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We prove the Central Limit Theorem for finite-dimensional vectors of linear eigenvalue
statistics of submatrices of Wigner random matrices under the assumption that test
functions are sufficiently smooth. We connect the asymptotic covariance to a family of
correlated Gaussian Free Fields.
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1. INTRODUCTION

Wigner random matrices were introduced by Wigner in the 1950’s (see e.g., [1-3]) to study energy
levels of heavy nuclei. Let {Wjj};’:1 and {Wjt}1<j<k<n be two independent families of independent
and identically distributed real-valued random variables satisfying:

EWj =0, E[Wy|* =1 for j <k, and E[vvfj] =o2 (1.1)

Set W = (ij)]nk:l with Wy = Wy;. The Wigner Ensemble of normalized real symmetric n x n
matrices consists of matrices M of the form
1
M=—W. (1.2)

Jn

The archetypal example of a Wigner real symmetric random matrix is the Gaussian Orthogonal
Ensemble (GOE) defined as [3]

A= %(B+Bf), (1.3)

where the entries of B are i.i.d. real Gaussian random variables with zero mean and variance 1/2.

Wigner Hermitian random matrices are defined in a similar fashion. Specifically, we assume that
{(Wj; }j":1 and {Wji}1<j<k<n are two independent families of independent and identically distributed
real, correspondingly complex random variables satisfying (1.1). The archetypal example of a
Wigner Hermitian random matrix is the Gaussian Unitary Ensemble (GUE)

A= %(B+B*), (1.4)

where the entries of B are i.i.d. complex standard Gaussian random variables [3].
Over the last sixty years, Random Matrix Theory has developed many exciting connections
to Quantum Chaos [4], Quantum Gravity [5], Mesoscopic Physics [6], Numerical Analysis [7],

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1

June 2020 | Volume 6 | Article 17


https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2020.00017
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2020.00017&domain=pdf&date_stamp=2020-06-09
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:soshniko@math.ucdavis.edu
https://doi.org/10.3389/fams.2020.00017
https://www.frontiersin.org/articles/10.3389/fams.2020.00017/full
http://loop.frontiersin.org/people/931919/overview

Lietal

Submatrices of Wigner Matrices

Theoretical Neuroscience [8], Optimal Control [9], Number
Theory [10], Integrable Systems [11], Combinatorics [12],
Random Growth Models [13], Multivariate Statistics [14], and
many other fields of Science and Engineering.

For a real symmetric (Hermitian) matrix M of order n, its
empirical distribution of the eigenvalues is defined as puy =
% Z?zl 83;» where A1 < ... < A, are the (ordered) eigenvalues
of M. The Wigner semicircle law states that for any bounded
continuous test function ¢ : R — R, the linear statistic

3000 = S THe(D) =i tnlp(M) (19

i=1

converges to f @(x)dps(dx) in probability, where s is
determined by its density

d 1
e () = VA= 1), (1.6)

dx

see e.g., Wigner [2], Ben Arous and Guionnet [15], and Anderson
etal. [16].

The Gaussian fluctuation for linear statistics Z?:l ¢(X;) has
been extensively studied since the pioneering paper by Jonsson
[17]. We refer the reader to Johansson [18], Sinai and Soshnikov
[19], Bai et al. [20], Lytova and Pastur [21], Shcherbina [22],
Anderson and Zeitouni [23], Li and Soshnikov [24], Lodhia and
Simm [25], and references therein. The goal of this paper is to
prove the central limit theorem for the joint distribution of linear
eigenvalue statistics for submatrices of Wigner random matrices.

The rest of the paper is organized as follows. We formulate
our results in section 2. Theorem 2.1 is proved in section 3.
Theorem 2.2 is proved in section 4. Auxiliary results are discussed
in the Appendices.

Research of the last author has been partially supported
by the Simons Foundation Collaboration Grant for
Mathematicians # 312391.

2. STATEMENT OF MAIN RESULTS

This section is devoted to formulation of the main results of
the paper.

For a generic random variable £, in what follows denote by
£°: = & — EI[£]. For a finite set B C {1,2,...,n} denote by
M(B) the submatrix of M formed by the entries corresponding
to intersections of rows and columns of M marked by the indices
in B, which inherits the ordering. For example,

My M13). 2.1)

M({L,3) = <M31 M33

Let By, - - , B, be infinite subsets of N such that B;, 1 < i < d,
and their pairwise intersections have positive densities. Denote

Bl =BiN{L,2,...,n}, 1 <i<d, (2.2)
ni=|B}l,1<i<d, (2.3)
ny, =B/ NBy|, 1 <l<m<d. (2.4)

We assume that the following limits exist:

. nj . Mm
y:= lim — >0, y,:= lim —,
n—-oo n n—oo n

1<i<m<d (25)
If it does not lead to ambiguity, we will omit the superindex n
in the notation for BY, 1 < i < d. For an n x n matrix M and
B C {1,2,...,n}, consider a spectral linear statistic ZEI oA,
where {kl}}ill are the eigenvalues of the submatrix M(B). We are
going to study the joint fluctuations of linear statistics of the
eigenvalues. It will be beneficial later to view the submatrices
from a different perspective. Consider the matrix P? = diag(Pg )
which projects onto the subspace corresponding to indices in
B,ie,

Pl =1jjcp, 1 <j<n. (2.6)

Define
M5B = pPPMmpB, (2.7)
Nilpl: = Y o) = Tr(p(MP)), (2.8)

I=1

where {kf }j_, are the eigenvalues of MB. Note that the spectra
of M® and M(B) differ only by a zero eigenvalue of multiplicity
n — |B|. As a result, when we consider the linear statistics of their
eigenvalues the extra terms (n — |B|)¢(0) cancel once we center
these random variables. In general, when considering multiple
sequences By, in order to simplify the notation we will write

MD = MB, PO =pB N D[g]: = Np[g),

Nlgl = NPlol - EW gl 29)

Also, denote by P4 the matrix which projects onto the subspace
corresponding to the indices in the intersection B; N By, i.e.,

pin = plp) — ppd), (2.10)
Recall that a test function ¢ : R — R belongs to the Sobolev space
H if

||<p||§:=/ (1 + [t)¥|@(r)*dt < oo, (2.11)

—00
where ¢ is its Fourier transform. First we consider Gaussian
Wigner matrices.

Theorem 2.1. Let W = {Wj: Wi = Wy}, _, beann x n real

k=1
symmetric random matrix with Gaussian e]ntries satisfying (1.1)
and M = n~'2W. Let By, . . . By be infinite subsets of N satisfying
(2.2-2.5). Let ¢1,--- ,94:R — R be test functions that satisfy
the regularity condition ||¢j||s < oo, for some s > % Then the

random vector
Wl ., NP [gal), (2.12)

converges in distribution to the zero mean Gaussian vector
(G1,-++,Gy) € R? with the covariance given by

Cov(Gj, Gp)
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8

~ k
o Vip 1 Vip
-7 +5 2k s
" (ga,)1(<pp)1(m) 2; (0D (Gﬂp)k( m,p>
B 2 , Vi vp) 1
R S B RO A CRE S P

lZP =y W=y
Jmz>0 Jmw>0

— Zw
Yp — 2% (1 sz) (1 - V—PZ) dzdw (2.13)
Vip — ZW z w
Vp(0? —2) /Zf Api(2) W pugp(n) du
vy Joaym Ay — A2 dyp — 2

In the expression for the covariance, (¢;)x denotes the coefficients
in the expansion of ¢ in the (rescaled) Chebyshev basis, i.e.,

> 2 [T dt
— TVI , — 7/ TVI
i(x) gwk (0 (o = — . Q1) T] (t)—m
(2.14)
and
T}; (x) = cos (k arccos (25;7>) (2.15)

Note the form of the kernel in the above contour integral
expression for the covariance. Since it is the Green’s function
for the Laplacian on H with Dirichlet boundary conditions
(appropriately scaled), we note that the limiting distributions
form a family of correlated Gaussian free fields. This is consistent
with the previous work of Borodin [26, 27] for the covariance
of linear eigenvalue statistics corresponding to polynomial test
functions. Now we formulate our result for non-Gaussian
Wigner matrices.

Theorem 2.2. Let W = (V\/jk);’k=

and M = n~Y2W. Let By, . .. By be infinite subsets of N satisfying
(2.2-2.4) and (2.5). Assume the following conditions:

. be an n x n random matrix

(1) All the entries of W are independent random variables.
(2) The fourth moment of the non-zero off-diagonal entries does
not depend on n:

pa = E{Wy).

(3) There exists a constant o¢ such that for any jk
E{| Wi/} < o6.
Let ¢1,-+- ,94:R — R be test functions that satisfy the
regularity condition ||¢j||s < oo, for some s > 5.5. Then
the random vector (2.12) converges in distribution to the zero

mean Gaussian vector (G, --- ,Gy) € R? with the covariance

given by
~ o~ K47/112, 2y
Cov(G, Gp) = Cov(G),Gp) + 7f (2.16)
am2yf 2
AZ 2% 2y, —
l()‘) %(V-)idu
V4 4yp — u?

where Cov(G), Gp) is given by (2.13).

In the course of the proof of Theorem 2.1, it has been necessary
to understand the following bilinear form.

Definition 2.3. Let M be a Wigner matrix satisfying (1.1), and let
PO, Pl be the projection matrices defined in (2.6) and (2.10).
For functions f, g € H,s > %, define

1
(rghe o= lim — 3" E[fMO) gy

jkeBiNB,
1
— lim -E [Tr {P(l)f(M(l)) P g(M(”)P“)”.
n—o00 n
(2.17)

Remark 2.4. The bilinear form (-, -);, is well defined on H; x H
as a consequence of Proposition 3.9. The bilinear form is also well
defined for polynomial f and g, see section 3.2 and also Lemma
2.5 below.

The following diagonalization lemma is an important

technical tool for the proof of Theorem 2.1.

