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A plethora of complex dynamical systems from disordered media to biological systems

exhibit mathematical characteristics (e.g., long-range dependence, self-similar and

power law magnitude increments) that are well-fitted by fractional partial differential

equations (PDEs). For instance, some biological systems displaying an anomalous

diffusion behavior, which is characterized by a non-linear mean-square displacement

relation, can be mathematically described by fractional PDEs. In general, the PDEs

represent various physical laws or rules governing complex dynamical systems. Since

prior knowledge about the mathematical equations describing complex dynamical

systems in biology, healthcare, disaster mitigation, transportation, or environmental

sciences may not be available, we aim to provide algorithmic strategies to discover the

integer or fractional PDEs and their parameters from system’s evolution data. Toward

deciphering non-trivial mechanisms driving a complex system, we propose a data-driven

approach that estimates the parameters of a fractional PDE model. We study the

space-time fractional diffusion model that describes a complex stochastic process,

where the magnitude and the time increments are stable processes. Starting from limited

time-series data recorded while the system is evolving, we develop a fractional-order

moments-based approach to determine the parameters of a generalized fractional PDE.

We formulate two optimization problems to allow us to estimate the arguments of the

fractional PDE. Employing extensive simulation studies, we show that the proposed

approach is effective at retrieving the relevant parameters of the space-time fractional

PDE. The presented mathematical approach can be further enhanced and generalized

to include additional operators that may help to identify the dominant rule governing the

measurements or to determine the degree to which multiple physical laws contribute to

the observed dynamics.

Keywords: anomalous diffusion, fractional derivative, Fourier transform, Laplace transform, regression

1. INTRODUCTION

Technological advances ranging from an impressive improvement in the sensing and
computational resources to the enhancement in data storage play a prominent role in offering
researchers’ new directions to investigate unknown or poorly understood phenomena and boost
numerous scientific areas (e.g., neuroscience, synthetic and system biology, finance, anthropology,
and political sciences). This impact on all sciences is likely to persist with the booming advances
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in data science (DS), machine learning (ML), and artificial
intelligence (AI) [1–4]. Apart from the impressive contribution of
AI in pattern recognition (e.g., images) and language processing,
nowadays AI and data science are contributing to several
developing scientific fields (e.g., the discovery of unwanted effects
of drugs and drug repositioning [5, 6]). For example, one can
consider the problem of “Lamisil” drug used for the treatment
of skin infections, which caused deaths and other liver reactions
after being on the market for years. Although it was found that
the drug is behind the TBF-A generation, which has toxicological
effects, it was not possible to explain how the drug boosts the
TBF-A formation. In 2018, a deep learning-based investigation
identified the pathways leading to TBF-A formation [5]. The
process of TBF-A formation could not be identified before
launching the product on the market due to its complicated
mechanism and limited information on its manifestations. Such
a discovery can have a primordial role in drug discovery and
development by pharmaceutical industries and startups working
in drug discovery (e.g., Kebotix, Deep Genomics).

Furthermore, AI has been recently considered as a useful
analysis and discovery tool in medicine and healthcare. For
instance, computer scientists and radiologists incorporated ML
and AI techniques into the radiological examination in order
to provide better results in medical imaging [7] and to detect
early signs of diseases. Indeed, convolutional neural networks
based approaches enabled the analysis of three dimensional MRI
images and the identification of symptoms of Alzheimer’s disease
[8]. Similarly, AI-based investigation provided new approaches
for quantifying the risk of autism [9]. It is also worth mentioning
that AI has also been introduced in ophthalmology [10]. Beyond
the medical field, reinforcement learning has been recently
used in meteorology in order to study the climate [11, 12].
Consequently, we are witnessing a paradigm shift in mining
and understanding real-world problems, as a variety of late
innovations are based on applying ML algorithms to analyze and
characterize high-dimensional experimental data.

Despite the tremendous boost that is provided by the ML and
AI for the analysis of static data through identifying the statistical
interdependence between components of a system of interest,
there is little to say about analyzing dynamical processes from
big data and uncertainty quantification for large-scale complex
systems. Specifically, ML has a limiting ability in deciphering the
physical driving laws and governing equations frommulti-modal
heterogeneous, scarce, and/or noisy time-series data associated
with complex systems exhibiting multi-scale and multi-physics
spatiotemporal evolution. These multi-scale and multi-physics
spatiotemporal characteristics that occur in physics, biology,
chemistry, neuroscience, and even geology, are usually encoded
through (fractional or integer order) partial differential equations
(PDEs) with possibly uncertain parameters. These PDEs are
derived from conservation laws on energy, momentum, or
electric charge (e.g., diffusion equation, Maxwell’s equations,
Navier-Stokes equations, Schrodinger equations). However, a
plethora of complex systems from biology, neuroscience, or
finance have numerous hidden interaction mechanisms, and the
derivation of the PDEs describing their evolution is unknown. In
the big data era, we witness new opportunities for data-driven

discoveries of potentially new physical phenomena and new
physics laws (or rules). Consequently, one may ask the following
fundamental question: Can we learn a PDE model from a
given set of time-series measurements and perform accurate,
efficient, and robust predictions using this learned model?
This question has motivated researchers to develop methods
for estimating PDE parameters using numerical solutions of
PDEs [13, 14] (which requires careful parameterizations and
high computational cost), Bayesian approaches [15], and a two-
state approach [16–19] where the parameters of the PDEs are
estimated via least squares. However, exploiting the higher-order
statistics of the measurements, which can characterize the rare
events for a robust understanding of complex systems, and
determining whether fractional or integer order PDEs together
with their corresponding parameters govern the observations,
has not been addressed.

Diffusion is one of the fundamental mechanisms used for
analyzing the transport of particles, and a common example of
a diffusion process is the Brownian motion. Chaotic motion of a
particle characterizes the latter process, and it can be modeled by
a random walk such that the mean square displacement follows
the diffusing scaling < (1X)2 >∼ t (where < . > designates
the mean). Furthermore, diffusion is a principal concept that
explains many natural and scientific/technological phenomena
(e.g., particles motion [20], DNA and cellular processing [21–24],
microbial communities [25], brain activity [26], physiological
complexity and cyber-physical systems modeling [27–29]),
neuron spikes [30]. The focus on analyzing complex systems
led to studying anomalous diffusion [31–43] to decipher
complex system properties (e.g., long-range memory, higher-
order correlations, ergodicity breakingmeasured as a discrepancy
between the long time-averaged mean squared displacement
and the ensemble-averaged mean squared displacement). The
anomalous diffusion has been shown to be able to describe
complex fluid dynamics [44, 45], biological systems [46–48],
transport [49], dynamics in fractal structures [50–52], and
economics [53]. Contrary to random walks processes describing
classical diffusion (e.g., Brownian motion), the particle possesses
an internal memory that leads to a non-stationary motion, where
the mean square displacement is heavy-tailed < (1X)2 >∼ tβ

