover, volatility
persistence as observed from empirical viewpoints by Cont [9].
Additionally, we incorporate the leverage effect, which is a term
coined by Black [10] referring to stock price movements which
are correlated (typically negatively) with volatility, as falling stock
prices may imply more uncertainty and hence more volatility.
We seek here to answer the question about what parametric
forms for the implied volatility long- and short-range stochastic
volatility fluctuations produce and we use asymptotic techniques

to do so. Here short-range volatility refers to situations when the
volatility path is rougher than in the Markovian case while long-
range refers to situations when the volatility is smoother than in
the Markovian case. Such a description is useful in the context
of calibration and linkage of financial contracts written on the
same underlying asset via calibration of liquid contracts with
respect to implied volatility. Here, we consider just one piece
of this challenge which involves characterization of the implied
volatility surface for long- and short-range stochastic volatilities.
An underlying premiss is that constructing a parametric form
for the implied volatility that derives from a stochastic volatility
that is a stationary process helps in designing a scheme that is
time consistent and robust. Moreover, it provides the appropriate
degrees of freedom and a framework for linkage of financial
products. Long- and short-range stochastic volatility models are
indeed easy to pose, however, their analysis is quite challenging.
This comes from the fact that the volatility process is then neither
a Markov process nor a semimartingale. The price process is still,
however, a semimartingale and the problem formulation does not
entail arbitrage as shown by Mendes et al. [11].

We consider a general framework for modeling with short-
and long-range fractional processes and application of this to
asymptotic option pricing. This builds on the work by Garnier
and Sølna [12–14] by extending the results from fractional
Ornstein–Uhlenbeck processes to general Volterra processes.
Such frameworks were also used in the context of optimal
portfolio construction by Fouque and Hu [15–17] and in hedging
by Garnier and Sølna [18]. In these papers the time to maturity
is of the same order as the characteristic diffusion time. The case
of small volatility asymptotics in the stationary case is discussed
in Garnier and Sølna [12] while here the focus is on asymptotics
associated with separation of time scales.

The outline of the paper is as follows. We start with a review
of some relevant literature in section 2. Then, in section 3 we
introduce the fractional Volterra stochastic volatility model and
discuss the properties of the autocovariance of this model for
three classes (St), (RoH), and (LoH). Then we introduce the three
important time scales, the volatility mean reversion time, the
diffusion time, and the time to maturity in section 4. We exploit
separation of these time scales to derive asymptotic expressions
for respectively option prices and implied volatility in sections 5,
6. We discuss some calibration issues in section 7 and we finish
with some conclusions in section 8.

2. LITERATURE REVIEW ON

NON-MARKOV STOCHASTIC VOLATILITY

MODELS

Most of the literature on stochastic volatility has focussed on
situations when the volatility process is a Markov process,
typically some sort of a jump diffusion process. Based on the
observed structures of the returns and of the implied volatility
surface [19, 20] claim that the asset price should be a jump
process. Models with asset price jumps and stochastic volatility
models both lead to heavy returns and have been used to capture
smile dynamics. Such behaviors are also produced by models
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driven by general Lévy processes, both for volatility models as in
Figueroa [21] and Mijatovic and Tankov [22] as well as for the
asset price itself as in Barndorff-Nielsen et al. [23]. A number
of recent empirical studies suggest, however, that the volatility
process possesses long- and/or short-range dependence and is
non-Markovian. Stochastic volatility models with memory have
recently received a lot of attention and this work is motivated
in part by the analysis of volatility of historical prices and in
part by the structure of the implied volatility as reported by
Breidt et al. [24], Charfeddine [25], Chronopoulou and Viens
[26], Gatheral et al. [8], and Oh et al. [27] for instance.

The classic model for processes with memory is the fractional
Brownian motion (fBm) introduced by Mandelbrot and Van
Ness [28]. This is a one-parameter generalization of the standard
Brownian motion. The parameter characterizing this process is
the Hurst index H ∈ (0, 1). The fBm process has paths that
are almost surely Hölder continuous with exponent γ for any
γ < H. Two qualitatively different cases can be identified. The
case with H < 1/2 corresponds to a process whose successive
increments are negatively correlated. Such a process is referred
to as an anti-persistent, rough, or fractional short-range process.
The process is then indeed rougher than standard Brownian
motion. The case with H > 1/2 gives positively correlated
increments. Such a process is referred to as a persistent or
fractional long-range process. The correlations of the increments
of the fBm decay as 1t2H−2 as a function of the separation 1t
between the increments, so that the autocorrelation function of
the increment process is not integrable in the long-range case.
This is in contrast to the case with a Markov process whose
correlations decay at an exponential rate. We will see below that
the persistent and anti-persistent cases give qualitatively different
structures for the implied volatility. Note that the case H =
1/2 corresponds to standard Brownian motion, whose successive
increments are independent, and gives a Markov process. Here
we use a general short- or long-range Volterra class of models
which is driven by standard Brownian motion. The stochastic
volatility itself is modeled as a smooth function of the Volterra
process. Indeed this process will be stationary in a strong sense
with the distribution of the process being invariant with respect
to time shifts. As a special case we discuss a fractional Ornstein–
Uhlenbeck process driven by fractional Brownian motion on R

of the type introduced by Mandelbrot and Van Ness [28] (type I
fBm). Fractional Brownianmotion onR+ can also be constructed
via a moving average representation of Brownian motion on R

+

(type II fBm) as described for instance in Biagini et al. [29]. When
modeling the volatility in the financial context it is important to
use a driving process whose increments are “memory-stationary”
and that is why we use the fBm representation of Mandelbrot and
Van Ness [28].