Lemma 2.5. The two families {UV’}k o and {Ug"}22 pl o of rescaled
Chebyshev polynomials of the second kind dzagonalzze the bilinear
form (2.17). More precisely,

k+1
1 Vi
Vi Yr _ r
s e Uil = %k <W> S

Letf,g € Hs, for some s > % A consequence of (2.18) is that

N

k+1
Y
|:Z Uyl(x)Uy’(y) k/lzr k/z] Vay — x2 /4y, — yAdydx.

k=0

(2.19)

In section 3.2, it will also be proved that, with f,g given as
above, almost surely

lim Tr{P(l)f(M(l)) pln) g(M<’>)P<')}

n—oQ
27 J/k—0—1
= x)g(y) Ul () U ( ) Ir
i Lo [ | Sz 2o
Vay — x2\/ 4y, — y2dydx. (2.20)

Remark 2.6. Recall that the rescaled Chebyshev polynomials of
the second kind are orthonormal with respect to the Wigner
semicircle law, i.e.,

27
L UV (x)Uq (v 4y — x*dx = 8y (2.21)

2wy
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Also,

sin((k + 1)0)

U;: (24/y cos(0)) = (@)

(2.22)
The proof of Theorem 2.1 appears in section 3 and the proof
of Theorem 2.2 appears in section 4.

Remark 2.7. Theorems 2.1 and 2.2 prove convergence of finite-
dimensional distributions. This paper does not address the
functional convergence which would require a tightness result.

3. PROOF OF THEOREM 2.1

3.1. Stein-Tikhomirov Method

We follow the approach used by Lytova and Pastur [21] for
the full Wigner matrix case (see also [28-30]). Essentially, it
is a modification of the Stein-Tikhomirov method (see e.g.,
[31]). This approach was also used to prove the CLT for
linear eigenvalue statistics of band random matrices in Li and
Soshnikov [24], which is connected to our work through the
Chu-Vandermonde identity (see section 3.2). While several steps
of our proof are similar to the ones in Lytova and Pastur [21],
the fact that we are dealing with submatrices introduces new
technical difficulties.

We will prove Theorem 2.1 in the present section and
extend the technique to non-Gaussian Wigner matrices later. The
following inequalities will be used often. As a consequence of the
Poincaré inequality, one can bound from above the variance of
Tre(M) for a differentiable test functions ¢ as

2
Var{Trp(M)} < ME[Tr{w’(M)(fp’(M))*}] (3.1)
2
< 4(c*+1) (sup |<p’<x)|> . (3.2)
xeR

We refer the reader to Lytova and Pastur [21] for the details. The
next inequality is due to Shcherbina (see [22]). Let s > 3/2 and
¢ € Hs. Then there is a constant C; > 0, so that
Var{Tro(M)} < Cillg|[?. (3.3)
Lete > Oandsets = % + €. Recall that the regularity assumption
on the test functions is that ||¢;||5/24¢ < 00, for 1 <1 < d. There
exists a C. > 0 so that
Var(VO[g]} = Var(Trg(M(B)} < Celloil3p4e-  (3.4)
The inequality holds because of (3.3), since M(B;) is an ordinary
|Bj] x |Bj| Gaussian Wigner matrix. We note that the bound
is n-independent.

It is sufficient to prove the CLT for all linear combinations
of the components of the random vector (2.12). Consider a
linear combination &: = Zle N D°[¢;], and denote the
characteristic function by

Zu(x) = E[™]. (3.5)

It is a basic fact that the characteristic function of the Gaussian
distribution with variance V is given by
2
Z(x): = e " V2, (3.6)
As a consequence of the Levy Continuity theorem, to prove

theorem 2.1 it will be sufficient to demonstrate that for each
xeR,

lim Z,(x) = Z(x), (3.7)
n—oo
where Z(x) is given as above with
d
R T 2 (Do
V = nh%ngo IXI:O(I Var (Nn [(pl])
+2 " e Cov (Nlpl Nle) | (39)

1<l<r=d

So V is the limiting variance of &. It will be demonstrated
that Z,(x) converges uniformly to the solution of the
following equation

X
Z(x) = 1— V/O yZ(y)dy. (3.9)
Note that (3.6) is the unique solution of (3.9) within the class
of bounded and continuous functions. Therefore, to prove the
theorem, it is sufficient to demonstrate that the pointwise limit
of Z,(x) is a continuous and bounded function which satisfies
Equation (3.9), with V given by (3.8).
Observe that

d
Z(x) = iE[ge™] = i Y BN [g]e™} (3.10)

I=1
Now it follows by the Cauchy-Schwarz inequality and (3.4) that

d d

1Z,0] < Y lealy/ Var(N D[]} < Const Y leul l11lls/2 e

=1 =1
(3.11)

Since Z,(0) =
calculus that

1, we have by the fundamental theorem of

Z,(x) =1+ / Z,(y)dy. (3.12)
0

Then to prove the CLT it is sufficient to show that any uniformly
converging subsequences {Zy,,} and {Z; }, satisfy

. li;noo Zy,, (x) = Z(x), (3.13)

and

lim Z, (x) = —xVZ(x). (3.14)
Ny —> 00 m
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A pre-compactness argument based on the Arzela-Ascoli
theorem will be developed below, which ensures that the
subsequences converge uniformly, implying that the limit is
a continuous function. The estimate |Z,(x)] < 1, for all
n, shows that the sequence is uniformly bounded. Generally
we will abuse the subsequence notation by writing {n} for
a uniformly converging subsequence. Since (3.11) combined
with ||gjl[s/24e¢ < o0 justify an application of the dominated
convergence theorem in (3.12), it follows from (3.13) and (3.14)
that the limit of Z,(x) satisfies equation (3.9). Therefore the
pointwise limit (3.7) holds. We turn our attention to the pre-
compactness argument, and will argue later that (3.13) and (3.14)
hold. We follow the notations used in Lytova and Pastur [21].
Denote by

Dy = 0/0Mji
itM® )
v =™, U0 = WP @)

uPt): = Te(POUD ) PDY, uPo(r): = ul (1) — B{u (1))
(3.17)

(3.15)
(3.16)

Recall that UD () is a unitary matrix, and writing Bik: = 1+
8j) ", we have

n
I I
UL =1, Y 0P =1, u?) =1. (3.18)
k=1

Moreover,

I . I I 1 I
DU (0 = Byl jkeny (U + U + U = UP®)),

(3.19)
where
t
fxg(t): = / f(y)g(t —y)dy. (3.20)
0
Applying the Fourier inversion formula
o .
o(x) = f e gi(t)dt, (3.21)
—00
it follows that
o0
N (g = / aituD°(p)dt. (3.22)
—00
Now define
en(x): = ™%, (3.23)

Using the Fourier representation of the linear eigenvalue statistics
in (3.10), it follows that

d o0
Zx)=i) a / G YD (x, t)dt, (3.24)
I=1 -
where
YO, ): = E [ufj>0(t)en(x)] . (3.25)

The limit of Y,(,l) (x,t) is determined later in the proof. Since

YO0, 1) = YO (—x, —), (3.26)

we need only consider t > 0. It will now be demonstrated that
each sequence {Yfll)} is bounded and equicontinuous on compact
subsets of {x € R,t > 0}, and that every uniformly converging
subsequence has the same limit YO, implying (3.13) and (3.14).
See proposition 3.1.

Let ¢(x) = €', and note that sup,.p |¢'(x)| = |t|. Applying
the inequality (3.2) to the linear eigenvalue statistic N'V[g],
we obtain

Var{u (1)} = VariNVO[g]} < 4(0? + 1) (3.27)

Now set ¢(x) = ixe™, and notice that

d .
S = iTrMOe™?y.

Using the inequality (3.1) and the fact that nIETr(MP)? <
o2 + 1, it follows that

2
var( 2001 = X7 Vg ety (O 1))
2
k) n+ Dy [Te(1 -+ 2®p)]
< 4(0* + D1+ (c* + DE]. (3.28)

Using the Cauchy-Schwarz inequality, the bound |e,(x)| < 1,
(3.27) and (3.28), we obtain

‘Y,S”(x, t>\ < Var' 2D} < 2002 + DVt (3.29)

and also

< Varl/z{%ugﬁ(t)} <2V(62 + 1+ (62 + 1)212).
(3.30)

9
‘ayy(x, £)

Observe that

d

d
—oen() = ien() Y S N[

r=1

Using the above derivative with the Cauchy-Schwarz inequality,
(3.4) and (3.27), we have that

d
8 ) o e}
)B—XY,S’Nx,t)‘ = z;arﬂa[u;’) ON° [orlen(x)]
d
< Var' 2wl (0} ) || Var 2N g,])
r=1
d
< Const - [t] Y les| [1@rlls/2+e- (3.31)
r=1
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It follows from (3.29), the mean value theorem combined with
(3.30) and (3.31), and ||¢/||524¢ < 00, that each sequence

Y,(ll) (x, t) is bounded and equicontinuous on compact subsets of
IR2. The following proposition justifies this restriction.

Proposition 3.1. In order to prove the functions Y, 1) converge
uniformly to appropriate limits so that (3.24) implies (3.14), it

is sufficient to prove the convergence of Y,gl)(x, t) on arbitrary
compact subsets of {x € R, t > 0}.

Proof: Letd > 0.Recall that the regularity assumption on the test
functions ¢; are

/ (1 + (KD [@i(h) 2 dh < oo,
R

i.e, that ¢ € H;, with s = 5/2 + €. Using the Cauchy-Schwarz
inequality, it follows that

~ dh
/R(l + |hDI@i(h)|dh < /RW

\/ fR (L + )5+ |G Pdh,

(3.32)

which implies that
/ |l - 1@i(h)|dh < oc. (3.33)
R

A consequence of the finiteness of the integral in (3.33), for each
1 <[ < d, is that there exists a T > 0 so that

2007 + )I/ZZM/

Using (3.24), we can write

Pun)dt < 8. (3.34)

d T
Zh(x) =i Za, / T@(r)Y;’)(x, £)dt

G YD (x, t)dt.
=T

+i Zoq/

Then (3.35), (3.29), (3.34) imply that

(3.35)

d T
Zl(x) —i Zal / T@(t)Y,S”(x, f)dt

o)) - 1Y (x, 1))t

<Z|az|/
<230+ )I/ZZM/

<. (3.36)

“l@i()ldt

Notice that the estimate (3.36) is n-independent, so that in
particular the estimate holds in the limit # — oo. Since § was
arbitrary, this completes the proof of the proposition. O

This completes the pre-compactness argument, which allows
us to pass to the limit in (3.24) and in (3.12), and conclude
that Z,(x) converges pointwise to the unique solution of
equation (3.9) belonging to Cy,(R), implying (3.7), and hence the
conclusion of the theorem. Now we show the limiting behavior
of the sequences Y,Sl)(x, t) imply (3.13) and (3.14). Consider
the identity

t
M =14 f MOMM gy,
0

Apply this identity, noting that M;]? = 0, if jk ¢ B to

obtain that

Uty = Te(POUD (1)Py — EB[Tr{PD UD (1) PD)]

:/Z

Jok=1

M” u(n) - ElM

(OFO)
YUl QU]

(3.37)

Recalling that Y,(,l)(x, ) =

decoupling formula (see Appendix 1) for Gaussian random
variables, it follows from (3.37) that

/ 3 BMO U0 665

jk=1

_ / 3 1Uk€Bl}1E[ U (e (x)]dtl

1<j<k<n

/ Z 1jje) E DjjUj(jl)(tl)ef,(x)] dt.