(β is a parameter that is related to the memory of a particle).
The principal purpose for studying anomalous diffusion

is to take into account complex/non-trivial behavior of the
motion of particles usually found in transport processes in
disordered and complex systems. From a phenomenological
perspective, the anomalous diffusion can be better understood
by recalling the assumptions made by Einstein [20] on defining
the normal diffusion: the motion of the Brownian particles
are independent (valid for small concentrations), there exist a
small time scale during which the particle displacements are
statistically independent (i.e., a Markovian behavior), and the
particle displacements at these time scales correspond to a
mean free path distributed symmetrically in positive or negative
directions (i.e., a symmetric Gaussian statistical behavior). In
contrast, anomalous diffusion generalizes the normal diffusion
framework by removing one or more of such requirements on
either Markovian or Gaussian behavior [42, 43]. In the literature,
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there are many methods used to analyze anomalous diffusion,
mainly generalized Langevin equation [54, 55], thermodynamics
[56, 57] and in this article, we concentrate our analysis on the
discussion of incorporating fractional derivatives into PDEs to
model anomalous diffusion. In fact, themathematical description
of anomalous diffusion involves a power law expression of
the mean square displacement as a function of time. It often
relies on fractional-order derivatives acting on either space or
time components of a PDE [29, 42, 43]. Indeed, modeling
anomalous diffusion via fractional diffusion equation (i.e., PDE)
can be provided by the master equation for continuous time
random walk, and the solutions of the fractional diffusion
equation can be interpreted as spatial probability densities
evolving in time, related to self-similar stochastic process
encoding the long-range memory property [58]. For instance,
the anomalous diffusion of a particle subject to an external non-
linear force and a thermal bath is described in Metzler et al.
[59] through a fractional Fokker-Planck equation. Here, the time-
fractional Riemann-Liouville derivative models the long-range
memory effects characteristic to anomalous diffusion in random
environments and chaotic Hamiltonian systems [59]. More
generally, the anomalous diffusion has been successfully modeled
by a space-time fractional diffusion equation that assumes
that the process has memory (i.e., time-fractional derivative)
as well as being non-local (space-fractional derivative). More
recently, a comprehensive analysis of the higher-order moments
associated with the amplitude fluctuations of the time-averaged
mean square displacement for an anomalous diffusion model
demonstrated that the skewness and kurtosis can improve the
estimation of the anomalous diffusion exponent and can help at
classifying the anomalous stochastic processes [60].

Despite the significant body of work on anomalous diffusion
models, finding the exact parameters of the corresponding
governing PDE is not a trivial task. In this context, given a
spatiotemporal dataset, we aim to develop an efficient algorithm
for estimating the parameters of the generalized fractional-order
PDE thatmodels the dynamics of the process under investigation.
Consequently, by identifying these parameters, one can also
investigate the physical rules modeled by the PDE. In the results
section, we analyze two types of PDEs and discuss algorithmic
approaches to determine their parameters from the time-series
data. We also provide a simulation study where we verify
the correctness and effectiveness of the proposed algorithmic
approaches on deriving the exact parameters using synthetic
trajectories generated from the PDE model.

2. DATA-DRIVEN APPROACH FOR
ANALYZING ANOMALOUS DIFFUSION

2.1. Space-Time Fractional Diffusion
Equation
The space-time fractional diffusion equation has been proposed
in previous works as a mathematical model to analyze anomalous
diffusion [34, 61–65]. In a nutshell, the space-time fractional
diffusion equation in (1) consists of a fractional Riesz-Feller
derivative of the order α > 0 (space-derivative) that encodes

the space variations and a fractional Caputo derivative of the
order β > 0 (time-derivative) that measures the time variations.
To better generalize, we also consider the skewness factor in the
space derivative of the diffusion equation. Hence, the space-time
fractional diffusion equation is defined as

tD
β
∗ u(x, t) = D× xD

α
θ u(x, t), ∀x ∈ R,∀t ∈ R+, (1)

where the operators xD
α
θ and tD

β
∗ designate the fractional Riesz-

Feller derivative of order α and skewness θ [66], and the Caputo
time-fractional derivative of order β [67], respectively1. The
parameter D denotes the generalized diffusion coefficient. The
parameters α,β and θ satisfy the following constraints, 0 < α ≤
2, 0 < β ≤ 1 and |θ | ≤ min{α, 2− α}.

Given a set of time-series trajectories that record the evolution
of particles or agents that exhibits anomalous diffusion modeled
by Equation (1), without prior knowledge about the parameters
of the space-time fractional diffusion equation, our goal is to
use the dataset available to retrieve the exact fractional PDE that
generates the given time-series. Toward this end, we develop a
mathematical framework where the parameter and mathematical
(operator) expression identification task is defined as a regression
problem (Figure 1). Indeed, the regression is formulated as a
least squares problem, where the minimization involves the
theoretical and the empirical statistical (higher order) moments
(i.e., specifically the absolute moments). The choice of the
statistical moments for performing the regression is convenient
because we could derive its closed form expressions just from the
generalized fractional PDE given in Equation (1). For the given
time-series data, Xn(t), 1 ≤ n ≤ N, where N denotes the total
number of trajectories, the time empirical moments are defined
as follows

Mδ
t =

1

N

N∑

n=1
|Xn(t)|δ , Sδ

t =
1

N

N∑

n=1
Xn(t)

〈δ〉, (2)

where x〈δ〉 denotes the signed absolute δ-th power of x and x〈δ〉 =
|x|δsign(x). The time-dependent absolute moment of the data
generated according to the fractional PDE in (1) is given by the
following result.

Proposition 1. The time-dependent absolute moment of the order
δ with 0 < δ < α is written as follows

E[|X(t)|δ] = tδ
β
α D

δ
α ×

Ŵ(1− δ
α
)Ŵ(1+ δ

α
) cos( δπθ

2α )

Ŵ(1− δ)Ŵ(1+ δ
β
α
) cos( δπ

2 )
, (3)

where Ŵ(·) designates the gamma function.