There has been strong interest in modeling and analysis
of fractional stochastic volatility in recent years. Comte et al.
[30] consider a long memory extension of the Heston [7]
option pricing model, a fractionally integrated square root
process that is a generalization of the early work by Comte and
Renault [31]. Further results on the fractional Heston model
are found for instance by El Euch and Rosenbaum [32] and
Guennoun et al. [33], where short- and long-time to maturity

asymptotics are studied using large deviations principles. In the
Markov case the integrated square volatility would converge
to its mean value exponentially fast and this would flatten the
implied volatility term structure. In Comte et al. [30], it is
discussed how long-range dependence provides an explanation
for observations of non-flat term structure in the regime of long
time to maturity since the long-range dependence can make the
implied volatility smile strongly maturity-dependent and can also
produce consistent smiles for short time to maturity. It may
be argued that the typical case for stochastic volatility is the
fractional rough case with H < 1/2, which is the point of view
set forth in Gatheral et al. [8]. However, empirical findings of
long-range dependence structure have also been reported, for
instance in Chronopoulou and Viens [26]. Long-range volatility
situations have been reported for currencies inWalther et al. [34],
for commodities in Charfeddine [25] and for equity index in Chia
et al. [35], while analysis of electricity markets data typically gives
H < 1/2 as in Bennedsen [36], Rypdal and Lovsletten [37],
and Simonsen [38]. Both the short- and long-range fractional
behaviors can be observed depending on the specific market and
regime and they are, therefore, important.

In the previous articles the time to maturity is of the same
order as the characteristic diffusion time (the reciprocal of the
square effective volatility). A large number of recent papers
consider asymptotic approximations in the regime of short time
to maturity. In Alòs et al. [39], the authors use Malliavin calculus
to decompose option prices as the sum of the classical Black–
Scholes formula with volatility parameter equal to the root-
mean-square average of the future volatility plus a term due
to correlation and a term due to the volatility of the volatility.
Their model is a fractional version of the Bates [40] model.
They find that the implied volatility flattens in the long-range
dependent case in the limit of short time to maturity. We
make a connection to this result below in section 6.1. Forde
and Zhang [41] use large deviation theory to determine the
short time to maturity asymptotic form of the implied volatility.
They consider the correlated case with leverage and obtain
results that are consistent with those in Alòs et al. [39]. They
consider stochastic volatility models based on fBms which are
analyzed by rough path theory. They also consider long time to
maturity asymptotics for some fractional processes. Small time to
maturity asymptotic results are presented by Chronopoulou and
Viens [42] and Gulisashvili [43]. Another important asymptotic
regime corresponds to small volatility fluctuations. Fukasawa
[44] considers this situation and discusses the impact of long-
range dependence on the implied volatility. He uses a non-
stationary fBm as the volatility factor so that the leading implied
volatility surface is identified conditioned on the present value of
the implied volatility factor only. Here we consider a stationary
model so that the surface depends in general on the path of the
volatility factor until the present, reflecting the non-Markovian
nature of fBm. The case of small volatility asymptotics in the
stationary case is discussed in Garnier and Sølna [12] while
here the focus is on asymptotics associated with separation of
time scales.

We remark finally that a further generalization, relative to fBm
based models, is the case of multi-fractional Brownian motion
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based models (see for instance [45]). This makes it possible to
consider a non-stationary local regularity and a time-dependent
Hurst index, so that the implied volatility depends on weighted
averages of the local Hurst index. Here we consider a mono-
fractal situation with a fixed value for the Hurst index, the
multi-fractal cases will be considered elsewhere.

3. STOCHASTIC VOLATILITY MODEL

The price Xt of the risky asset follows, under the pricing measure,
the stochastic differential equation

dXt = σtXtdW
∗
t , (1)

where the stochastic volatility is of the form

σt = F(Zt). (2)

In the standard Black–Scholes model the volatility σt is constant
while here it is a stochastic process which reflects variations in
the market conditions. The function F is a deterministic smooth
function, called the volatility function. The stochastic process Zt
is a Volterra process, called the volatility factor. This process
produces the fluctuations in the volatility and determines its
time scale contents. The stochastic volatility is adapted to the
Brownian motion Wt . The Brownian motion W∗

t driving the
asset is correlated to the stochastic volatility through

W∗
t = ρWt +

√

1− ρ2Bt , (3)

where the Brownian motion Bt is independent of Wt and
ρ ∈ [−1, 1]. In the standard Black–Scholes framework there
are explicit expressions for vanilla option prices like European
call option prices. In the general stochastic volatility case there
are no such explicit expressions. However, in certain regimes,
characterized by the relativemagnitudes of the characteristic time
scales of the price process Xt , we can derive asymptotic formulas
for the option prices and we discuss such asymptotics in this
paper when the volatility factor is a fractional Volterra process.

3.1. The Volatility Factor
We assume that the volatility factor has the form

Zt =
σZ√
τZ

∫ t

−∞
K

( t − s

τZ

)

dWs, (4)

where K is a function in L2(0,∞) with
∫ ∞
0 K(u)2du = 1.

The volatility factor is a zero-mean, stationary, Gaussian process
with variance

E[Z2
t ] = σ 2

Z (5)

and covariance that is a function of s/τZ :

E
[

ZtZt+s

]

= σ 2
ZCZ

( s

τZ

)

, CZ(s) =
∫ ∞

0
K(u)K(s+ u)du.

(6)

The normalized correlation function CZ(s) is continuous, its value
at zero is one and it goes to zero at infinity. Its width is of order
one, so that τZ is the mean-reversion time of the volatility.