(3.38)

E [Mszl)o(t)en(x)], and applying the

Y (x,t) =

It will be useful to rewrite (3.38) as

v ) / 5 Lpseny (1 + BB (DU (e 0] dts
k=1
=T
1(0 —2)/ ZI{JEBI}]E iU (tl)e (x)] dt .
=

(3.39)

The reason for the rewrite is that it splits the functions Yn)(x, t)
into a part that depends on the distribution of the diagonal entries
and a part that corresponds to the same term as for the Gaussian
Orthogonal Ensemble, for which o? = 2. Recalling that e, (x)
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is given by (3.23), again writing B = (1 + éjk)_l and using

the identity

Dy Tef (M

it follows by a direct calculation that

d
Djxen(x) = 2iBjxen(x) Y oty (P(r)wi(M(r))P('))jk- (3.40)

r=1

Then for 1 < I < d, using (3.40) and (3.19), it follows that

—1 [t b n
- ELZ lu,keB[,IJ;”(rz)U;Q(tl—me;(x)} dnadt,
0 0 k=1
1 t 51 n (1)
o [ 2] 3 thsen U U0 — )i | s
0 0 k=1

t n
_Z;x A E |;Z Lijkeny U, (fl)en(x) Z“’ (P(’ oM ’))P(')> i| dty,

jok=1 r=1

(3.41)

and also that

—@?=2) [ty O O .
= — E| D Leny Uy () U} (4 — e (x) | diadty
0 Jo ;
j=1
=:Ty

d
3 en(0 3 ar (P07 )p0). }dl.

r=1

RGELYS {ZIM,

=Ty
(3.42)
Using the semigroup property
vy un) = Ut +n),
it follows form (3.41) that T} can be written
1 [t rh
T = —- / / E[uff)(tl —tz)ug)(tz)eZ(x)} dtrdt, (3.43)
nJo Jo
=:T11
1t sy 0
- / tlE[u,, (tl)en(x)} dn
nJo
=T
P !
-3 / E [Tr(POUO (1) P (M )P ey ()] i
n 0
r=1
=:T3
Define
_ 1
W) = ;E[uff)(t)]. (3.44)

The following proposition presents the functions Y,,)(x, t)in a
form that is amenable to asymptotic analysis.

Proposition 3.2. The equation Y,(j)(x, t) = Ty + T, can be
written as

t t
Y0 (x, 1) +2 / f VO(t) — ) YO (x, ty)dtrdty
0 JoO

= xZn() [Aﬁ,”(t) + Qﬁ)(t)] + D, 1), (3.45)

where

0 2 ‘1
Ay (1) ::—zza,/ “E
r=1 on

[7rPOUD (e)PE g ()P ] i,

(3.46)
—(02 -2
OREES (" ’Zar f ZlueB,mB,}E[U}”(n)«)xM(”)ﬁ}] dt,
(3.47)
and
Dty =
;1/ 0y n)dn (3.48)
n 0
1 trh o o
— / <’> (t1 — )l (1)e2 (x)} dtydty (3.49)
nJo Jo
d t
—2;" . / E[Tr{P“)U“)(tl)P<’>’>¢;(M<'>)P<’>}e;(x)] dt; (3.50)
r=1 0
— t
(“ e / f 1 LZ Ljeny Uy () U3 (1 — fz)Ef,(x):| deydty
(3.51)
2_2 t n
—% > ey /0 ZlueB,nB,uE[U;j”(tl)ga;(M“))jje,';(x)] dty.
r=1 j=1

(3.52)
Proof: Begin with the term T};, defined in (3.43). Write

1 t 51
Tu:—f// E
nJo Jo

. (u;’)O(tz) n m_/n(tz)> e;(x)] dtydt,

(”g)o(ﬁ — b)) + nvu(t; — tz))

(3.53)

so that
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T =
1 rtrn Do 0o . Then (3.59) becomes (3.50) in the remainder, while (3.60)
o /0 /0 E [“n (th — t)uy, (tz)en(x)] diydt, remains on the right-hand side of (3.45). Now consider the term
t o T>1, defined in (3.42). This term becomes (3.51) in the remainder.
_ / / In(t; — b)E [ug)o(tz)ef,(x)] db>dt, Finally, consider the term T35, also defined in (3.42). Write
0 Jo
e 0
- Tn(t)E [u °(ty — )’ (x)] dtydty (02 — 2)x
/ / " " " Ty = —7f Z Ljen) Uy (1) (3.61)
—nf / vn(t — 1) - vn(tz)E[ n(x )] diydt;. ;
(00 + Zu(0) Y o (PO )P0 | di,
(3.54) r=1 y
Noting that so that, with Qg)(t) given by (3.47),
E [ 9] = Y0 1), E[ul"(t — 1) 0]
» o =
=Y, (%t — t2), (07 — 2
7/ {21@1 Dn)e; (x)z (PGP ) :|dt1
and also that !
oo (3.62)
1
/ / Tu(t) YD (x, 1y — )dydy ) Q. (3.63)
0 Jo
e 0
= /0 /0 vty — )Y, (x, )dtdh, The term (3.62) becomes (3.52) in the remainder. Also, the term
(3.63) remains on the right-hand side of (3.45). This completes
it follows that the argument for proposition 3.2. O
Tn = We now turn our attention to the remainder term, r )(x, t), of

E [“g)o(tl - tz)ug,l)o(tz)ef,(x)] dndh

1 t t
o

t t
-2 f / Vn(ty — )YV (x, ta)dtydty.
0 JO

(3.55)

(3.56)

The term (3.55) goes into the remainder, which becomes (3.49).
Also, (3.56) is added to the left-hand side of (3.45). Now consider
the term T, defined in (3.43). We have that

1 t
Tip = —~ / 1Y D (x, t))dt, (3.57)
nJo

which becomes (3.48) in the remainder. Consider the term T3,
also defined in (3.43). Writing

Tis = —— Z o / E[Te(PO U0 (1)) (M) P)
. (eﬂ(x) + Zn(x))] dty, (3.58)

it follows, with AL (t) given by (3.46), that

T3 =
& '
=Y / JE[Tr{PWU<’)(tl)P<“)¢;(M<'>)P<f>}e;;(x)] dn(3.59)
0

+ xZ, () AV (2). (3.60)

proposition 3.2. The content of the following proposition is that
the remainder is negligible in the limit.

Proposition 3.3. Each term of rD(x, 1) converges to 0 uniformly
on compact subsets of {x € R,t > 0}, for 1 < | < d. In other
words, we have the uniform limit

lim rO(x, 1) = 0. (3.64)
n—00

Proof: Begin with the term (3.48). Applying the estimate (3.29),
we obtain

IA

1 t
‘ - / 1Y (x, t1)dty
n.Jo

Do)

2(0.2 + 1)1/2
1
o(3)
n

Now consider the term (3.49). Using the bound |e; (x)| < 2, the
Cauchy-Schwarz inequality, and (3.27) twice, it follows that

1 t ph
T
nJjo Jo

2
< Z2var2(u (1)} var /2 (1D (1)}
n

3
It]

(3.65)

W%t — 1)l (2)e ()| deadl
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- 8(c +1)/? p
1
~o(3)
n

Consider the term (3.50) next. Applying (2.20) of lemma 2.5 to
the exponential function and ¢/, and noting that ¢, € H% teor it

follows that

(3.66)

lim E [Tr {P(l) U(l)(

n— 00

£1)P7) ! (M) PO ”

1t1x /( )
~ 4n? Vl)’r/ /zﬁ o

k+1
. Y
|:Z Uy’(x) Uy (») k/lzr k/2] Vay — x%,/ 4y, — y*dydx.

k=0
(3.67)

While the exponential function does not belong to H 3 ., we can
2

truncate the exponential function in a smooth fashion outside the
support of the semicircle law, so that the truncated exponential
function belongs to H% te- We may replace the exponential

function by its truncated version because the eigenvalues of the
submatrices concentrate in the support of the semicircle law with
overwhelming probability. Then

lim Tr [ POUD (£)PE) ! (M) P(r)]

n—oo
1t1x /( )
477 Vl)’r/ /zﬁ o

k+1
|:Z UJ/I(x)U%(}/) k/2 k/2:| vay — x2 [ 4y, — Zdydx

k=0
(3.68)
Here it is not so important to know the exact value of the limit,
but we will use the fact that we have convergence in the mean and

almost surely to the same limit. Note the convergence in (3.67)
implies that the sequence of numbers

1
“E [Tr [ POYD (1) P07 g (M) P ]] ’

is bounded. Also the convergence in (3.68) implies that the
random variables

1
~r { POUD(1)P) ! (M) p<r>} ,

are bounded with probability 1. Using (3.67) and (3.68) with the
dominated convergence theorem, it now follows that

1
lim E ‘ =TrPDUD ()P gl (M) P
n—00 n

1
__FE [Trp(l) U(D(tl)P(l’r)¢;(M(r))P(r)}‘ =0. (3.69)
n

Combining the bound |e,(x)| < 1 with (3.69), it follows that

1
“E [TePOUO ()P (MNP ()| ‘

= ‘IE [(lTrp(l)U(l)(tl)p(lr) /(M(r))p(f

n
1
B {Trp(l) U (1) P09 ! (M) P }) en(x)} ‘
<E ‘lTrP(l) U (t;) Pt gl (M) pD
- n

1
—-E [TrP(l) U (t;)p) ga;(M(’))P(’)] ‘ — 0.
(3.70)

Then, using (3.70) in the remainder term (3.50), it follows that

d
2 t
_Tj Yo / E[Tr(PO U0 (1)PH ) (M) PO)es )| dit
r=1 0

— Oasn — oo.