To find the parameters of the fractional PDE in (1), we
rely on analyzing the higher order moments and minimize
the quadratic error between the theoretical and the empirical
absolute higher order moments. However, due to the non-
linear non-convex expression stated in the Equation (3), such a
regression problem is non-trivial and it is non-trivial to provide

1The two operators are clearly defined in the Supplementary Material.
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FIGURE 1 | Flowchart showing an AI architecture used to uncover hidden patterns governing complex phenomena: a data-driven based approach to estimate the

parameters of the space-time fractional diffusion equation from spatiotemporal dynamics.

the theoretical guarantees about the convergence of a multi-
dimensional optimization algorithm used to solve the problem
in one-shot. To tackle the non-convexity, we aim to approach the
parameters estimation via multi-step optimization. For obtaining
additional information from the data, we also derive the signed
absolute as in the following result.

Proposition 2. The time-dependent signed absolute moment of
the order δ with 0 < δ < α is written as follows

E[X(t)〈δ〉] = −tδ
β
α D

δ
α ×

Ŵ(1− δ
α
)Ŵ(1+ δ

α
) sin( δπθ

2α )

Ŵ(1+ δ
β
α
)Ŵ(1− δ) sin( δπ

2 )
. (4)

We refer the reader to the Supplementary Materials for the
proofs of the above Propositions. Using the above results, the
estimation of parameters is detailed in the following section.

2.2. Parameter Estimation
Absolute Moments Approach: Starting from a dataset
containing N independent trajectories (realizations of the
Equation (1) with unknown parameters) sampled uniformly at
times {t1, t2, · · · , tL}, we aim at estimating the actual parameters
of the Equation (1) via a moments-based approach, i.e.,
determining the parameters using empirical moments and the
theoretical expressions. Thus, the proposed scheme to find the
parameters is mainly a two-step approach, regression over time
on one hand and over space on the other hand. The method is
summarized as follows.

For a given order δ, the log of absolute moments in Equation
(3) varies as

log(E[|X(t)|δ]) = δ
β

α
log(t)+ C1, (5)

where C1 does not depend on t. Using the estimated empirical
moments from Equation (2), we replace the theoretical moments
with the empirical values in the Equation (5). The parameter ratio
β/α can then be estimated by performing linear regression of
log(tl) vs. log(M

δ
tl
) using a total of L points (i.e., l = 1, 2, · · · , L). It

is worthwhile to note that the precision in estimation of β/α can
be improved upon using multiple values of moment exponent δ

for increasing the total diverse points in linear regression. For
example, a set 1 = {δ1, δ2, . . . , δK} can be used for having K × L
diverse points for linear regression by repeating the Equation (5)
with different δk. Hence, we can make a trade-off between space
and time, i.e., enlarging the cardinality of 1 when the available
time-series are short, in other words when L is small.

Next, we use the results of Proposition 1 and 2 to get the ratio
of E[|X(t)|δ] and E[X(t)〈δ〉] as the following ratio r

r = E[X(t)〈δ〉]

E[|X(t)|δ] = −
tan(πδθ

2α )

tan(πδ
2 )

.

Upon replacing the theoretical moments with the ones derived
in Equation (2) we can invert the tangent function to have the
ratio θ/α. In addition, although the ratio r is independent of time
t, the empirical ratio of the data will possibly not be a constant
across time. We therefore, replace r with time average of the

ratio of Sδ
tl
andMδ

tl
as Sδ

tl
/Mδ

tl
. From section 2.1, we know that the

parameter θ is constrained as |θ | ≤ min(α, 2 − α), therefore, we
have |θ/α| ≤ 1. Next, we define the following function

wL(x) =





−1 x < −1
x −1 ≤ x ≤ 1

1 x > 1

.
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Finally, the ratio of parameters θ and α can now be written as

θ

α
= wL


− 2

πδ
arctan


tan

(
πδ

2

)(
Sδ
tl

Mδ
tl

)


 . (6)

As argued before, to improve the precision of the estimation, we
can add diversity by having a set of moment exponents 1 =
{δ1, δ2, . . . , δK}. For each δk ∈ 1 (where k = 1, 2, · · · ,K), we use
the Equation (6) to obtain (̂θ/α)k, and finally obtain the estimated

ratio of parameters as (̂θ/α) = 1
K

∑K
k=1 (̂θ/α)k.

The absolute moments of order δ from Proposition 1 can be
re-written as follows

E[|X(t)|δ]
tδ

β
α

= D
δ
α ×

Ŵ(1− δ
α
)Ŵ(1+ δ

α
) cos( δπθ

2α )

Ŵ(1− δ)Ŵ(1+ δ
β
α
) cos( δπ

2 )

= D
δ
α ×

πδ
α

sin(πδ
α
)
×

cos(πδθ
2α )

Ŵ(1− δ)Ŵ(1+ δβ
α
) cos(πδ

2 )
.

Therefore, for the given value of the order δ = δk, the estimation
of α and diffusion coefficient D can be written as the following
non-linear equation

Ck =
Ŵ(1− δk)Ŵ(1+ δkβ

α
) cos(πδk

2 )

cos(πδkθ
2α )

× E[|X(t)|δk]
tδk

β
α

= D
δk
α ×

πδk
α

sin(πδk
α
)
. (7)

To solve the non-linear equation in (7) for α and D, we use
non-linear least squares method (trust region reflective method).
The input variables to the non-linear optimization are the values
of order δ ∈ 1, where 1 = {δ1, δ2, . . . , δK}. Formally, the
optimization problem is written as follows.

{D̂, α̂} = argmin
α,D

K∑

k=1

∣∣∣D
δk
α ×

δkπ
α

sin( δkπ
α
)
− Ck

∣∣∣
2
. (8)

We note that the values of Ck can be efficiently estimated by

first performing the linear regression of tδ
β
α vs E[|X(t)|δ] with

the condition of zero intercept, and then substituting the ratio
(slope of the linear regression) in Equation (7). The optimization
problem in (8) is non-convex, therefore, the global optimum
solution is not guaranteed by the solvers. Note that, in some
scenarios, we may have a prior knowledge about boundaries of
the parameter α (i.e., αmin ≤ α ≤ αmax). Thus, we solve the
constrained optimization problem.

Finally, the values of β and θ can be estimated upon estimating
α, as we already have the ratios β/α and θ/α from Equation
(5) and Equation (6), respectively. The approach described is
summarized as Algorithm 1.

Remark: Note that for α 6= 2, when the order δ is close to
the boundary values, the theoretical absolute moment goes to
+∞. However, the empirical one is finite, so in order to have
a small error associated to the estimated parameters, we choose

the order δ to be far enough from the end points of allowed
region. Notice that, the value of α is unknownwhile the condition
−min{α, 1} < ℜ(δ) < α is dependent of it, so assuming
an αmin as lower bound for α is rational. We note that the
Algorithm 1 is dependent upon the solution of non-linear non-
convex optimization problem in (8), and therefore, convergence
to the global solution is not guaranteed. Also, we need to provide
an input set 1 such that the absolute and signed moments are
computable for unknown α. The choice of 1 has to be made by
having some idea about lower bound of the α parameter. To take
care of these two issues together, we next present an alternative
approach in which we do not require non-linear optimization as
well as do not require to have the knowledge of 1 set.