In this paper we shall consider three different classes.
- We say that the volatility factor belongs to the standard class

(St) ifK ∈ L1∩L∞. For technical reasons we add the assumption:
K is Lipschitz on (0,+∞). The main assumptions mean that
the volatility factor has a standard behavior at infinity (i.e., its
correlation function is integrable) and at zero (i.e., its correlation
function is of the form 1 − O(|s|) for small s). A typical example
is a standard Ornstein–Uhlenbeck process.

- We say that the volatility factor belongs to the class (RoH)
for someH ∈ (0, 1/2) ifK ∈ L1 and there exists dZ 6= 0 such that

K(t) = dZt
H− 1

2
(

1+ o(1)
)

, t → 0. (7)

For technical reasons we add the assumption: K is Lipschitz on
(1,+∞) and t 7→ K(t)−dZt

H−1/2 isH′-Hölder on (0, 1) for some
H′ > H. The main assumptions imply that the volatility factor
has a standard behavior at infinity (i.e., its correlation function is
integrable), but a rough behavior at zero (see [12]):

CZ(s) = 1− qZ|s|2H + o(|s|2H) as |s| → 0, (8)

with

qZ = d2Z
Ŵ(H + 1

2 )
2

2 sin(πH)Ŵ(2H + 1)
, (9)

that is to say, the process has short-range correlation properties.
The process is “rough” in that it is H′ Hölder continuous for any
H′ < H, but not for H′ > H. A typical example is a fractional
Ornstein–Uhlenbeck process with the Hurst index H ∈ (0, 1/2)
as explained below.

-We say that the volatility factor belongs to the class (LoH) for
some H ∈ (1/2, 1) if K ∈ L∞ and there exists cZ 6= 0 such that

K(t) = cZt
H− 3

2
(

1+ o(1)
)

, t → +∞. (10)

For technical reasons we add the assumption: K is Lipschitz on
(0,+∞) and t 7→ K(t)−cZt

H−3/2 is in L1. Themain assumptions
mean that the volatility factor has a standard behavior at zero, but
its correlation function is not in L1 (see [12]):

CZ(s) = kZ|s|2H−2
(

1+ o(1)
)

as |s| → +∞, (11)

with

kZ = c2Z
Ŵ(H − 1

2 )
2

2 sin(πH)Ŵ(2H − 1)
. (12)

With such slowly decaying correlations we say that the process
has long-range correlation properties. A typical example is a
fractional Ornstein–Uhlenbeck process with the Hurst indexH ∈
(1/2, 1) as discussed below.
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3.2. The Volatility Function
The volatility function F is assumed to be one-to-one, positive-
valued, smooth, bounded, and with bounded derivatives.
Accordingly, the filtration Ft generated by (Bt ,Wt) is the one
generated by Xt . Indeed [see [14]], it is equivalent to the filtration
generated by (W∗

t ,Wt), or (W
∗
t ,Zt). Because F is one-to-one, it

is equivalent to the filtration generated by (W∗
t , σt). Because F

is positive-valued, it is equivalent to the filtration generated by
(W∗

t , σ
2
t ), or Xt .

In order to establish some results in the (LoH) case, we need
to assume additional conditions on the volatility function F as in
Garnier and Sølna [14]. In the (LoH) case, we require that there
exists some α > 2 such that

∞
∑

k=0

αkC2
k

k!
< ∞, (13)

where the Ck’s are the Hermite coefficients of the volatility
function F with respect to the invariant distribution of volatility
factor Zt :

Ck =
1

√
2π

∫

R

Hk(z)F
2(σZz) exp

(

−
z2

2

)

dz,

Hk(z) = (−1)k exp
( z2

2

) dk

dzk
exp

(

−
z2

2

)

. (14)

3.3. A Special Model: The Fractional

Ornstein–Uhlenbeck Process
A typical model for the volatility factor is the fractional Ornstein–
Uhlenbeck (fOU) process. We describe here how this process
can be represented in terms of a fractional Brownian motion.
Because fractional Brownian motion can be expressed in terms
of standard Brownian motion, we also arrive at an expression for
the fOU process as a Volterra process that belongs to the classes
described above.

A fractional Brownian motion (fBm) is a zero-mean Gaussian
process (WH

t )t∈R with the covariance

E[WH
t W

H
s ] =

σ 2
H

2

(

|t|2H + |s|2H − |t − s|2H
)

, (15)

where σH is a positive constant. We use the following moving-
average stochastic integral representation of the fBm (see [28])

WH
t =

1

Ŵ(H + 1
2 )

∫

R

(

(t − s)
H− 1

2
+ − (−s)

H− 1
2

+

)

dWs, (16)

where (Wt)t∈R is a standard Brownian motion over R. Then
(WH

t )t∈R is indeed a zero-mean Gaussian process with the
covariance (15), and we have

σ 2
H =

1

Ŵ(H + 1
2 )

2

[

∫ ∞

0

(

(1+ s)H− 1
2 − sH− 1

2
)2
ds+

1

2H

]

=
1

Ŵ(2H + 1) sin(πH)
. (17)

Let τZ > 0. We introduce the fOU process as

Zt = τ−H
Z

∫ t

−∞
exp

(

−
t − s

τZ

)

dWH
s

= τ−H
Z WH

t − τ−1−H
Z

∫ t

−∞
exp

(

−
t − s

τZ

)

WH
s ds. (18)

The fOU process is a fractional Brownianmotion with a restoring
force toward zero. It is a zero-mean, stationary Gaussian process,
with variance

E
[

Z2
t

]

= σ 2
Z , with σ 2

Z =
1

2
Ŵ(2H + 1)σ 2

H =
1

2 sin(πH)
, (19)

which is independent of τZ , and covariance

E
[

ZtZt+s

]

= σ 2
ZCZ

( s

τZ

)

,

which is a function of s/τZ only, with the normalized
correlation function

CZ(s) =
1

Ŵ(2H + 1)

[1

2

∫

R

|s+ v|2H exp(−|v|)dv− |s|2H
]

=
2 sin(πH)

π

∫ ∞

0
cos(sx)

x1−2H

1+ x2
dx.