(3.71)
Consider (3.51), which is the next term in the remainder. Observe

that, again using the Cauchy-Schwarz inequality and the fact that
lea(x)] < 1,

1 ¢ 0) 0) o
E |:n 21: Ljesy Uy (2) Uy (0 — t2)e, (%)
iz

{ > U0 - tz)eﬁ(x)}

jeB,

IA

1 0) )
515 U -

Jj€B;

1
Var!/? { Z Uj(jl)(tz)U]gl)(n — tz)} .
n
Jj€B;

t) — %IE iz U L)U (4 - tz)}

Jj€B;

IA

(3.72)
For fixed j, p, q € By, using (3.19),
DU (6) = ifipg [U 5 UL (@) + U 5 U0
= 2iB, /O Uyt — UL (h)dh.
(3.73)

Using (3.73), recalling that B,; = (1 + (Spq)_l < 1, and the
Cauchy-Schwarz inequality, it follows that

‘qu (t)‘ < 41| / U0 - mudmPdn. (3.74)
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Using (3.74), the fact that |Uj(,?(t)| < 1, and the inequality 2ab <
a* + b?, it follows that

2
DU () U 01 = 1)

1 1}
< 2Dy U (1)1* +2IDpg U (11 — 1)

S 0)
< 8lt| </ U}, (2 = WU, () *dh
0

t—1t )
+ / U( (t —
0

Using the Poincaré inequality, (3.75), adding more nonnegative
terms, and using the property of the unitary matrices that

n
YU =
k=1

—h) Uj(ql)(h)|2dh>.

(3.75)

(3.76)

it follows that
var [UP (1)U (1 - )]
= X E[<M£2>2]E[\qu{q§-”(tz) ”’(tl—tz)}\]

P=q
p>-q € B

802 + Dt = 20 |
B 55 [ | - ol a

p=1g=1
t1—1t
-
0
8(c2 + Dt o 210 2
gn;E/O ‘Ujp(tz—h)’ dh

a0 2
+/ Ujp(tl—tz—h)’ dh]
0

16(c2 + 1)|¢
- ( +)||t1
n

-of2).

Now, combining (3.72) with (3.77), we have that

2
Ul —t h)Uj(;)(h)‘ dh]

(3.77)

ly Dy o !
=~ jeny Uy () U (0 — )eg() | =0~ ), (378)
j=1

and it follows that

‘ L / f {Zme& ;D(tz)UJS'Z)(fl—tz)eﬁ(x):| dtzdn‘

“o(1),

(3.79)

Now consider the final term of the remainder, given by (3.52).
We apply the identity below

oyM") =i / " 1 WU (), (3.80)

which is a consequence of the matrix version of the Fourier
inversion formula (3.21). Using (3.80), the finiteness of the
integral (3.33), the above estimate (3.78), and the dominated
convergence theorem, we have that

x(a —2)

Zar / Zluem (U966 d

[ [

n
> E[UP @)U e )] dndts | > 0

jEBINB,

< Z [x(o* — 2)ay|
r=1

(3.81)

Combining (3.65), (3.66), (3.71), (3.79), (3.81), and comparing to
the remainder term (3.48), the proposition is proved. O

The goal now is to pass to the limit in (3.45). In what follows
let {UZ (x)} denote the (rescaled) Chebyshev polynomials of the
second kind on [-2./¥, 2,/¥],

Lk/2]  \K2
> () (55)

Proposition 3.4. Let Al (t) be given by (3.46), Q(Z)(t) given by

(3.47), and v, (t) given by (3.44). Then the limits ofA(l)(t) Q(l)(t),
and v,(t) as n — oo exist and

U;C” (x) = (3.82)

AD@) = 1lim AD()

n—00

DI N N

Vay — x2/ 4y — y?Fp(x, y)dydxdty, (3.83)
where
ykJrl
Fy(x,y) = Z U UL () . /’2’ 7 (3.84)

k=0

the limit onﬁll)(t) is given by

QU s = lim QP (1)

-2
B (o2 )Z Vz,ozr/ / ¢ Jay — A2dadt
207

4%y p—

(3.85)

2
'/2 o (v 4yr — p2dp,
VT
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and the limit of v, (1), after rescaling by vy, is given by

1 N
— e™*\/4y, — x2dx.

W)= = lim 7, (1) =
vin 2y,

N
(3.86)

Proof: Recall that Aff)(t) =

2% o [ LE [Tr{P(l) U(l)(tl)P(l”)wﬁ(M(’))P(r)}] dt;.

In the full Wigner matrix case one has A,(f) =

-2 fot %IETr{e’tM '(M)}dt;, and the limiting behavior follows
immediately from the Wigner semicircle law. In the case of
submatrices with asymptotically regular intersections there are
additional technical difficulties due to the fact that for the n x n
submatrices M) = PO MP®), we have

2

]‘,kEBlﬂBY

Tr(PUD ()P = Uy (0, (M)

(3.87)
so that the summation is restricted to entries common to both
submatrices, i.e., to j,k € B; N B,. It follows from lemma 2.5 that

the limit of Ag)(t) exists and equals

(3.88)

d t
AV = —2Zarfo (€%, g1 )1 dt,
r=1

where

(@, o) / / %] ()Fip (5, 9)
ot " anlyy, Vi¥r 27 Pty
Vay — x*/ 4y, — y*dydx.

This establishes (3.83). The proof of lemma 2.5 will be given in
section 3.2.

We turn our attention to Qg,l)(t). First it will be argued that
the variance of the matrix entries converge to zero. Using the
Poincaré inequality, (3.74), (3.76), and proposition 3.1, it follows
that

(3.89)

Var { U;jl)(tl)}

> E[wr]E [\qu U;j’)(t)f]

P=q:pq€B;

40+ DIl s [0 UG
< T Y e [ e - e

p=14=1

IA

4o? + Dt - / ), 2
————>'E ’U (t, —t ‘ dt
" 2 1 — k)| db

4(0? + 1)t
S - =
n

(3.90)

= O(nil).

Note that in the course of the calculation (3.90), we showed that

> E

P=q

2
1}
[’qule(j)(tl)‘ ] <48, (3.91)

The Cauchy-Schwarz inequality implies

/ (1 + 2@t ldty < / o
R R (1

+ t%)l/2+6

\/ f (14 )52+ 1@, (1) [2dty. (3.92)
R
Since [|¢r]]5/24 < 00, we have the estimate
o0
/ 1@ (t1)1dh < oc. (3.93)
—00

Using the Cauchy-Schwarz inequality and (3.80), it follows that

qu%(M( ))]] ‘/ tl(/)r tl)quU (tl)dtl (394)

2~ Y PN
< [ amatdn - [~ G- [PpUln| dn
—00 —00
Using the Poincaré inequality, (3.91), (3.94), we obtain

Var [¢/(M);

ZE[M(D ] [‘quwr(M )JJ‘:|
LAY [ wnn- Y [ we] oo o] an

pr=q

2
t%wnndtl) .

I\

402 +1)

(L

Using (3.93), (3.95), (3.90), and the Cauchy-Schwarz inequality,
we obtain

(3.95)

Cov(U(11), i)} < Var(UP (1) - |/ Var [y (M)
=0(n"). (3.96)

Using (3.96) it is justified to replace the expectation
E[U(t)g;(M");] by the product E[U(1)] - Elp)(M");],
when passing to the limit. We use proposition 2.1 of Pizzo et al.
[32], which guarantees that for f € CZ (R),

lim E[f

n—o00

(M);] = /R Fdpse ). (3.97)

In order to apply this asymptotic to the exponential function,
which is smooth enough, we truncate the function in a smooth
fashion outside the support of 5. We are justified in replacing
the exponential function by its truncated version because the
eigenvalues of the submatrices concentrate in the support of
the semicircle law, with overwhelming probability. It is for this
same reason that we may assume ¢, is compactly supported.
This function is not sufficiently smooth, but we can avoid this
problem by a density argument using standard convolution,
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and then apply the bound (3.3) on the variance of linear
eigenvalue statistics.

Let n € C°(R) satisfy f]R n(x)dx = 1, and consider the
mollifiers ny(x) : = y~'n(xy~!). Then
@, * ny € CF(R), and using standard Fourier theory it can be
shown that

(3.98)

P / / 2 _
Jgr(l) ||(pr - (pr * n}/||3/2+g =0.

It follows from (3.96) and (3.97) that

tim 5" 1pennn [UP 006 000;] =

n—oo n
j=1

1 2.
Vir —/ e /4y — 22da
2y J2ym

2
(2 ! / wr(u)v 4yr — du) (3.99)
Ty J_

Using (3.99), we pass to the limit in (3.47), and obtain (3.85). The
limit of
E[Tr{P(l u®phy,

W) = ~E[u ()] ~

is given by (rescaled) Wigner semicircle law, as a consequence of
the zero eigenvalues. Alternatively, it can be computed using the
bilinear form in lemma 2.5, with f(x) = ¢ and g(x) = 1. To
facilitate solving the integral equation (3.101), below, it will be
useful to rescale by y;. We obtain

1 .
) = — ™1
Vi
1
= — 'tx\/4yl — x2dx, (3.100)
2wy
which establishes (3.86). The proposition is proved. O

Now using propositions 3.2, 3.3, 3.4, we pass to the limit
fim — 00 in (3.45), and determine that the limit Y of every

uniformly converging subsequence {Yf,l,i} satisfies the equation

t 51
Yix, t) + 2y, / / Wit — )YV (x, t)dtrdty
0 JO

= xZ(x) [A(l)(t) + Q(l)(t)], (3.101)
where AD (1) is given by (3.83), Q1) is given by (3.85), and
V(@) is given by (3.86).