Log AbsoluteMoments Approach: In this subsection, we rely
on the moments of log absolute values of the trajectories. Similar
to absolute moments with order δ, the log absolute moments can
be computed as we present in the following results.

Proposition 3. The time-dependent expected log absolute value of
X(t) is written as follows

E[log |X(t)|] = β

α
log(t)+ log(D)

α
+ γ

(
β

α
− 1

)
, (9)

where γ is the Euler-Mascheroni constant.

Next, the variance of the log absolute values of the trajectories can
be written as the following results.

Proposition 4. The variance of log absolute value of X(t) is
written as follows

var(log |X(t)|) = π2

6

(
1

α2
+ 1

2

)
−
(

πθ

2α

)2

. (10)

It is interesting to note that the variance is independent of time
as well as a function of α and θ/α. We exploit this feature of
the variance to obtain an estimate of the α with the ratio θ/α

known. Hence, the need for performing non-linear optimization
in Algorithm 1 is omitted. We also write the second moment of
the log absolute values in the following result.

Proposition 5. The time-dependent expected square of log
absolute value of X(t) is written as follows

E[(log |X(t)|)2] = β2

α2
log2(t)+ 2

βγ

α

(
β

α
− 1

)
log(t)+ c, (11)

where c = π2

6

(
1
α2 + 1

2

)
−
(

πθ
2α

)2 +
(
log(D)

α
+ γ

(
β
α
− 1

))2
+

π2

6α2 (1− β2), and γ is the Euler-Mascheroni constant.

The proof of the Propositions 3, 4, and 5 are provided in
the Supplementary Materials. Using the above results for log
absolute values, we now present the second approach to estimate
the parameters of the space-time fractional PDE in (1).

We proceed similarly to the first approach of the δ order
absolute moments, however, now equating the theoretical and
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Algorithm 1: | Space-Time Fractional Diffusion: Parameters
Estimation
Input: Time-series data {Xn(tl); 1 ≤ n ≤ N, 1 ≤ l ≤ L}, order δ,
1 = {δ1, δ2, · · · , δK}
Output: Parameters: α,β , θ and D

1: for l = 1, 2, · · · , L do

2: Calculate the empirical absolute and signed moments Mδ
tl

and Sδ
tl

⊲ Eq.2
3: end for

4:

(̂
β
α

)
← m1

δ
, m1 being slope of linear regression log(t) vs

log(Mδ
t )

5: Get the estimate
(̂

θ
α

)
⊲ Eq.6

6: for k = 1, 2, · · · ,K do

7: Calculate the empirical absolute momentsM
δk
tl
, ∀l ⊲ Eq.2

8: m2 ← slope of linear regression t
δk

(̂
β
α

)

vs M
δk
t with zero

intercept

9: Ck ← m2.
Ŵ

(
1+δk

(̂
β
α

))
Ŵ(1−δk) cos

(
πδk
2

)

cos

(
πδk
2

(̂
θ
α

)) ⊲ Eq. 3

10: end for

11: Find α̂, D̂ ← argmin
α,D

K∑
k=1

∣∣∣D
δk
α ×

δkπ

α

sin(
δkπ

α
)
− Ck

∣∣∣
2
: non-linear

regression over space (sinc inversion)
12: Calculate β̂ , θ̂ .

empirical expressions of the log absolute moments. The empirical
log absolute moments are written as

L
(1)
t =

1

N

N∑

n=1
log |Xn(t)|,

L
(2)
t =

1

N

N∑

n=1
log |Xn(t)|2,

var(log |X(t)|) = 1

N − 1

N∑

n=1

(
log |Xn(t)| − L

(1)
t

)2
. (12)

The parameter ratio β/α is estimated by performing the linear

regression of log(t) vs L(1)t . The slope of the regression output is

the estimated ratio (̂β/α). Next, the ratio of the parameters θ and
α is estimated using the same approach as described previously
in Equation (6).

We note that upon having an estimate of the parameter ratio
θ̂/α, the variance is one-to-one function of α since α ≥ 0.
Therefore, on substituting the value of θ̂/α in Equation (10)
we compute the value of α̂. Finally, with α̂ and β̂/α known,
the value of diffusion coefficient is estimated from the intercept

of the linear regression of log(t) vs L
(1)
t as D̂. The above

described approach is summarized as an algorithmic strategy in
Algorithm 2.

Algorithm 2: | Space-Time Fractional Diffusion: Parameters
Estimation
Input: Time-series data {Xn(tl); 1 ≤ n ≤ N, 1 ≤ l ≤ L}, order δ

Output: Parameters: α,β , θ and D

1: for l = 1, 2, · · · , L do

2: Calculate the empirical absolute and signed moment Mδ
tl

and Sδ
tl

⊲ Eq.2
3: Calculate log absolute moments L(1)t ⊲ Eq.12
4: end for

5:

(̂
β
α

)
←m, (m, c) being (slope, intercept) of linear regression

L
(1)
t vs log(t)

6: Get the estimate
(̂

θ
α

)
⊲ Eq.6

7: Calculate empirical variance of log absolute values
var(log(|X(t)|)) as σ 2 ⊲ Eq.12

8: α̂←
(
σ 2 6

π2 − 1
2

)− 1
2

9: D̂← exp

{
α̂

(
c− γ

((̂
β
α

)
− 1

))}
⊲ Eq.3

10: Calculate β̂ , θ̂ .

It should be noted that the approach utilizing log absolute
moments does not require a predefined set of order values 1. In
addition, this does not suffer from the convergence issues as there
is no non-linear non-convex optimization involved.

Note: The estimated parameters in both algorithms are not
guaranteed to be optimal. For example, it is not straightforward
to guarantee maximum likelihood sense as solving maximum
likelihood involves solution to non-convex problem.We evaluate
the efficiency of the both algorithms in the following section.