This shows that τZ is the mean-reversion time of the fOU
process Zt .

If H = 1/2, then the process Zt is the standard OU process
(synthesized with a standard Brownian motion). This process
is a stationary Gaussian Markov process with an exponential
correlation, and hence a mixing process:

CZ(s) = exp(−|s|). (20)

If H 6= 1/2, then the random process Zt is neither a martingale,
nor a Markov process. For H ∈ (0, 1/2) it possesses short-range
correlation properties in the sense that its correlation function is
rough at zero:

CZ(s) = 1−
1

Ŵ(2H + 1)
|s|2H + o

(

|s|2H
)

, |s| ≪ 1, (21)

while it is integrable and decays as |s|2H−2 at infinity.
For H ∈ (1/2, 1), it possesses long-range correlation properties

CZ(s) =
1

Ŵ(2H − 1)
|s|2H−2 + o

(

|s|2H−2
)

, |s| ≫ 1, (22)

while it is of the form CZ(s) = 1 − |s|2H/Ŵ(2H + 1) + o(|s|2H)
at zero.

Using Equations (16) and (18), we arrive at the moving-
average integral representation of the fOU process as

Zt =
σZ√
τZ

∫ t

−∞
K

( t − s

τZ

)

dWs, (23)
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where

K(t) =
√
2 sin(πH)

Ŵ(H + 1
2 )

[

tH− 1
2 −

∫ t

0
(t − s)H− 1

2 exp(−s)ds
]

. (24)

The main properties of the kernel K in our context are the
following ones:
- K ∈ L2(0,∞) with

∫ ∞
0 K

2(u)du = 1.
- K ∈ L1(0,∞) if H ∈ (0, 1/2],
- K ∈ L∞(0,∞) if H ∈ [1/2, 1),
- for t ≪ 1,

K(t) =
√
2 sin(πH)

Ŵ(H + 1
2 )

(

tH− 1
2 + O

(

tH+ 1
2
)

)

, (25)

- for H 6= 1/2 and for t ≫ 1,

K(t) =
√
2 sin(πH)

Ŵ(H − 1
2 )

(

tH− 3
2 + O

(

tH− 5
2
)

)

. (26)

This shows that the fOU process belongs to the class (RoH) if
H < 1/2 with dZ =

√
2 sin(πH)/Ŵ(H + 1/2), to the class

(St) if H = 1/2, and to the class (LoH) if H > 1/2 with
cZ =

√
2 sin(πH)/Ŵ(H − 1/2).

We remark that the fOU process inherits the regularity
properties of the fractional Brownian motion process so that it
is Hölder continuous with exponent γ for any γ < H.

3.4. Covariance Properties of the

Stochastic Volatility
We return to the general volatility factor model of section 3.1 and
discuss the correlation properties of the associated volatility σt =
F(Zt). As discussed above, the volatility factor Zt possesses short-
range or long-range correlation properties. As we now show, the
volatility process σt inherits these properties.

Lemma 3.1. We denote, for j = 1, 2,

〈

Fj
〉

=
∫

R

F(σZz)
jp(z)dz,

〈

F′j
〉

=
∫

R

F′(σZz)
jp(z)dz, (27)

where p(z) is the pdf of the standard normal distribution.

1. The process σt is a stationary random process with mean
E[σt] = 〈F〉 and variance Var(σt) =

〈

F2
〉

− 〈F〉2.
2. The covariance function of the process σt is of the form

Cov
(

σt , σt+s

)

=
( 〈

F2
〉

− 〈F〉2
)

Cσ (s), (28)

where the correlation function Cσ satisfies Cσ (0) = 1.
If the volatility factor belongs to the class (RoH) with H <

1/2, then Cσ is integrable and we have

Cσ (s) = 1−
qZ

〈

F′2
〉

〈

F2
〉

− 〈F〉2
|s|2H + o

(

|s|2H
)

for |s| ≪ 1, (29)

which shows that σt has short-range correlation properties.

If the volatility factor belongs to the class (LoH) with H >

1/2, then Cσ is not integrable,

Cσ (s) =
kZ

〈

F′
〉2

〈

F2
〉

− 〈F〉2
|s|2H−2 + o

(

|s|2H−2
)

for |s| ≫ 1, (30)

which shows that σt has long-range correlation properties.
Moreover, Cσ does not have short-range correlation properties.

If the volatility factor belongs to the class (St), then Cσ does
not have short-range or long-range correlation properties. Its
behavior at zero is Cσ (s) = 1 − O(|s|) and it is integrable. The
proof of the lemma can be found in Garnier and Sølna [12, 13].