Now the argument will proceed by solving the integral
equation (3.101). We use a version of the technique used by
Pastur and Lytova [21], to solve this equation. Define

f@): =z =4y —2) /2,

which is the Stieltjes transform of the rescaled semicircle law,
where \/z2 — 4y, = z+ O(1/z) as z — oo. A direct calculation

(3.102)

shows that #) = f, where 7" denotes the generalized Fourier
transform of v¥), We obtain

’ oo r2V .
W) . = - / / ") [y, — x2dxdt
iy o Jaym
1 (27
= — vy — x*dx
2y 2 X—z
= f(2). (3.103)
We check that
z42yf(z) = Vz2 — 4y # 0, TJmz #0. (3.104)
Set
T( ) i / izt ], /Zf eiktd)"
t)i=— | ————— = —— _ ,
2w Jp z+ 2yf(2) T J 2 Ny — A2
(3.105)

after replacing the integral over L by the integral over [—2y}, 2y],

and taking into account that \/z2 — 4y, is =+i\/4y; — A2, on the

upper and lower edges of the cut. Then the solution of (3.101) is

t
YO (x, ) = —xZ(x) f T(t - 1) [A”)(n) + Q“’(tl)] dt.
0 dt

(3.1006)
Then, with Fj, given by (3.84),

¢ d
f T )2 A% ()
0

Zarf / / /Zﬂ i(t—t1)A 1t1x /(y)
s Vi 2

Vay — x4y, —
Vay — 22

Z o / /- /Zﬁ ltx lt)n] ¢r(y)
21713)/1 20T (x—21)
Vv —x \/4% %

4)/[ - )\2

x Fj.(x, y)dydxdidt,

(3.107)

Fy(x, y)dydxd,

and

t
/ T(t — tl)id’)(n)dn
0

Vlr(o' -2) Z Olrf / / i(t—t)h it
Ay, = 27 ‘/4;/1 iy, — 32
27
V4y) — n*dnd x / @ () 4yr — prdudty
_2 yr

Vlr(U -2) oy — it
ey [ [

Vay —n? /
d da @ ()N 4yr — p2dp. (3.108)
V 4yl 2 Vr '
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Using the regularity condition ||¢j||5/24¢ < oo for 1 <[ < d,
(3.107), (3.108), and the dominated convergence theorem to pass
to limit in (3.24) yields

Z'(x)

d o0
=iy q / YO (x, t)dt
—0Q

I=1

o0, 2/
2”3 ZZ ViV / / / fzﬁ(pl(t)

I=1 r=1
[eitx _ eit)»] (/),/,(}’)

(x—A)

4y — x2\/4y, — y?
(VA= 2y —y Fy,(x, y)dydxdy.dt

4)/1 — A2
Vlr((I - 2)xZ(x) ZZ ooy / / /
=1 =1 Yivr
[@(t)eim - @(t)e“} Vay —n? dnd.
n—=x Vay — A2

(3.109)

2
x / R ONC
2 Vr

Applying the Fourier inversion formula (3.21), it follows that

Z'(x) =
xZ(x) Z Z oy / /’ /zm
2m? =1 =1 NV N
[01(x) — 21(M)] 91 /4y — 224y, — y?
(x—A) 4y —
x Fp(x, y)dydxd
Vzr(a —2) oo, / /
—XZ(X) ———5—
;; Yivr
|:</’1(77) - <ﬂz()»)] Vay —n? dnd,
n—=»x NI
N
X / o ()N 4yr — prdp. (3.110)
We will use the fact that
207 [TV (x) = TV (x
/ [Te0) —TeW] Ul (0, k> 1.
27 (x—k) /4)/_)\.2 2[
(3.111)

Expand the test function ¢; in the Chebyshev basis to obtain

B > " _ E/Zm Vi L
oi(x) = g(wz)ka (0, (@ =~ gy o) Ty (t)\/m'

(3.112)

Returning to the computation of Z'(x), using (3.110), (3.111), and
(3.112), it follows that

27
xZ(x) ZZZ Osll/(;‘r (@) k/ / v

I=1 r=1 k=1 Y1 Vr 2

U (e (v 4y — xz\/4% — 2 X Fy(x, y)dydx
r -2 r v
1o 22 T S, /

7'(x) =

=1 r=1 Y] Vr k=1 N
2 Yr
U (/v — P x / iy
—2/7r

(3.113)

Using the orthogonality of the Chebyshev polynomials (2.21),

Z«pz)k / U (/A —

N ()
- zﬁ/ R g (3.114)
27 V4y — A2
Integrating by parts yields
W WV pgr(p)
/ () 4y — p2dp = / deﬂ’ (3.115)
27 207 VA — 1
so that
yir(o? —2) /zm A) [V mpr(u)
am2yyy Joaym Ay — A2 27 Ay, —
(‘-'72 -2) v
= (eD1(@)1. (3.116)
4 Nz @1(@r)1
Since
d T k
L) = —=U,_, () (3.117)
dy \/7 k—1
we expand ¢,(y) in the Chebyshev basis to obtain
1 o0
/ e
e (y) = m(@r)mU,, (). (3.118)
r V4 2ﬁ mgl 1 J

Recalling that Fj, is given by (3.84), it follows that

SN mli@onm [ / / U@

k=1 m=1 2V

U )V 4y — X2/ 4yr — y2Fy (x, y)dydx}
o0 o0 o0

= Zm((pl)k(q)r)m/ /
P _
]+1
Vi Yr
U; ' U (y) x Vay — x2\/ 4y, — y*dydx—7— J/2y1/2

Ul (Ul ()
27

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

June 2020 | Volume 6 | Article 17


https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lietal

Submatrices of Wigner Matrices

oo k

= 2 ylr
= 4%y, E k(o) i(@r)k (y(k_l)/zy(k_l)/z) ) (3.119)

l r

k=1

Using (3.119),
follows that

(3.114), (3.115), and (3.116), in (3.113), it

Z'(x)

i) A d 29
_x (x) ZZazar[(G 5 )J);_(¢l)1(¢r)1

=1 r=1

k
Yir
E k r
—Fk:1 (eDr(@ )k( Tm) }

d 2 3]
—xZ(x) Y o} [‘;(wz)% + % > k(wz)i}
I=1 k=2

02 Yir
—x2(x) Y e | - ;
xZ(x) 2 oo [4 (D1 (en)1( 7/m)
1 - Yir k
+- Yk , . 3.120
2L (eDi(e )k( Vz%) } ( )

We have obtained the expression for the asymptotic covariance
(2.14) in terms of Chebyshev polynomials. Now we write this
expression as a contour integral. Let

Yir

NG ’

make the change of coordinates x =
2, /Yrcos(w), and use (2.14) to obtain that

2/vicos(0), y =

1 oo
5 2 kB nilen

k=1
2%
,,zZ / f Wgoz(x)myﬂ‘k(z f)

T ( y ) dxdy
2vr \/47/1 - xz\/47/r -

/ / Zkﬁkcos(kO)cos(ka))qu

(24/7ic0s0) ¢r (2 yreosw) dodo. (3.121)
Integrating by parts in 6, w it follows that
1o, i
3 > kB @Dklenk (3.122)
k=1

- 2 T , /
= /0 /O 9] (24/71c080) @, (24/¥rcosw)

Xk
|:Z ﬂksin(kG)sin(ka)):| X (24/y15inf)(2./yrsinw)dd dow.

k=1

To evaluate the infinite sum above, recall that for z € C with
|z| < 1, we have

In(l1—2)=-— (3.123)

32

=
k=1
Noting that 8 < 1, using (3.123), it follows that

> gk

Z %sin(k@)sin(kw)

k=1

o _ efika):l
= —i [— In (1 - ,Bei(0+w)> +1In (1 - ﬁe’w*“’)>
—1In (1 Be~ 9+“’)) +In (1 - ﬂe*i(e""))]

= —i [ln [(1 — ﬁe'w*“’)> m]
“In [(1 - ﬂel’(”w)) (1— ﬁei<9+w>)]] . (3.124)
Making the change of coordinates z = ,/y; e, w= /ye®, and

Yir
e thls can be written as

recalling that 8 =

i(0—w) i(0— )

Z ﬂ—k sin(k0) sin(kw) ! In <1 pe ) e
= k 4 (1 et(9+a))) (1 _ ‘Bez(9+w))
(1 - V)l/l):r ZW) (1 - V;Z/l}:r 7)

L= )
Yivr Vll’r

_ 1 |ylr - ZW‘2i|
= —In|—— —
4 |ylr - Zle
RSN patias (3.125)
2 Vir — ZW
Combining (3.122), (3.125), and noting that
. . _ _ Y _ Yr
(Zﬁ sin 9) (2 Yy sin a)) dfdw = (1 22) (1 wz) dzdw,
it follows that
e~ 4
5 2 kB @D =
k=1

b el

2P =y W=y
Jmz>0 Jmw>0

Vlr_zw‘( yz)(
— (1= 1-—
Yir — 2W 2

Compare (3.120) to (3.8). Using (3.126), (3.13), (3.14), and (3.9),
it follows that the covariance can be written as.

N[g, 1)

In (3.126)

%) dzdw.

lim Cov{iN?[g)],
n—o0
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o? Yir 1 & Vir k of Anderson et al. [16]. Therefore, letting k,; denote a product of
= — (o1 (@) ( )+ 5 > keDrlenk . :
4 ) Y. free cumulant functionals corresponding to the block structure
k=2 of the partition 7, it follows that
2 / Yiy vr\ 1
= = o lz+ =)o (w+—) —log
T z w/ 2w 1 ) .
IzZ2=y |w?=y, (8, )y, = lim ~E [Tr{P(l) (P“’MP(’)) <P<’)MP(’>) P<’>”
Jmz>0 Jmw>0 1
= lim -E [Tr{P(’)MP(’) <o pO pp® pr) pgp) »P(')MP(’)]
Vie Z2W\ (Y e n
vie—zw| \ 22 = i (PO, M, PO, M, PO PO M, M, PD)
g 2 5 Zm N N 7 eNCQ2(k+q)+1)
% (1 _ L’Z) dwdz + M/ Ad}» = 3 Ky (Mic, (PO, - PED . plr)y,
w AT =yiyr 27 VAV — A2 71 € NC(odd), w5 € NC(even)

‘/‘Zﬁ .Uv(pr(ll«)
—20% V4vr — u?
3.2. The Bilinear Form

The main goal of this section is to prove Lemma 2.5, to which we
now turn our attention. Begin with the following definition.

du.

Definition 3.5. Let M be a Wigner matrix satisfying (1.1), and let
PO, pln) be the projection matrices defined in (2.6) and (2.10).
For polynomial functions f, g : R — R, define

1
Fogdin =~ Y E[fOgy]  Ga27)
j.k€B;NB;,
1
= E [Tr [ POFMDy . pin) . g(m™) P(r)”_

The large n limit of (f,g);, exists for polynomial functions
because all moments of the matrix entries of M are finite. Then
limy—oo(f, Q) 1rn = (f>Q1» where (-,-);, is the bilinear form
defined in definition 2.3.