3. EXPERIMENTAL RESULTS

As we described previously, both algorithms depend mainly
on the statistical absolute moments, statistical signed absolute
moments and the expected log absolute value of the process
X(t). For this reason, we first start by validating the theoretical
expressions derived in Equations (3), (4) and (9). We consider
different scenarios (normal diffusion equation, neutral diffusion
equation [68–71], space diffusion equation [71], and time
diffusion equation [71]). In these experiments, we generate
synthetic data corresponding to N = 100 trajectories simulated
according to the diffusion model under study with a generalized
diffusion coefficient D = 1. Note that the data generation
procedure is presented in details in the Supplementary Material.
In Figure 2, we present panel of 4 × 3 plots where we
refer by a row the scenario considered (normal, time, space,
neutral diffusion) and we plot the statistical absolute moments,
statistical signed absolute moments and the expected log absolute
value of the process X(t) for an order δ = 0.001 vs. time
in the columns. The signed moment deviates a little from
the theoretical expression for some scenarios, due to lack of
sufficient samples. For the particular case of Figure 2E, we
observe that there is nearly perfect match with the theoretical
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FIGURE 2 | The time-dependent theoretical and empirical absolute moments and signed absolute moments of order δ = 0.001, the time-dependent theoretical and

empirical expected log absolute for the following four types of diffusion models: (A–C) Normal diffusion equation, (D–F) Neutral diffusion equation, (G–I) Space

fractional diffusion equation, (J–L) Time fractional diffusion equation.

expression. The reason being, in this case, the parameters α

= θ , hence the trajectories are generated from a negatively
skewed alpha-stable distribution, therefore X(t) ≤0 ∀t. We note
that a similar situation happens when we have the parameters

α = −θ . In this case, we have a positive skewed alpha
distribution, and therefore, X(t) ≥ 0∀t. In all scenarios, we can
observe that the empirical statistical moments match perfectly
the theoretical ones in all scenarios. This result confirms our
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FIGURE 3 | Determining the parameters of the space-time fractional diffusion via the two proposed algorithms while varying the number of trajectories and the

generalized diffusion coefficient D = 1. The dotted line indicate 2% error tube around the original parameter value in the red: (A–D) Normal diffusion equation

(α = 2,β = 1, θ = 0), (E–H) Neutral diffusion equation (α = 0.5,β = 0.5, θ = 0.5), (I–L) Space fractional diffusion equation (α = 0.5,β = 1, θ = 0.25), (M–P) Time

fractional diffusion equation (α = 2,β = 0.5, θ = 0).

theoretical derivations and motivates us to move forward with
this approach.

3.1. Parameters Estimation of Synthetic
Data
In this experiment, we validate the proposed approach using
artificially generated spatiotemporal data according to the PDE
model presented in Equation (1). More precisely, we use the

above-mentioned schemes (Algorithm 1 and Algorithm 2) to
retrieve the parameters (α,β , θ and D) used during the data
generation step. Figures 3–5 summarize several experiments
done for different diffusion models (classical, neutral, space,
and time diffusion), where we assume a set of combination of
α,β and θ parameters for a generalized diffusion coefficient
D = 1, 2 and D = 5, respectively. In each figure we present
a panel of 4 × 4 different plots where a row represents the
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FIGURE 4 | Determining the parameters of the space-time fractional diffusion via the two proposed algorithms while varying the number of trajectories and the

generalized diffusion coefficient D = 2. The dotted line indicate 2% error tube around the original parameter value in the red: (A–D) Normal diffusion equation

(α = 2,β = 1, θ = 0), (E–H) Neutral diffusion equation (α = 0.5,β = 0.5, θ = 0.5), (I–L) Space fractional diffusion equation (α = 0.5,β = 1, θ = 0.25), (M–P) Time

fractional diffusion equation (α = 2,β = 0.5, θ = 0).

type of diffusion considered and columns 1, 2, 3 and 4 designate
the parameters α,β , θ and D, respectively. In each of the sub-
figure, we plot the estimated parameter using both algorithms
(blue line for Algorithm 1 and the black line for Algorithm 2)
vs. the number of trajectories considered during the estimation
process. We also plot the true value as a red line, and a narrow

interval around the true value using black dashed lines. The
presented blue and gray shaded regions represent the standard
deviation for the estimated parameters associated to Algorithm
1 and Algorithm 2, respectively. All sub-figures in Figures 3–5
show that the proposed schemes are doing well in all scenarios
where we are able to retrieve the exact set of parameters α, β , θ
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FIGURE 5 | Determining the parameters of the space-time fractional diffusion via the two proposed algorithms while varying the number of trajectories and the

generalized diffusion coefficient D = 5. The dotted line indicate 2% error tube around the original parameter value in the red: (A–D) Normal diffusion equation

(α = 2,β = 1, θ = 0), (E–H) Neutral diffusion equation (α = 0.5,β = 0.5, θ = 0.5), (I–L) Space fractional diffusion equation (α = 0.5,β = 1, θ = 0.25), (M–P) Time

fractional diffusion equation (α = 2,β = 0.5, θ = 0).

and D with a small/negligible error2. Also, we can see how the
standard deviation of the estimated parameters decreases as the
number of trajectories increases. Furthermore, we can remark
that Algorithm 2 is performing slightly better than Algorithm 1

2Additional simulations for other scenarios are presented in the
Supplementary Material.

in terms of rate of convergence. Although the variance is quite
high when fewer trajectories are considered, we remark that in
some scenarios we can get good estimates of the parameters even
with reduced number of trajectories.

In Tables 1–3, we provide further details about the results
we have described in Figures 3–5, respectively. Indeed, for both
algorithms, we report the estimated value of each parameter, in
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TABLE 1 | Numerical results for fractional diffusion parameter estimation with

D = 1.

Parameters
Algorithm-1 Algorithm-2

N
(1)
90 Final

value

Final relative

error

N
(2)
90 Final

value

Final relative

error

α = 2.0,β = 1.0, θ = 0.0

α 41 1.992 0.400% 10 1.996 0.200%

β 50 0.994 0.600% 10 0.998 0.200%

θ −− −0.006 −− −− −0.004 −−
D 12 0.992 0.800% 22 0.989 1.100%

α = 0.5,β = 0.5, θ = 0.5

α 10 0.501 0.200% 10 0.502 0.400%

β 10 0.497 0.600% 10 0.505 1.000%

θ 10 0.501 0.200% 10 0.502 0.400%

D 41 0.968 3.200% 140 1.027 2.700%

α = 0.5,β = 1.0, θ = 0.25

α 10 0.497 0.600% 10 0.505 1.000%

β 10 0.995 0.500% 10 1.000 0.000%

θ 10 0.250 0.000% 10 0.253 1.200%

D 10 1.004 0.400% 10 0.982 1.800%

α = 2.0,β = 0.5, θ = 0.0

α 114 1.985 0.750% 15 2.000 0.000%

β 41 0.511 2.200% 10 0.493 1.400%

θ −− 0.015 −− −− 0.017 −−
D −− 1.119 11.900% −− 0.890 11.000%

The bold values are used to highlight the best performance for each case across the

2 algorithms.

the column entitled the final value, of the space-time fractional
diffusion equation (i.e., α,β , θ and D) and the final relative error,
which is defined as the percentage of the discrepancy between the

exact value and the estimated one, or εξ = |ξ̂−ξ |
|ξ | × 100, where

ξ̂ and ξ are any estimated and original parameters, respectively.