4. SCALES

Our goal is to compute the option price defined as the martingale

Mt = E
[

h(XT)|Ft

]

, (31)

where t ≤ T and h is a smooth payoff function with bounded
derivatives apart from a finite set of points where it may have
jump discontinuities in its derivatives. In the general case of
the volatility factor introduced in section 3.1 there is no explicit
expression for this price. However, we will show that we can
identify asymptotic approximations of the price if we exploit
separation in the characteristic time scales associated with the
model. We can identify three time scales:

- the time to maturity

τ = T − t, (32)

- the mean-reversion time of the stochastic volatility τZ ,
- the diffusion time

τσ =
2

σ 2
, (33)

with σ 2 = E[σ 2
t ] = E[F(Zt)

2] or

σ 2 =
〈

F2
〉

=
∫

R

F(σZz)
2p(z)dz. (34)

We discuss next asymptotic characterizations for the option
price depending on the relative magnitudes of these time scales.
These results follow via modifications of arguments presented
in Garnier and Sølna [12–14]. The asymptotic analysis of the
option prices presented there involves the martingale method
which exploits the fact that asset price process is a martingale
and seeks to construct a decomposition that is a martingale plus
a small correction. We shall consider the case when τσ and τ are
of the same order, corresponding to the relative asset fluctuations
being of order one at maturity. The important scaling parameter
in our formulation is τZ/τσ and we consider the two cases when
this is small, respectively large, corresponding to fast, respectively
slow, mean reversion for the volatility process.
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5. OPTION PRICE

We introduce the operator

LBS(σ ) = ∂s +
1

2
σ 2x2∂2x , (35)

that is, the standard Black–Scholes operator with zero interest
rate and constant volatility σ . We also introduce the option price

Q
(0)
s (x; σ ) given by the Black–Scholes formula in the case of zero

interest rate and constant volatility σ (see [1]):

LBS(σ )Q
(0)
s (x; σ ) = 0, s ∈ (0,T), Q

(0)
T (x; σ ) = h(x).

(36)

5.1. Slow Regime
We address the regime where

δ =
τσ

τZ
(37)

is small and the time to maturity τ is of the same order as τσ .
This corresponds to a regime where the volatility factor evolves
on a time scale that is short relative to the time to maturity.
The following proposition revisits Proposition 6.1 in Garnier and
Sølna [12] in the case of a general Volterra process.

Proposition 5.1. When δ is small, if the volatility factor belongs to
one of the three classes and if the volatility factor satisfies (7) for
some H ∈ (0, 1), then the option price (31) is of the form

Mt = Qt(Xt)+ o(δH), (38)

where

Qt(x) = Q
(0)
t (x; σt)+ ptqtφt,T

[

x2∂2xQ
(0)
t (x; σt)

]

+ ρp2t qtQ
(1)
t (x),
(39)

pt = F(Zt)/σ , qt = F′(Zt)/σ , Q
(0)
t (x; σt) is the Black–Scholes

formula (36) with constant volatility σt = σpt , φt,T is the

random component

φt,T = σ 2
E

[

∫ T

t
Zs − Ztds|Ft

]

, (40)

and Q
(1)
t (x) is the correction

Q
(1)
t (x) =

(

x∂x
(

x2∂2xQ
(0)
t (x; σt)

))

DT−t , (41)

with DT−t defined by

DT−t = D(T − t)H+ 3
2 , D =

σ 3σZdZ

(H + 1
2 )(H + 3

2 )τ
H
Z

. (42)

The expansion (52) is in the sense that:

lim sup
δ→0

δ−H sup
t∈[0,T]

E
[

|Mt − Qt(Xt)|2
]
1
2 = 0.

The hypothesis “the volatility factor satisfies (7) for some H ∈
(0, 1)" means that there exist H ∈ (0, 1) and dZ 6= 0 so that
K(t) = dZt

H−1/2
(

1 + o(1)
)

as t → 0. For instance, the standard
(H = 1/2) and fractional (H 6= 1/2) OU processes satisfy this
hypothesis by (25).

The parameter DT−t is of order τ
−3/2
σ τH+3/2τ−H

Z ∼ δH (note

that σ 3 ∼ τ
−3/2
σ ). The random variable φt,T is Gaussian with

mean zero and variance

E
[

φ2
t,T

]

=
σ 4σ 2

Zd
2
ZαH(T − t)2+2H

τ 2HZ (H + 1
2 )

2
+ o(δ2H), (43)

with

αH =
∫ ∞

0

[

(1+ v)H+ 1
2 − vH+ 1

2 −
(

H +
1

2

)

vH− 1
2

]2
dv, (44)

which is positive for any H ∈ (0, 1/2) ∪ (1/2, 1) and is zero for
H = 1/2. This shows that E[φ2

t,T] is of order τ−2
σ τ−2H

Z τ 2+2H ∼
δ2H and φt,T is of order δH . Thus, the two corrective terms in (39)
are of order δH . Finally, we remark that it is possible to replace
pt and qt by p0 and q0 in (39) without changing the order of
magnitude of the remainder in (38). However, it is important to
compute the Black–Scholes price at time t with the volatility σt at
time t as stated in the proposition.

Proof: By following [12], we find that the option price (31) is of
the form

Mt = Q̃t(Xt)+ o(δH), (45)

where

Q̃t(x) = Q̃
(0)
t (x)+ p0q0φ̃t,T

[

x2∂2x Q̃
(0)
t (x)

]

+ ρp20q0Q̃
(1)
t (x), (46)

p0 = F(Z0)/σ , q0 = F′(Z0)/σ , Q̃
(0)
t (x) is given by the Black–

Scholes formula with constant volatility σ0 = σp0: Q̃
(0)
t (x) =

Q
(0)
t (x; σ0), φ̃t,T is the random component

φ̃t,T = σ 2
E

[

∫ T

t
Zs − Z0ds|Ft

]

, (47)

and Q̃
(1)
t (x) is the correction

Q̃
(1)
t (x) =

(

x∂x
(

x2∂2x Q̃
(0)
t (x)

))

DT−t , (48)

with DT−t defined by (42). The random variable φ̃t,T is Gaussian
with mean zero and variance

E
[

φ̃2
t,T

]

=
σ 4σ 2

Zd
2
ZT

2+2H

τ 2HZ (H + 1
2 )

2

∫ ∞

0

[

(

1−
t

T
+ v

)H+ 1
2

− vH+ 1
2

−
(

1−
t

T

) (

H +
1

2

) (

v−
t

T

)H− 1
2

+

]2

dv+ o(δ2H).