We will compute the bilinear form (f,g); for monomial
functions f(x) = Xk, g(x) = x1. We will also consider the random
variables n*ITr{P(l)f (M(l))P(l”)g(M(r))P(r)}, and prove their
convergence almost surely to the non-random limit described in
lemma 2.5. To this end, we will use some results and techniques
from Free Probability. We refer the reader to Anderson et al.
[16] for the relevant background concerning noncommutative
probability spaces, asymptotic freeness of Wigner matrices, as
well as the definition and the properties of the multilinear free
cumulant functionals «, for p > 1.

Consider the matrices M,P?, P as noncommutative
random variables in the noncommutative probability spaces
(Matn((C),E[%Tr]) and also (Mat,(C), %Tr{~}). Since M is
a Wigner random matrix and (PO, P} are deterministic
Hermitian matrices, it follows from part (i) of Theorem 5.4.5 in
Anderson et al. [16] that M is asymptotically free from {P?, P(}
with respect to the functional n~YETr(-). In addition, it follows
from part (ii) of Theorem 5.4.5 in Anderson et al. [16] that M
is almost surely asymptotically free from {P(), PV} with respect
to the functional #~!Tr(-). The collection of all non-crossing
partitions over a set with p letters is denoted below by NC(p).
An important consequence of the asymptotic freeness of these
matrices is that mixed free cumulants of M and {P", P(} vanish
in the limit, with respect to both functionals, see Theorem 5.3.15

m Umy € NC(k+4g)+ 1)
(3.128)

and also that almost surely

1
lim —Tr

n—oo ¢

{ PO (P Mpa))k (P MP(r))‘f P }

2

7eNC(2(k+9)+1)

2

w1 € NC(odd), m, € NC(even)
m Umy € NC2(k+¢g)+1)

PO, 0, PO, M, PO, PO M, ... M, PO

Ky (M) iy (PO, PN Lo ),

(3.129)

Above NC(odd), for example, denotes the set of non-crossing
partitions on the odd integers in the indicated set. Since the
calculation of the joint moments in each non-commutative
probability space (Mat,(C), n 'ETr) and (Mat,(C), n"'Tr) is
identical, we make no distinction between their free cumulants.
Lets denote by NCP(p) the set of all non-crossing partitions over
p letters which are also pair partitions. Recall that NC(p) is a
poset, the notion of partition refinement induces a partial order
on NC(p), which will be denoted by = < o if, with 7,0 € NC(p),
each block of 7 is contained within a block of 0. Now a notion of
the complement of a partition will be developed.

Definition 3.6. With w € NC(p;), define the non-crossing
complement ¢ € NC(p,) to be the unique non-crossing partition
on p, letters so that w U ¢ € NC(p; + p2), and 0 < 7¢ for all
other o € NC(p,) satisfying w Uo € NC(p; + p2).

Since the limiting spectral distribution of M is Wigner
semicircle law with respect to the functional n ' ETr, and almost
surely the Wigner semicircle law with respect to the functional
n~1Tr, we have that k,(M) = 1 and kp(M) = 0 for p # 2.1t

follows now that
(5, x9), =0, if k4 q is odd, (3.130)

and also that almost surely

1
lim —Tr

n—o00 n

{(P(Z)MP(I)>k (P(’)MP(’))q} =0, if k+q is odd.
(3.131)
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Supposing then that k+ g is even, and continuing the calculation,

ok, x1y;, Ky (PO, - Py

2

7, NCP(even)

2

w1 € NC(odd)
mUm e NC(2(k+ q) + 1)

meNCP(k+a) ) e NC(k +q+ 1)
m <y

e, (PO, -, PD)

7§

Z l_[ hm IETr{ 1_[ piy,

71,€NCP(k+q) i=1 Pi)es;
(3.132)

where 7y = {Sy,--- ,S|,,1c|} are the blocks of the non-crossing
complement of a given partition. We have used the complement
partitions to write the sum of the free cumulants over the
partitions of the projection matrices into a product of joint
moments of the projection matrices.

Similarly, with respect to the functional n~!Tr, we have that
almost surely

lim ~Tr { (p")MP“))k (P(r)MP('))q}
n—oo n
_ Z Z Ky (PO, -, PO
71, €NCP(even) 1 € NC(odd)
T U, € NCQ(k+q) + 1)
. 3 ke, (PO, .. P
meNCPk+9) 71 € NC(k+ g+ 1)
m < my
_ ()
£ Mimra [T o

b9} ENCP(k-‘rq ) i=1 P(/)es,-

Recall that the non-crossing pair partitions are in bijection with
Dyck paths, NCP(k + q) — D(kq)- Thus the computation for
each functional reduces to counting Dyck paths. The number of

Dyck paths (h(0), - - - , h(k + g)) with h(k) = jis
|:<*k ) (7]{ >] |:<q ) < ! )i|
1)\ ati ) ~ | a2
2 2 2 2

B G+ 1)
T (k+1)(g+1)

k+1\/q+1
kti+2 |\ gtjt+2 )
2 2

a b

Note that lim,_, oo n~!Tr (P(l)) (P(r)) =y, foranya,b >
1. Also note that below the partition 7{ depends on the Dyck
path d € D4 (which corresponds to some non-crossing pair
partition). Also note that by ||| we denote the number of blocks
of 7r{. Suppose for now that both k, g are even integers.

The height of the path at h(k) must be even, say h(k) =
2j. Those blocks which consist only of the matrices P will
contribute a factor of y; to the product of joint moments.

The number of blocks which contain only the matrices P%
corresponds to the number of down edges of the path in the first
k steps. Denote by u the number of up edges and d the number
of down edges of the path up to step k. Then u + d = k and
u —d = 2j, which implies that d = k/2 — j. The number of blocks
which contain only the matrices P is equal to the number of up
edges of the path in the final g steps. This number corresponds
to the exponent on the factor y;, in the product of joint moments.
Denote now by u the number of up edges and d the number of
down edges of the path in the final g steps. The u +d = g and
d — u = 2j, which implies that u = ¢/2 — j. The remaining
blocks of the partition contain projection matrices of mixed type
and will contribute a factor yj, to the product of joint moments.

Since the total number of blocks in the partition is k;—q + 1, the
number of factors of y, in the product of joint moments is 2j + 1.
Partitioning the Dyck paths into equivalence classes based on the
height h(k), we get that

‘”1

Z l_[ hm ETr{ 1_[ P(’)

deDjig) =1 POeS;

(o, 21y,

o

k+1
k4242
2

(2j+1)?
—~ (k+ D+

q+1
q+2j+2
2

—j_ 2j+1
Ir

(232)(

k_ioq
kg
)sz v

-

and also, almost surely,

{ (p0 Mpa))k (P MPm)q}
5|
1_[ !

Pies;

1
lim —Tr
n—oo n

2

dED(k+q) i=1

lim Tr
n—oo n

N

k+1
k+2j+2
2

(2j + 1)
— (k+1(@+1)

q+1

—j 2j+1
q+2j+2 '
2

Ir

R

Now suppose that both k, g are odd. The height of the path at
h(k) must be odd, say h(k) = 2j 4 1. Similar to the even case, the
number of blocks which consist only of the matrices P? equals
the exponent of y; in the product of joint moments. The number
of blocks which contain only the matrices P! corresponds to the
number of down edges of the path in the first k steps. Denote by
u the number of up edges and d the number of down edges of
the path up to step k. Then u +d = kandu —d = 2j + 1,
which implies that d = (k — 1)/2 — j. The number of blocks
which contain only the matrices P) is equal to the number of up

-
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edges of the path in the final g steps. This number corresponds
to the exponent on the factor y; in the product of joint moments.
Denote now by u the number of up edges and d the number of
down edges of the path in the final g steps. The u +d = g and
d — u = 2j + 1, which implies that u = (¢ — 1)/2 — j. The
remaining blocks of the partition contain projection matrices of
mixed type and will contribute a factor of y;, to the product of
joint moments. Since the total number of blocks in the partition
is @ + 1, the number of factors of y;, in the product of joint
moments is 2j + 2. Partitioning the Dyck paths into equivalence
classes based on the height h(k), we get that

ey
Wty = Y [ tim BLre TT 29

dGD(k+q) i=1 Pies;

e

—1

Bl - a2
= Yo o ont vty

N‘

=0 d € Dgyg)
h(k) = 2j + 1
k-1
w @42y <k+1)<q+1>
& (et g+ \H2 ) g
Bl 2l i
i A

and also, almost surely,

lim LTr (P(”MP(’))k(P“)MP(”)q
n—oo 1
|771

> [Lim ot [T 0

d€D(kyq) =1 Pies;

-~

—1

k—1 . g—1 . .
Bl 4 2j+2
= Z Y v Vi

d € D1
h(k) = 2j + 1

N‘

-
Il
IS

T

(2j +2)? k+1\[/q+1\ &1 o1 22,
=) (k+ (g + 1) \ 22 ) g L G
j=0 2

|

Now for polynomials f(x) = Z?:o a;x' and glx) =

have by linearity that

>ilo bjx/, we

P m
ZZa,b] X', ),

i=0 j=0

(3.134)

The intersection of countably many events, each with probability
1, occurs with probability 1. There are only countably many
polynomials with rational coefficients, so we have proved that the
random variables

1
;Tr{P(l)f(M(l))P(l’r)g(M(r) )p(f) L

converge almost surely to the same, non-random limit given by
the right hand side of (3.134), whenever f, g are polynomials with
rational coefficients.
The bilinear
next proposition.

form (f,g); is diagonalized in the

Proposition 3.7. The two families {Uy’}k o and {U%/’ 230
of rescaled Chebyshev polynomials of the second kind are

biorthogonal with respect to the bilinear form (3.128).
More precisely,
1 Yir \k+1
(UL U = g (——=) (3.135)
e R T

The Proposition 3.7 is proven in the Appendix 2.

Remark 3.8. Previously we have shown that whenever f, g are
polynomials with rational coeflicients, almost surely (a.s.)

1
Jim ~Tr IP(l)f (M) . ptn ‘g(M(’))P(”] = (f.Q)

The Chebyshev polynomials have rational coefficients, so it
follows from the above argument that a.s.