We also report the parameter N
(i)
90 , which we define as the

minimum number of trajectories beyond which the accuracy
using algorithm i is at least 90% and formally can be written as

N
(i)
90 (ξ ) = inf{N | εξ ≤ 10, ∀N > N90, ξ ← Ai({Xn(tl)}Nn=1)},

where ξ ∈ {α,β , θ ,D} and Ai({Xn(tl)}Nn=1) denotes the output
of the i-th Algorithm (i ∈ {1, 2}). By looking at the values

reported in the column N
(i)
90 , we can analyze the performance

of both algorithms. For instance, we can remark that a dozen of
trajectories is sufficient for both algorithms to achieve at least 90%
accuracy in most of the settings. We note that a missing value

for N(i)
90 could be an indicator of either a bias in the Algorithm i

which is greater than 10%, or the situation that the maximum
considered trajectories (N = 104) in our experiments are not

TABLE 2 | Numerical results for fractional diffusion parameter estimation with

D = 2.

Parameters
Algorithm-1 Algorithm-2

N
(1)
90 Final

value

Final relative

error

N
(2)
90 Final

value

Final relative

error

α = 2.0,β = 1.0, θ = 0.0

α 41 1.995 0.250% 10 2.000 0.000%

β 50 0.999 0.100% 10 1.000 0.000%

θ −− 0.004 −− −− 0.004 −−
D 10 2.022 1.100% 15 2.030 1.500%

α = 0.5,β = 0.5, θ = 0.5

α 10 0.500 0.000% 10 0.500 0.000%

β 10 0.503 0.600% 10 0.503 0.600%

θ 10 0.500 0.000% 10 0.500 0.000%

D 114 2.039 1.950% 114 2.039 1.950%

α = 0.5,β = 1.0, θ = 0.25

α 10 0.499 0.200% 10 0.499 0.200%

β 10 1.000 0.000% 10 1.000 0.000%

θ 10 0.250 0.000% 10 0.250 0.000%

D 10 2.011 0.550% 10 2.012 0.600%

α = 2.0,β = 0.5, θ = 0.0

α 76 1.999 0.050% 22 2.000 0.000%

β 62 0.504 0.800% 10 0.513 2.600%

θ −− −0.001 −− −− −0.001 −−
D 140 2.082 4.100% 712 2.111 5.550%

The bold values are used to highlight the best performance for each case across the

2 algorithms.

sufficient enough for achieving accuracy more than 90%. Lastly,
it is worth to note that increasing the number of trajectories will
lead to a smaller final relative error.

3.2. Parameters Estimation of Fractional
Brownian Motion
In this experiment, we present a study of fractional Brownian
motion (fBm) process. More precisely, we consider a dataset of
trajectories generated using the fBmmodel, then we parameterize
the data according to the fractional diffusion equation under
study in order to estimate the parameters of the fBm process
generating the data (i.e., the Hurst exponent H and the diffusion
constant D0). From the Langevin equation associated with the
fBm, we can remark that the fBm exhibits a long-time correlation
which makes the process non-Markovian. The effective Fokker-
Planck equation is given as

∂p(x, t)

∂t
= D02Ht

2H−1 ∂2p(x, t)

∂x2
. (13)

The solution for the aforementioned equation is provided in
Wang and Lung [72]
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TABLE 3 | Numerical results for fractional diffusion parameter estimation with

D = 5.

Parameters
Algorithm-1 Algorithm-2

N
(1)
90 Final

value

Final relative

Error

N
(2)
90 Final

value

Final relative

error

α = 2.0,β = 1.0, θ = 0.0

α 33 1.979 1.050% 10 2.000 0.000%

β 33 0.997 0.300% 10 1.000 0.000%

θ −− −0.021 −− −− −0.021 −−
D 76 4.960 0.800% 15 5.069 1.380%

α = 0.5,β = 0.5, θ = 0.5

α 10 0.503 0.600% 10 0.503 0.600%

β 15 0.507 1.400% 10 0.506 1.200%

θ 10 0.503 0.600% 10 0.503 0.600%

D 140 5.145 2.900% 171 5.142 2.840%

α = 0.5,β = 1.0, θ = 0.25

α 10 0.494 1.200% 10 0.494 1.200%

β 10 0.995 0.500% 10 0.995 0.500%

θ 10 0.243 2.800% 10 0.243 2.800%

D 10 5.027 0.540% 10 5.027 0.540%

α = 2.0,β = 0.5, θ = 0.0

α 76 1.994 0.300% 10 1.994 0.300%

β 50 0.509 1.800% 10 0.509 1.800%

θ −− −0.002 −− −− −0.002 −−
D 114 5.338 6.760% 1311 5.335 6.700%

The bold values are used to highlight the best performance for each case across the

2 algorithms.

p(x, t) = 1√
4πD0t2H

exp

( −x2
4D0t2H

)
. (14)

Thus, the fractional absolute moment of a fBm process with a
parameter 0 < H < 0.5 is given as

E[|X(t)|δ] = (2D0t
2H)δ/2

Ŵ( 1+δ
2 )
√

π
. (15)

Based on the expressions (3) and (15), we can use the space-
time fractional diffusion equation under study to parameterize
an fBm process. Indeed, by mapping the two expressions, we get
α = 2, β = 2H, θ = 0 and D = D0

2 . In this experiment, we
assume that the given trajectories are following an fBm model
and the task is to apply the proposed algorithms to identify the
parameters associated with the fBm (H and D0).

Last, in Figure 6, we present the simulation results associated
with this experiment. The figure represents a panel of 4 × 4
plots where a row is associated with a set of parameters H and
D0 associated to a fBm process, and columns 1, 2, 3 and 4 are
associated with the estimation of the parameters α, β , θ and
D, respectively. Hence the estimation of the parameters H and

D0. In these simulations, we generate N trajectories following
four different fBm models using the built-in function wfbm in
Matlab (i.e., in Figure 6, rows 1, 2, 3 and 4 are associated to fBm
with Hurst exponents H = 0.25, H = 0.3, H = 0.35 and
H = 0.4, respectively). As we can observe, Algorithm 2 (plotted
using black line) can efficiently provide accurate estimates of the
Hurst exponent and the diffusion constant and it performs better
than Algorithm 1. The reason behind this is that Algorithm 1
requires solving a non-linear non-convex optimization problem
which is not the case for the second algorithm. Also, we remark
that finding the parameters of the fBm using Algorithm 2 does
not require very large number of trajectories. In fact, we can
determine an accurate estimates of the parameters (α,β) with an
error close to 2% by performing Algorithm 2 on dataset of few
trajectories obeying the fBm model (i.e., N ≤ 10).