(49)
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In fact, it is possible to improve this result in order to get
the proposition. For any σ , the σ -derivative of the solution of

LBS(σ )Q
(0)
s (x; σ ) = 0 with the terminal condition Q

(0)
T (x; σ ) =

h(x) satisfies

LBS(σ )[∂σQ
(0)
s (x; σ )] = −σx2∂2xQ

(0)
s (x; σ ), s ∈ (0,T),

∂σQ
(0)
T (x; σ ) = 0.

Thus, it is of the form:

∂σQ
(0)
t (x; σ ) = σ (T − t)x2∂2xQ

(0)
t (x; σ ).

We then find

Q̃
(0)
t (x) = Q

(0)
t (x; σ0) = Q

(0)
t (x; σt)+ (σ0 − σt)∂σQ

(0)
t (x; σt)

+ o(δH)

= Q
(0)
t (x; σt)+ σ 2ptqt(T − t)x2∂2xQ

(0)
t (x; σt)(Z0 − Zt)

+ o(δH),

Q̃
(1)
t (x) = Q

(1)
t (x)+ o(δH),

which gives the desired result.

As mentioned above, the two corrective terms in (39) are of
order δH . The first one (proportional to φt,T) has mean zero

and Gaussian statistics, the second one (proportional to Q
(1)
t ) is

deterministic.
If the volatility factor is a fOU process with Hurst index

H, then D is given by

D =
σ 3

Ŵ(H + 5
2 )τ

H
Z

, (50)

and the variance of φt,T is

E
[

φ2
t,T

]

=
σ 4αH(T − t)2+2H

τ 2HZ Ŵ(H + 3
2 )

2
+ o(δ2H).

For the standard OU process (H = 1/2, σZ = 1/
√
2, dZ =√

2), we have DT−t = σ 3(T−t)2

2τ
1/2
Z

+ o(
√

δ) and E
[

φ2
t,T

]

= 0 + o(δ)

(because αH = 0). In the standard case [class (St)] the term φt,T

is negligible.
Thus, we have a universal characterization of the price in

this regime of a slow volatility factor. We remark that the price
correction is larger for a rougher volatility factor corresponding
a smaller Hurst index H.

5.2. Fast Regime
We consider the regime where

ε =
τZ

τσ

(51)

is small and the time to maturity τ is of the same order as τσ .
This corresponds to a regime where the volatility factor evolves
on a time scale that is fast relative to the time to maturity. We first
address the case where the volatility factor is standard or rough.
The following proposition is a reformulation of Proposition 1 in
Garnier and Sølna [13].

Proposition 5.2. If the volatility factor belongs to the class (RoH)
with H < 1/2 or to the class (St), then we have

Mt = Qt(Xt)+ o(ε
1
2 ), (52)

where

Qt(x) = Q
(0)
t (x; σ )+ ρQ

(1)
t (x), (53)

Q
(0)
t (x; σ ) is deterministic and given by the Black–Scholes formula

(36) with constant volatility σ , Q
(1)
t (x) is the deterministic

correction

Q
(1)
t (x) =

(

x∂x
(

x2∂2xQ
(0)
t (x; σ )

))

DT−t , DT−t = (T − t)D,
(54)

D is the coefficient defined by

D = σZτ
1
2
Z

∫ ∞

0

[

∫∫

R2
F(σZz)(FF

′)(σZz
′)pCZ(s)(z, z

′)dzdz′
]

K(s)ds,

(55)
pC(z, z

′) is the pdf of the bivariate normal distribution with mean

zero and covariance matrix

(

1 C
C 1

)

.

The expansion (52) is in the sense:

lim
ε→0

ε−
1
2 sup
t∈[0,T]

E
[

|Mt − Qt(Xt)|2
]
1
2 = 0.

The coefficient DT−t is of order τ
−3/2
σ τ

1/2
Z τ ∼ ε1/2 (note that F

and F′ are propositional to σ ∼ τ
−1/2
σ ). Thus, the corrective term

in (53) is of order ε1/2 and deterministic.
If the function F is exponential:

F(z) = σ exp
(

z − σ 2
Z

)

,

then we can get a simplified expression for D (although the
function violates the technical assumption that F should be
bounded):

D = σ 3σZτ
1
2
Z exp

(

−
σ 2
Z

2

)

∫ ∞

0
exp

(

− 2σ 2
ZCZ(s)

)

K(s)ds,

which gives D = σ 3τ
1/2
Z [exp(3/4) − exp(−1/4)] if, additionally,

the volatility factor is a standard OU process.
This proposition shows that the asymptotic expansion of the

option price has the same form as in the mixing case addressed in
Fouque et al. [1, 46].When the stochastic volatility is fast-varying,
its short-range correlation property is not visible to leading order
nor in the first correction. In other words, in the rapid mean
reversion regime, the roughness of the process does not affect
the qualitative form of the price correction. This is in contrast to
the slowly-varying case addressed in the previous section, and in
contrast to the situation where the stochastic volatility has long-
range correlation properties as seen in the following proposition
(which is an extension of Proposition 4.1 in [14]).
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Proposition 5.3. If the volatility factor belongs to the class (LoH)
with H > 1/2, then we have

Mt = Qt(Xt)+ o(ε1−H), (56)

where

Qt(x) = Q
(0)
t (x; σ )+

(

x2∂2xQ
(0)
t (x; σ )