1
lim Tr{P(l) Ul Pt Ul ()P
VIYr 100
Vir  \k+1
= 8y (— )L, (3.136)
KRN

Now the bilinear form (-, -); will be extended to functions other
than polynomials. For this part of the argument, the bound on
the variance of linear eigenvalue statistics in 3.3 is essential.

Proposition 3.9. Let f,g € H; for some s > % i.e., for some
€ >0,

/w FOP A+ [t dt < oo, /oo B (1 + ()€ dt < o0.

(3.137)
Then the limit of (f,g) 1. (see definition 3.5) as n — o0 exists and

> T F’ ’
Fghr = i / / Wf(x)g(y) 2 (5,9)
Vay — x* /4y, — y*dydx,

and also, almost surely,

(3.138)

Jlim L { POFMDy . pon . g(m™) p(r)}
2%

T antyy, / / N
Vay — x2 /4y, — y2dydx,

where the kernel Fj,(x, y) is given by (3.84).

JEgyEr(x.y)
(3.139)
The Proposition 3.9 is proven in the Appendix 3. Lemma 2.5

now follows from Propositions 3.7 and 3.9. This also completes
the proof of Theorem 2.1.
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4. PROOF OF THEOREM 2.2

It is enough to prove the case of d = 2, ie, the
limiting covariance of AN"[¢;] and N P°[gy]. Let
U@, U0, un(0),Tn(t) — be D@, UD(0), ul (), u? (1)
defined in (3.16-3.17) respectively. U(t) and U(t) are unitrary
matrices and

UUr O =0T 0 =1L sl <1, Y U =1
k=1

By Remark 3.3 in Lytova and Pastur [21], we have the
following bounds

Var{u,(t)} < C(o6)(1 + [t]*)?,
Var{Zi,(t)} < C(os)(1 + [t*)%,

[e’e) 2
Var(NV{D°(1)} < Clos) ( / 1+ |t|3)|a1(t>|dt>, (4.3)

—00

(4.1)
(4.2)

e8] 2
Var{\{?°(1)} < C(06) (f (1+ [£1)[@2(0)] dt) . (44)

—0o0

Let w be a linear combination of random variables Nn(l)o [¢1] and
N, ’52)0 [¢2], and Z,,(x) be the characteristic function of w, i.e.,

w=aN (o] + BND°[@a], Zn(x) = B{e™™).  (4.5)

We note that

Zy(x) =1+ / xz;(t)dt; 7! (x) = iE{we™),  (4.6)
0

By the Cauchy-Schwarz inequality and (4.3-4.4) we get
o0
1Z,(0)] < (lee| + |ﬂ|)C1/2(a6)f A+ [1P)@u@)] dt,  (4.7)
—00

Using the Fourier inversion formula f(A) = f eit’\}\(t) dt
we obtain

Nn(l)"[(pl]:/ @1 (t)us (1), N,52)°[¢z]=/ @)1k, (t)dt.
- - (4.8)

Therefore,

w= / a@1(Hu, (t) + B@2 (1), (t)dt, (4.9)

7 (x) = ia / - P1(D) Y (x, t)dt + iB / - O ()Y, (x, t)dt,

(4.10)
where

Yol £) = Blup(Den ()}, Yalx, 1) = B{i, (Dea(x)}, en(x) = ™.
(4.11)
By the Cauchy-Schwarz inequality,

1Y, 1)] < B{ul()]} < CV%(06) (1 + [t), (4.12)

Yalx, )] < B{ (0]} < CV2(06) (1 + [¢P),  (413)
and
Yl D1 = Bl N T Jeu(8) + B len ()
< Clog)(1 + [t1*) foo 1+ [t (a1 ()]
Jrlﬂ@z(t)l)ﬂlt._Oo (4.14)
Also

3 L i
3 1ro ) = Bl (000} = 7= > E{(Wid,),  (4.15)

jkeB
where
= Up(05 ().
Recall that for Djx = 9/0Mjr, Bjx = (1 + Sjk)_l,

DixUap(t) = 1 ke, iBik[Uaj * Upk(t) + Up; * Ugk()], (4.16)
DjxUap(t) = 1kep, iBik[Usj * Upi(t) + Up; * Uni(1)], (4.17)

and

Djken(x) = 2ijxen(x)(Ljkep, @(91)j(M1) + Ljkep, B(¢2)3(M2))

(4.18)

o0
—2Bjkxen(x) <1j,keBl / tUp(t)aegr (t)dt + 1 ke,
—00

/ tﬁjkﬁ@(t)dt> .

—00

(4.19)

Lemma 4.1. Let ¢y, ¢, have fourth bounded derivatives. Then

IDL(Up(Des ()] < Gl t), 0<1<5  (4.20)
where Cy(x,t) is a degree | polynomial of |x|,|t| with
positive coefficients.

Proof: From (4.16) and (4.17), we have
D U1 1D}, Uap ()] < Constltl!, 0<1<5.  (421)
(4.19) implies

|Dlyen(x)] < Constj(1+1x]') 0<1<5. (4.22)

These two inequalities complete the proof of Lemma 4.1 O

We now apply the Decoupling Formula (5.1) with p = 2
to obtain

0
—Yu(x1t) =

at % Y 1+ (07 = DEEDD,) + O(1)

LkEBl
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i
=~ > (L4 5IE(DyP,}
j,kEBl

(o2 —2)
+t— > E{Dy®,} + 0(1). (4.23)

jeB,

where the error term is bounded by Cs(x, t) as n — oco. The first
term in (4.23) is

t
Ly -t / Efun(t — 1)) Yo, 11)dty
n n 0
t
_Lgy / un (Ut — 1)1 €5())
n 0

2B ren(x) ( / h
n —00

o0
+ / tlTrP“’”Un<t>P“’2>ﬁn(tl)ﬁ@m)dtl).

—0o0

tiun(t + f)a@r (t)dh

The first term and the second term are bounded because of (4.12).
The last term is bounded by

ZIfo ltl(leell@1(t)] + |BlI@2(t)))dt,

and the third term is bounded by 20t|CY2(06)(1 + |1]?).
The second term in (4.23) is

0.2 t
> a{ [ vieu - wine o)
0

jeB,

2 —
n

. 2 00
+”“(2n")§1€ {en<x> /| K U,j(t)qjm)a@(mdn}
. _ 2 9] -
LR E{enm / t1%j(t)%j(t1)ﬂ@(t1)dt1}

JEB1INB;

The first term is bounded by 2|2 — o'2||¢|, and the second term is
bounded by

oo
20x][2 — 02|/ It[(lal1@1 (t)] + | BlI@a(t1))dtr.
—00
So

= CS (x> t)

a
‘ a Yn (x> t)

By symmetry, Y,(x,f) has similar bounds. Therefore, we
conclude that the sequences {Y,}, {?,,} are bounded and
equicontinuous on any finite subset of R, We will prove now that
any uniformly converging subsequence of {Y,}({Y,}) has same
limit Y(Y).

We deal with Y, first, and by the symmetric property, we can
find Y,,. We use the identity

t
un(t) = ny +i f > MpUg(t)dt, (4.24)
0

j,kEBl

to write

i :
neo=—= [ jg E(WUp(t)eldn.  (425)

By applying decoupling formula (5.1) with p 3 to (4.25),

we have

i [ >\ Kipjk

Tl ) = 7/ 2 [Z L RAD, (Ui (t1)es, () + e3k | dta,
JATT n o

v Jo ikem Liso nl/2]1

(4.26)
where

Kk = 0k = 1+ 8x(0? — 1), (4.27)
K3jk = U3, Kajk = Karj 7 ks (4.28)

and «3jj, k4,j are uniformly bounded, i.e. there exist constants
03,04 such that
|rc3il < 03, |kajj| < 04, (4.29)

and

leajil < n 2 C3E{|Wikl*} sup \ka%(x)] < n72Cy(xt). (4.30)
teR

Let
; t
i
hi= n(l+1)/2/0
K1,k o
> i BDL (U, ()dn, 1= 1,2,3, (4.31)
j.keBy ’
.t
i
En = / D et (4.32)
ﬁ 0 jkeB
Then
Ya(x,t) =T1 + To + T3 + &y,
and
2
€n] < =5 Cs(x,1) > 0, asn — oo.
n5/2

We note that if ij’s are Gaussian, then Y, (x,t) = Ty. Thus, T;
coincide with the Y}, in Theorem 2.1.
Let

va(t) = ”_IE{un(t)}a Tjn(t) = n_lE{an(t)}-

Then

t t
Yol ) + 2 / d / it — 1) Yo, )t
0 0

= xZn(0)An(t) + (6, t) + To + T3 + &4, (4.33)
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where

20 (! ,
O P / E(TrU(t)P1g),(M1)Py )iy

f E{TrU(tl)Pz(pz(Mz)Pz}dfl, (4.34)

and r,(x, t) — 0 on any bounded subset of {(x, ) : x € R, ¢ > 0}.

Let A(t) = limy— oo Au(t). It follows from the proof of
Theorem 2.1 that A(¢) coincides with the one established in the
Gaussian case.

Proposition 4.2. T» — 0 on any bounded subset of {(x,t) :x €
R,t > 0}.

Proof: The second derivative (1=2) is

D3 (U(t1)ep(x)) = B x
{=(6Uj; * U * Upk + 2Ujk * Uy * Uy (t1)e;, ()
—4i(Ujj * Ugk + Ujge * Up) (1) xen(x)

(o] o0 ~
[ f tUn ()1 (8)dt + 1 ke, f tUjkﬁ@(r)dt]
—c0 —00

oo

oo 2
4Uj(t1) %" en(x) { / tUx (D@1 ()dt + 1j ke, / tﬁjkﬂ@(t)dt]
—2iUj(t1)xen(x) [/ t(Ujj * Ugk + Uk * Up)(D)ae@r (t)dt

o0
+1jkeB, /_m HUjj * Upr + U * Ujk)(t)ﬂ@(t)dt]}-

Let

H t
1K3 2
T = W -/(; E { E _lBjk (6U]j * Ujk * Ugk

jok€By

+2Uje * Uje = Uge) ()6 ()

B30+ Uit U x Upd 0 [ 20 ()ai (i
+4I3k k(t)x"en x)(/ t Ui (k)i () dt)

_2iﬂﬁ< Ujk(t1)xen (x) / t2(Ujj * Ugk + Ujk * Ujk)(tz)ﬂ@(tz)dtz} dt,

; t
1K3
T—z//El

+8I3k G x)ftz i (t)ag (t2) dtZ/t3ﬁjk(t3)ﬂ@(t3)dt3

Z 4'3]k Uj(t)x e,,(x)(/ t,Ui(12) B@2(t2)d12)?

jkeByNBy

—2iB5 Uyt )xen (x) / t2[Ujj  Upge + Upe * ffjk](tzm@(rz)drz} dty,

T3 = 2n3/2/ D kil

JjEBL

D5 (Uji(11)e;, (x))}dty.