From the simulation results related to fBm in Figure 6, we
can see that Algorithm 2 is capable to accurately estimate the
parameters α and β = 2H hence H. However, the estimation
of the parameter D0 is not accurate because of the non-
conformity of the equation under study with the fBm model for
all parameters values. Indeed, both models coincide, in terms
of moments, only when α = 2, θ = 0 and β = 2H.
Interestingly, in the current experiment, we focus more on
determining an accurate estimate of the parameter H that is
related to the long-time memory of an fBm process. Therefore,
the proposed algorithms can be used as a tool to quantify the
memory of an unknown process that follows the fBmmodel from
given trajectories.

In Table 4, we report further elaboration of the results in
Figure 6. In fact, we can remark that all the bold marked
minimum relative errors are in the column associated with
Algorithm 2, which endorse our previous claim about the
effectiveness of the second algorithm. Related to the discussion of

the estimation of α and β , we can see that the column N
(1)
90 has a

lot of missing values, and this indicates that using Algorithm 1 for
these experiments lead to a final relative error that is greater than
10%. More interestingly, we can remark that with just around 10
trajectories, Algorithm 2 can provide an estimate of either α or β

that is within the 10% error margin.

4. DISCUSSION

Understanding complex dynamics remains a challenging task
when their generative model is unknown. This task is more
complicated when it comes to analyze spatiotemporal kinetics
and infer the model that dictate their evolution. Although,
the physics that drive the dynamics are unknowns, data-
driven based approaches are prominent tools to discover the
physical laws/rules governing complex observed dynamics (from
heterogeneous, sparse, scarce or even noisy data). Indeed, such a
discovery plays a crucial role in diverse fields ranging from system
biology, neuroscience, econophysics to social studies. Toward
addressing this goal, in this manuscript, we have considered a
generalized space-time fractional PDE and have developed an
effective, rigorous and robust algorithmic strategies to estimate
the parameters and so identify the main mathematical operators
appearing in the PDE.
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FIGURE 6 | Determining the parameters of the fractional Brownian motion via the two proposed algorithms while varying the number of trajectories. The dotted line

indicate 2% error tube around the original parameter value in the red: (A–D) with H = 0.25 and (α = 2,β = 2H, θ = 0,D0 = 0.31), (E–H) with H = 0.3 and

(α = 2,β = 2H, θ = 0,D0 = 0.22), (I–L) with H = 0.35 and (α = 2,β = 2H, θ = 0,D0 = 0.16), (M–P) with H = 0.4 and (α = 2,β = 2H, θ = 0,D0 = 0.12).

In contrast to prior work, we investigated the effectiveness and
robustness of the proposed algorithmic approach for estimating
the correct parameters as a function of the available number of
trajectories. From our simulation results, we observe that for
all considered types of diffusion models except the classical one
(i.e., all combination of the parameters α, β , θ , and D), a few
number of recorded time-series (less than 100 trajectories) is
required to attain the correct estimation of the PDE parameters
with less then 2% confidence interval. For the case of the normal

diffusion (i.e., except for the case α = 2 and β = 1), we may
need more trajectories to achieve similar accuracy. Therefore, we
hope that the proposed algorithms will help the community to
better analyze complex spatiotemporal data, in order to unravel
new physical laws in different applications (social networks,
neuroscience, etc.) and decipher the causal interdependence
between different processes.

Furthermore, we performed a study on the properties of fBm
processes. We can remark from the Fokker Planck equation
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TABLE 4 | Numerical results for fBm parameter estimation.

Parameters
Algorithm-1 Algorithm-2

N
(1)
90 Final

value

Final relative

error

N
(2)
90 Final

value

Final relative

error

H = 0.25

α −− 1.794 10.300% 10 1.998 0.100%

β 210 0.459 8.200% 10 0.511 2.200%

θ −− −0.006 −− −− −0.006 −−
D −− 0.426 36.132% −− 0.386 23.350%

H = 0.30

α −− 1.733 13.350% 10 2.000 0.000%

β −− 0.527 12.167% 10 0.609 1.500%

θ −− 0.023 −− −− 0.026 −−
D −− 0.325 42.284% −− 0.273 19.518%

H = 0.35

α −− 1.689 15.550% 10 1.983 0.850%

β −− 0.581 17.000% 10 0.683 2.429%

θ −− 0.015 −− −− 0.018 −−
D −− 0.269 62.570% −− 0.213 28.727%

H = 0.40

α −− 1.587 20.650% 10 2.000 0.000%

β −− 0.635 20.625% 10 0.801 0.125%

θ −− −0.016 −− −− −0.020 −−
D −− 0.217 70.179% −− 0.144 12.930%

The bold values are used to highlight the best performance for each case across the

2 algorithms.

associated with the fBm process, mentioned in the manuscript,
that the effective diffusion coefficient is time-dependent. Even
though, this type of equation does not perfectly match the class
of fractional diffusion equation that we are dealing with in
this work, we applied the proposed algorithms to a dataset of
trajectories generated according to the fBm model to retrieve
the Hurst exponent and the diffusion constant. Indeed, we
were able to identify these parameters since the absolute and
signed absolute moments present similar structure as the ones
calculated for a process that is generated according to the
fractional diffusion equation under study. Therefore, we provide
a new/alternative approach to quantify the memory of a fBm
process. Note that without knowing the model that governs
the dynamics of the process and using this framework, we
can estimate the parameters α and θ to be equal to 2 and
0, respectively, but in the current stage we are not able
to confirm that the data is generated either from a space-
time fractional diffusion equation with a constant generalized
diffusion coefficient or from a fBm process with time varying
diffusion coefficient. In future work, we will push forward the
analysis to identify whether the diffusion coefficient is time-
dependent or it is a constant, and thus to differentiate between the
space-time fractional diffusion equation and the Fokker Planck
equation associated with the fBm process.