)

φt,T + ρQ
(1)
t (x). (57)

The function Q
(0)
t (x; σ ) is deterministic and given by the Black–

Scholes formula (36) with constant volatility σ . The random
component φt,T is given by

φt,T = E

[1

2

∫ T

t

(

σ 2
s − σ 2

)

ds
∣

∣Ft

]

. (58)

The function Q
(1)
t (x) is the deterministic correction

Q
(1)
t (x) =

(

x∂x
(

x2∂2xQ
(0)
t (x; σ )

))

DT−t , (59)

with DT−t defined by

DT−t = D(T − t)H+ 1
2 , D =

〈F〉
〈

FF′
〉

σZcZτ 1−H
Z

(H + 1
2 )(H − 1

2 )
. (60)

The coefficient DT−t is of order τ
−3/2
σ τ 1−H

Z τH+1/2 ∼ ε1−H (note

that 〈F〉
〈

FF′
〉

is of order σ 3 ∼ τ
−3/2
σ ).

The random variable φt,T has mean zero and variance

E
[

φ2
t,T

]

=
〈

FF′
〉2

σ 2
Zc

2
Zτ 2−2H

Z (T − t)2H

(H − 1
2 )

2

×
( Ŵ(H + 1

2 )
2

Ŵ(2H + 1) sin(πH)
−

1

2H

)

+ o(ε2−2H), (61)

which is of order τ−2
σ τ 2−2H

Z τ 2H ∼ ε2−2H (note that
〈

FF′
〉2

is of order σ 4 ∼ τ−2
σ ). Moreover, after normalization by its

standard deviation, it converges in distribution to a standard
Gaussian random variable when ε goes to 0. Further results on
the correlation structure of φt,T as a non-stationary random field
in (t,T) are given in Garnier and Sølna [14].

The two corrective terms in (57) (proportional to φt,T and

Q
(1)
t ) are of the same order ε1−H . The first one is random, zero-

mean and approximately Gaussian distributed, and the second
one is deterministic.

If the volatility factor is a fOU process with Hurst index
H, then

D =
〈F〉

〈

FF′
〉

τ 1−H
Z

Ŵ(H + 3
2 )

, (62)

and.

E
[

φ2
t,T

]

=
〈

FF′
〉2

τ 2−2H
Z (T − t)2H

×
( 1

Ŵ(2H + 1) sin(πH)
−

1

2HŴ(H + 1
2 )

2

)

+ o(ε2−2H).

(63)

6. IMPLIED VOLATILITY

For a European call option h(x) = (x − K)+ we have from
Equation (1.41) in [1]:

Q
(0)
t (x; σ ) = x8

( 1

σ
√
T − t

log
( x

K

)

+
σ
√
T − t

2

)

−K8

( 1

σ
√
T − t

log
( x

K

)

−
σ
√
T − t

2

)

, (64)

where 8 is the cumulative distribution function of the standard
normal distribution.

In this section, we define the implied volatility as the volatility
that, when used in the constant volatility Black–Scholes pricing
formula, gives the same price as the price approximation in the
considered regime, to the order of the approximation. We give
in the following the expressions for the implied volatility in the
different regimes addressed in the previous section. As we will
see the implied volatility as a function of time to maturity has
fractional behaviors.

6.1. Slow Regime
Proposition 6.1. Under the conditions of Proposition 5.1, the
implied volatility in the context of the European call option is
given by

It = σt + σ

{

qt
φt,T

σ 2(T − t)
+

ρqtσZdZ

(H + 1
2 )(H + 3

2 )τ
H
Z

[pt

2
(T − t)H+ 1

2

+
log(K/Xt)

σ 2pt(T − t)
1
2−H

]

+ o(δH)
}

, (65)

where φt,T is defined by (40) (that does not depend on Xt), pt =
F(Zt)/σ and qt = F′(Zt)/σ .

The two terms proportional to qt in Equation (65) are of order
δH . In the standard case (class (St)), the term φt,T is negligible.
In the general case, the first two terms can be combined and
rewritten as:

σt + σ

{

qt
φt,T

σ 2(T − t)

}

= E

[ 1

T − t

∫ T

t
σ 2
s ds|Ft

]
1
2 + o(δHσ ).

(66)
We can see from Equation (65) that, if H ∈ (0, 1/2), then the
skew of the implied volatility, (∂It/∂Xt), diverges as (T− t)H−1/2

for short time to maturity, as was observed by Alòs et al. [39]
for a fOU process. It also follows that if H ∈ (1/2, 1), then the
skew goes to zero, as was also observed by Alòs et al. [39] for a
fOU process.

6.2. Fast Regime
Proposition 6.2. Under the conditions of Proposition 5.2, the
implied volatility in the context of the European option when the
volatility factor belongs to the class (St) or (RoH) is given by

It = σ

{

1+
ρD

σ 2

[1

2
+

log
(

K
Xt

)

σ 2(T − t)

]

+ o(ε
1
2 )

}

, (67)

where D is defined by (55).
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The corrective term (proportional to D) is of order ε1/2.
The expression (67) obtained for the class (RoH) of rough
stochastic volatility models has the same form as the expression
obtained in [[46], Equation (5.55)] with a stochastic volatility
that is an ordinary OU process, that is, a Markov process with
exponentially decaying correlations. This proposition shows that
a rough volatility does not change the form of the implied
volatility in the fast mean reversion regime compared to the
standard Markov case.