Then T, = T; + T2 + Ta3. It has been shown in Lytova and
Pastur [21] that | T1| < [¢|Ca(x, t)n; /n>/? on any bounded subset
of {(x,t) :x € R, t > 0}. Also, by Proposition 4.1 and (4.29), one
has |Ta3| < [t|Ca(x, t)ny /n/2.

In Ty, there are three types of a sum,

S = n3" Z

Upe(t1) Upe(£2) Uik (£3),

j,keBlﬂBz

S;=n"2 Y Up(t) Up(t2) Uylta),
j,kGBlﬂBz

S3=n"3? Z Up(t) Ujj(t2) U (83).

j,kEB] NBy

Applying the Cauchy-Schwarz inequality we obtain

-3/2 Tt T M2
IS1l = ™2 37 1Uk(e) U(t)] < 75,
j,kEBz
_ ny
182l = ™32 3 7 Ut Up(®2)] < — 75
j,kEBl
Writing
n12
83 = 55 (PU)PRV(6), VL),
where
Vi) =y Ty e p,-
VIOl < 1, |PU@#)P2|l < 1, we conclude that S3 <

:3%, hence Ty, < |t|/n?/%. This completes the proof of
Proposition 4.2. O

Proposition 4.3.

T3 = T31 + T3 + Rs(x, 1),

where
1K4
Ty = Z {Ujj * Ugi(t1)xen(x)
] keB;
/ t, Ujj * Ukk(tz)a@(tz)dtz} dty,
1K4
Ty = / Y E{Uj* Un(tr)xen(x)

Js keB1NB;

/ t2 ﬁJ'J' * ﬁkk(tz)ﬂfﬁ\z(l‘z)dfz} dty.

and R3(x,t) — 0 on any bounded subset of {(x,t) :x € R, t > 0}.

Proof:

lK4
= on2

f 3 B(DL Ukt + T,

],kEBl

where

- f S Geags — k0 E(D(U(11)es ()}

]EBl
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By Proposition 4.1 and (4.29), we have ITs| < |t|Cs(x, )ny /n>. _ 1 /Zﬁ gt 2y — u? d (4.36)
The third derivative (1=3) nt)/lz oy /4y — u2 Mo ’
D3 (Ui(t1)e; (%)) = B
{—i(36Ujj * Ujk * Ujk * Ukk + 6Ujj * Ujj x Upg * Uk + 6Ujk * Ujk * Ujk * Ujk)(tl)efl(x)
+6(6Uj; * Uik * Upg + 2Uj Uji * Uy )(t1)xen(x) (/ tU(t)agr (t)dt
Haen, [ ppaioat)
~ 2
+12i(Ujj * Uge + Up * Uge) (t1) x> e (x) (/ tUp()a@r (t)dt + 1j ke, / tUjkﬁ@(t)dt)
+6(Ujj * Ugk + Uji * Ujk) (t1)xen (x) (/ t(Ujj * Ugk + Uy * Up)()ae@r (t)dt
+1; ke, / HTjj * Upe + Uy * ffjk)ﬂ@(t)dt>
B 3
—8Uj(t1) en(®) ( / tUR(Da @ ()dt + 1gep, f tUjkﬁ@(t)df>
121U (1) e () ( f tUR(Do@i ()dt + 1gep, f tﬁjkﬂ@(t)dt>
([ €03 Ui+ U U0 0t + L, [ 10 D+ Ty x Tpopaco
+2Uji(t1)xen (x) |:/ t(6Ujj * Ujg * Upx + 2Ujk * U * Up) (@i (1)dt
+1jke, / H6Ujj * U * Upge + 2Uj * Uy * ffjk)(t)ﬁ@(t)dt]}. (4.35)
So any term of
i ENG2
. t ~ ! itjL 2
iKy o V(L) = — M4y, — ptd
o [ X B0 e e 0 = =52 /) e
jkeBy 272 2
1 2. 2y —
) - / o Mgy )
containing at least one off-diagonal entry Uj or Uy is bounded Ttyy Jaym o VA —p
by Cs(x, t)ny/ n?. Let R3(x, t) be the sum of Ts and these terms.
Then |R3(x, t)| < Cs(x, )y /n® + |t|Cs(x, )ny /n?. Sgtwo terms  Let
in (4.35) containing diagonal entries of U and U only left . .
contribute to Tj. They are T31 and Tx;. O I(t) = / (v % v)(t;)dt, 7(1.) — / & *V)()dt. (4.38)
0 0
Let
2 Denote
1 Vo
v(t) = [ e’t)”\/ 4y — AZd), 2 3
2y J 2y 1 2y — 1
27 By, = TJ/Z (PI(M)ﬁdu,l =12 (4.39)
~ 1 z -2 (R
V() = / e \/4y, — )2d). l i Y
2yy Joo o
Proposition 4.4.
By Wigner semicircle law, one has
T3 — iK4xZ(x)I(t)ocylzB¢,1, (4.40)
Jlim v,(8) = yav(D),  lim Vi (£) = y2¥(0). T3y — ikaxZ(x)[(1) By By, (4.41)
Then uniformly on any bounded subset of {(x,t) :x € R, t > 0}.
i W Proof- The proof of (4.40 be found in L dp
_ I : proof of (4.40) can be found in Lytova and Pastur
(vx)(t) = znyf /;Zﬁe wV v = wdp [21]. To study asymptotic behavior of the Lh.s. of (4.41) we write:
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ixkg [F

T =—7
n= - Jo
j,kEBl NBy

X ﬂ@(tz)dt4dt2dt3dt1

3] t _ B
Z /0 //0 HE{Ujj(t3) Ukk(t1 — t3)Uji(ta) U2 — ta)en(x)}

t t t
iy f / / / BE{va(ts, ta)vn(ts — b, 2 — 1€} BBt dtadtrdtsdts
0 0 0

t t t
+iXK4Zn(X)/ / // BE{va(ts, ta)va(ty — t3, 1 — 14)} @2 (t2)dtadtr dtzdty
o Jo 0

where

a(ti ) =n""! Z U;i(1) Uji(t2).
JEBINB;

(4.43)

Then

[E{va(ti, 2)va(ts, ta)e, (x)} < 4E{|v,, (t1, t2)[} + 4E{|v,(t3, ta)}
(4.44)
and

Efva(t1, t2)vn(t3, t4)} = v (b1, 02)Vu(t3, ta) +E{vu(t1, t2) v, (13, 1)},
(4.45)
where

vn(t1, 1) = E{va(f1, 12)}. (4.46)
Proposition 4.5.
vn(t1, t2) = yizv(t)v(t2) + o(1),

uniformly on any compact set of R2.

Proof: Indeed, E{l]ﬁ(tl)a]j(tz)} = v(t1)¥(t2) + o(1) uniformly in
1 <j < mnandt,1, from a compact set of R2, which follows from

EUj;(t) = v(t) + o(1), Var{U;(t)} = o(1),

(see e.g., [33]). O
So the limit of T3, is
t 00
ix/c4Z(x)y122/0 v v(h)dh /;oo B2 (02)V * V(t2)dt,
= ixK4Z(x)y1221(t),3B¢2.
O

Soif Y(x,t) = lim,_ o Yu(x, 1), then Y(x, t) satisfies

[e%e} t
Y(x,t) 4+ 291 / dt / v(ty — H)Y(x, t)dt
-0 0
= xZ(x) [A(t) + ikal(t)(cy{ By, + ByirBy,)] -

Therefore, if let Y*(x, t) be the solution of

[e%e} t
Y(x,t) 4+ 29 / dt / v(ty — )Y (x, t)dt, = xZ(x)A(t),
—00 0

(4.42)

then

ik4xZ(x) N ) /Zﬁ et 2y —22)
Y(x,t) = Y*(x, t) + By, + B ———"dx
(X ) (X ) 27Ty12 [Ol}/l @1 ﬁVIZ (02] 2y m
(4.47)
Symmetrically,
~ ~ ik4xZ(x) ) 5 /2‘/% ™ (2y, — A%)
Y(x,t) = Y*(x, t) + ayi,By, + B L _di.
2771/22 [ Yi2By, + BY; VJZ] oy m
(4.48)

Therefore,

Z(t) = ia / - ADY(x, H)dt + i [ ” BT (x, dt

K4xZ(x) /Oo . 5 2
@1(8) |yi By, + ByixB
27”/12 oo [ 1791 12 (ﬂz]
>/'2\/)71 eit)\(zyl _ )\'2)
N VL e
K4
2
/\2\/)72 eit}»(zyz _ )\’2)
27 Ay — A2
5 XZ(x)
2

—xVZ(x) — «a

dadt

xZ(x) [ _
-B 2 / ?2(t) [ayyBy, + B3 By, |
JT]/Z —00

dxrdt
—xVZ(x) —a

5 XZ(x)
2

v1v2B;, — aBxZ(x)y{,By, By,

-8

2
Y1v2By,
2,286 2 2280
—xVZ(x) — xx4Z(x) | 2y} - + aByi2By By, + B7Y; -
(4.49)

where
V = o*Var(Gy) + 208Cov(Gy, Gy) + ﬂzVar(Gz),

and Gy, G, are the random variables in Theorem 2.1 with d = 2.
Therefore,

lim_ CovIN Y[, N[ ]) =
NG —u?

[ Gt
—Zﬂ 2

2n
4 —n

2
Yi2K4

Cov(G1, G2) +
2m2yltys

e1(p)
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Wn 2y — 1
/ () ~d (4.50)
—2Jr2 V2— 1
By symmetry, forany1 </ <p <mn,
-~ o~ VZ;KAL 2
Cov(Gy, Gp) = Cov(G, Gp) + ﬁ/ o))
2n%yiyp Jaym
2y — A2 2% 2y, — p
) ¢p(u)p7du (4.51)
\/m 2% 4y, — 2
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