This mathematical formalism can be further developed
and generalized to include additional operators and take into
account advection phenomena as well as combined with other
advanced statistics and information theory inspired methods
to discriminate among various mathematical expressions
(operators) in order to either identify the dominant physical
phenomenon (or rule) governing the measurements or to
determine the degree to which multiple physical laws contribute
to the observed dynamics. Also, analyzing noisy data originated
from real world applications will be taken into account in order
to cope with complex scenario. We plan to build on these
grounds, enrich the mathematical formalism and contribute to a
significant paradigm shift in the context of data-driven discovery
architectures of physical phenomena as well as enabling accurate
predictions concerning complex evolving systems without
requiring to know the regimes of variation for parameters, the
types of mathematical operators or the fact that the data should
be sampled at a particular level.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

MZ and GG have equal contribution to the manuscript. MZ,
GG, and PB contributed to formulating the problem, setup the
experimental case studies, and wrote themanuscript. MZ andGG
collaborated on the design of the simulations, run comprehensive
case studies, processed the simulation data, prepared the plots
and modified the supplementary material. KA contributed to the
design of some of the simulations and wrote some parts of the
supplementary material.

FUNDING

The authors gratefully acknowledge the support by the National
Science Foundation under the Career Award CPS/CNS-1453860,
the NSF award under Grant numbers CCF-1837131, MCB-
1936775, and CNS-1932620, the U.S. Army Research Office
(ARO) under Grant No. W911NF-17-1-0076 and the DARPA
Young Faculty Award and DARPA Director Award, under grant
number N66001-17-1-4044, and a Northrop Grumman grant.
The views, opinions, and/or findings contained in this article are
those of the authors and should not be interpreted as representing
the official views or policies, either expressed or implied by the
Defense Advanced Research Projects Agency, the Department of
Defense or the National Science Foundation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2020.00014/full#supplementary-material

The code to reproduce the results is available at: https://github.
com/gaurav71531/fractDiffusion.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 May 2020 | Volume 6 | Article 14

https://www.frontiersin.org/articles/10.3389/fams.2020.00014/full#supplementary-material
https://github.com/gaurav71531/fractDiffusion
https://github.com/gaurav71531/fractDiffusion
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Znaidi et al. Identifying Arguments of Fractional Diffusion

REFERENCES

1. Alber M, Tepole AB, Cannon WR, De S, Dura-Bernal S, Garikipati K,
et al. Integrating machine learning and multiscale modeling–perspectives,
challenges, and opportunities in the biological, biomedical, and behavioral
sciences. NPJ Digital Med. (2019) 2:115. doi: 10.1038/s41746-019-0193-y

2. Gruson D, Helleputte T, Rousseau P, Gruson D. Data science, artificial
intelligence, and machine learning: Opportunities for laboratory medicine
and the value of positive regulation. Clin Biochem. (2019) 69:1–7.
doi: 10.1016/j.clinbiochem.2019.04.013

3. Bergen KJ, Johnson PA, de Hoop MV, Beroza GC. Machine learning for
data-driven discovery in solid Earth geoscience. Science. (2019) 363:eaau0323.
doi: 10.1126/science.aau0323

4. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation
of artificial intelligence technologies in medicine. Nat Med. (2019) 25:30–36.
doi: 10.1038/s41591-018-0307-0

5. Barnette DA, Davis MA, Dang NL, Pidugu AS, Hughes T, Swamidass SJ,
et al. Lamisil (terbinafine) toxicity: determining pathways to bioactivation
through computational and experimental approaches. Biochem Pharmacol.
(2018) 156:10–21. doi: 10.1016/j.bcp.2018.07.043

6. Udrescu L, Sbarcea L, Topirceanu A, Iovanovici A, Kurunczi L, Bogdan
P, et al. Clustering drug-drug interaction networks with energy model
layouts: community analysis and drug repurposing. Sci Rep. (2016) 6:32745.
doi: 10.1038/srep32745

7. Marinelli B, Kang M, Martini M, Zech JR, Titano J, Cho S, et al. Combination
of active transfer learning and natural language processing to improve liver
volumetry using surrogate metrics with deep learning. Radiol Artif Intell.
(2019) 1:e180019. doi: 10.1148/ryai.2019180019

8. Yang J, Feng X, Laine A, Angelini E. Characterizing Alzheimer’s disease with
image and genetic biomarkers using supervised topic models. IEEE J Biomed

Health Inform. (2019) 24:1180–7. doi: 10.1109/JBHI.2019.2928831
9. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain

development in infants at high risk for autism spectrum disorder. Nature.
(2017) 542:348. doi: 10.1038/nature21369

10. TingDSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial
intelligence and deep learning in ophthalmology. Brit J Ophthalmol. (2019)
103:167–75. doi: 10.1136/bjophthalmol-2018-313173

11. Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving
the accuracy of a flood forecasting model by means of machine
learning and chaos theory. Neural Comput Appl. (2016) 27:1129–41.
doi: 10.1007/s00521-015-1930-z

12. Mojaddadi H, Pradhan B, Nampak H, Ahmad N, bin Ghazali AH. Ensemble
machine-learning-based geospatial approach for flood risk assessment using
multi-sensor remote-sensing data and GIS. Geomat Nat Hazards Risk. (2017)
8:1080–102. doi: 10.1080/19475705.2017.1294113

13. Fox C, Nicholls G. Statistical estimation of the parameters of a PDE. Can appl

Math Quater. (2001) 10:277–306.
14. Müller TG, Timmer J. Fitting parameters in partial differential equations from

partially observed noisy data. Phys D Nonlinear Phenomena. (2002) 171:1–7.
doi: 10.1016/S0167-2789(02)00546-8

15. Xun X, Cao J, Mallick B, Maity A, Carroll RJ. Parameter estimation of
partial differential equation models. J Am Stat Assoc. (2013) 108:1009–20.
doi: 10.1080/01621459.2013.794730

16. Liang H, Wu H. Parameter estimation for differential equation models using
a framework of measurement error in regression models. J Am Stat Assoc.
(2008) 103:1570–83. doi: 10.1198/016214508000000797

17. Bär M, Hegger R, Kantz H. Fitting partial differential equations to space-time
dynamics. Phys Rev E. (1999) 59:337. doi: 10.1103/PhysRevE.59.337

18. Müller T, Timmer J. Parameter identification techniques for partial
differential equations. Int J Bifurcat Chaos. (2004) 14:2053–60.
doi: 10.1142/S0218127404010424

19. Voss HU, Kolodner P, Abel M, Kurths J. Amplitude equations from
spatiotemporal binary-fluid convection data. Phys Rev Lett. (1999) 83:3422.
doi: 10.1103/PhysRevLett.83.3422

20. Einstein A. Über die von der molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten
Teilchen. Annalen der Physik. (1905). 322:549–60. doi: 10.1002/andp.1905322
0806

21. Barkai E, Garini Y, Metzler R. Strange kinetics of single molecules in living
cells. Phys Tdy. (2012) 65:29–5. doi: 10.1063/PT.3.1677
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