Proposition 6.3. Under the conditions of Proposition 5.3, the
implied volatility in the context of the European option when the
volatility factor belongs to the class (LoH) with H ∈ (1/2, 1) is
given by

It = σ

{

1+
φt,T

σ 2(T − t)
+

ρD

σ 2

[1

2
(T − t)H− 1

2

+ log

(

K

Xt

)

(T − t)H− 3
2

σ 2

]

+ o(ε1−H)
}

, (68)

where φt,T is defined by (58) (that does not depend on Xt) and D is
defined by (60).

The two corrective terms (the one proportional to φt,T and the
one proportional toD) are of order ε1−H . The first two terms can
be combined and rewritten as:

σ

{

1+
φt,T

σ 2(T − t)

}

= E

[ 1

T − t

∫ T

t
σ 2
s ds|Ft

]
1
2 + o(ε1−Hσ ).

(69)
Note that the skew of the implied volatility goes to zero for
long time to maturity, but the value of the implied volatility (at-
the-money or out-of-the-money) diverges as (T − t)H−1/2. This
behavior is in dramatic contrast to the one in the standard and
rough cases described in Proposition 6.2.

7. REMARKS ON CALIBRATION

In the fast regime case, with H ≤ 1/2, the parameters ρD, σ can
be calibrated from the observations of a few liquid option prices
for different strikes and time to maturities via (67). We refer to
Fouque et al. [1] for an illustration of such calibration.

In the fast regime case, with H > 1/2, the parameters
ρD, σ and H can be calibrated from the observations of a set
of liquid options by (68) and by using the fact that φt,T has
mean zero. Note also that when H > 1/2, the correlation
function of the Gaussian random component φt,T/σ is known
and depends only onH (see [14]), so that it is possible to estimate
the implied volatility surface from the observations by Gaussian
conditioning. We remark that the random component φt,T/σ

explains the random fluctuations that are sometimes seen for the
at-the-money implied volatility as function of time to maturity.
Moreover, the fractional dependence on time to maturity is
characteristic of implied volatility data (see [1]).

In the slow regime case the form of the implied volatility is
given by (65) for the three classes (RoH), (St) and (LoH). The
calibration procedure then may not seem so simple because σt ,
pt , qt , and φt,T depend on Ft . However, this reflects the common

context that models are typically recalibrated as new data become
available and that market parameters exhibit modulation on a
short time scale relative to say a tick-by-tick scale. What we have
done here is to present a consistent multiscale framework where
the slow modulation parameters reflect the local stationarity of
the market and of the implied surface and how to still carry
out a consistent calibration. To this effect note that to the
order of the approximation we can replace pt , qt by p0, q0
in (65) giving a fixed skew in log-moneyness log(K/X). It is
however important to capture the at-the-money fluctuations of
the implied volatility as articulated by σt and φt,T . Thus, we have
provided a framework where the recalibration can be carried out
by differentiating the local modulation parameters σt and φt,T

and the global structural parameters that determine the implied
volatility surface.

It is noteworthy that the maturity modulation in the log-
moneyness term log(K/X) is qualitatively different in the slow
and fast cases and in fact can be used to distinguish these
regimes. We remark that modeling with a two-factor stochastic
volatility model (with one slow factor and one fast factor) may
be appropriate.

8. CONCLUSIONS

We have considered a class of fractional stochastic volatility
models. The stochastic volatility process is modeled as a
smooth deterministic function of a stationary fractional Gaussian
process, a Volterra process. The Volterra process can be
expressed as a moving average of a standard Brownian motion.
Depending on the properties of the integration kernel in the
moving average representation we identify and study three
cases. First, the rough (RoH) case corresponding to rough
paths for the Volterrra process. In this case the autocorrelation
function of the Volterra process decays faster than linearly
at zero. Second, the standard or classic (St) case with
autocorrelation function that decays linearly at zero and is
integrable. Third, the long-range (LoH) case characterized by
slowly decaying correlations at infinity so that the associated
autocorrelation function is not integrable. The two main
asymptotic regimes we consider is when the mean reversion
time of the stochastic volatility is short, respectively long,
relative to the diffusion time scale. Here, the mean reversion
time corresponds essentially to the time scale at which the
volatility process decorrelates, while the characteristic diffusion
time is essentially the inverse of the mean square volatility.
The asymptotic analysis leads to simple parametric models
for the implied volatility. The main qualitative insight is that
in the rough case the behavior of the implied volatility is
as in the classic Markov case corresponding to the (St) class
with rapid mean reversion. However, both the rough (RoH)
case with slow mean reversion and the long-range (LoH) case
with slow or rapid mean reversion are qualitatively different.
Then the power law tail in the volatility correlations leads to
a price approximation that depends on the time to maturity
to a fractional power determined by the power law of the
autocorrelation function. We show here that in the short-range
case the rough behavior gives rise to an implied volatility that
diverges as the time to maturity goes to zero (as well as its
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skew), moreover, that in the long-range case the slow decay in
the correlations gives a term structure of the implied volatility
that diverges as the time to maturity goes to infinity (but its skew
goes to zero) (see also [13, 14]).

From the point of view of calibration the fact that the
fractional stochastic volatility produces, in certain regimes, a
fractional term structure (fractional behavior in time to maturity)
for the implied volatility is important. This is indeed a behavior
that is seen in market-data [47] so that having a modeling
framework that produces such behavior is desirable.

We finally remark that here we have only considered
application to option pricing. There are other applications of

modeling with fractional short- and long-range processes, for
instance to hedging as in Garnier and Sølna [18] and to optimal
portfolio construction as in Fouque and Hu [15–17]. It is also
possible to discuss other asymptotic regimes with small volatility
fluctuations as in Garnier and Sølna [12] and short time to
maturity as in Alòs et al. [39].
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