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A variational problem for a fourth order parabolic surface partial differential equation is

discussed. It contains non-linear lower order terms, on which we only make abstract

assumptions, and which need to be defined for specified problems. We derive a

semi-discrete scheme based on the surface finite element method, show a-priori

error estimates, and use the analytical results to prove well-posedness. Furthermore,

we present a computational framework where specific problems can be conveniently

implemented and, later on, altered with relative ease. It uses a domain specific language

implemented in Python. The high level program control can also be done within the

Python scripting environment. The computationally expensive step of evolving the

solution over time is carried out by binding to an efficient C++ software back-end. The

study is motivated by cell blebbing, which can be instrumental for cell migration. Starting

with a force balance for the cell membrane, we derive a continuum model for some

mechanical and geometrical aspects of the onset of blebbing in a form that fits into

the abstract framework. It is flexible in that it allows for amending force contributions

related to membrane tension or the presence of linker molecules between membrane

and cell cortex. Cell membrane geometries given in terms of a parameterization or

obtained from image data can be accounted for by the software. The use of a domain

specific language to describe themodel makes is straightforward to add additional effects

such as reaction-diffusion equations modeling some biochemistry on the cell membrane.

Some numerical simulations illustrate the approach.

Keywords: interface tracking, surface finite elements, unified form language, distributed unified numerics

environment, cell motility, biomembranes

1. INTRODUCTION

We present and analyse a finite element approximation to parabolic fourth order surface partial
differential equations of the form

∂tu+12
Ŵ0u− ∇Ŵ0 · ψ ′(∇Ŵ0u)+ k(u) = 0 (1)

for a vector field u = (u1, u2, u3) :Ŵ
0 → R

3 on a surface Ŵ0 that is the smooth boundary of
a bounded domain in R

3. Here, 1Ŵ0 is the Laplace–Beltrami operator and ψ ′ and k are given
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Lipschitz continuous functions (see section 2.2 for precise
definitions and assumptions). We also present a software
framework that facilitates a convenient implementation of
specific problems and report on numerical simulations on an
application in cell biology.

Our investigation is motivated by cell blebbing, which refers
to the detachment of the plasma membrane from its actin
cytoskeleton and the fast formation of a spherical protrusion.
This is then followed by a slower reformation of the actin cortex
close to the deformed part of the membrane and a retraction
phase [1, 2]. The phenomenon is observed in various processes
including apoptosis, spreading, migration, division, embryonic
development, and viral entry (see Ponuwei [3] for a recent
overview), and is the subject of significant ongoing research. In
Tyson et al. [4] and Collier et al. [5] a mechanical model based
on ideas in Young and Mitran [6] and Strychalski and Guy [7]
for curves in 2D is presented. It accounts for membrane tension,
excess cell pressure, membrane bending resistance, forces due to
molecules connecting the membrane with the cortex, and drag
due to motion through the viscous ambient fluid, and it is used
to study the influence of the initial geometry on the propensity
to nucleate blebs. One of our objectives is to extend this model to
surfaces in 3D and to perform numerical simulations of the onset
of blebbing.

Computational approaches to cell blebbing are based on
various methodology for fluid-structure interaction. In 2D, the
membrane may be tracked by a closed curve. Forces due to its
elastic properties can be computed by approximating the curve
with a polygonal chain and using finite difference techniques
as in Tyson et al. [4] and Collier et al. [5]. The approach can
be interpreted as a finite element method and then analyzed
in a variational framework. We aim for a generalization of this
approach including its convergence analysis to surfaces in 3D
that are approximated by triangulated surfaces. If (viscous) fluid
flow inside and outside of the cell is accounted for then these
membrane forces can be incorporated into the flow equations
with a Dirac delta distribution. Smoothing the delta distribution
according to certain principles and approximating the fluid
flow equations on a regular bulk grid underpins the immersed
boundary method, which is understood as both a mathematical
formulation and a numerical approach [8]. Based on these
ideas, in Young and Mitran [6], a vorticity-stream formulation
for the Newtonian, viscous flow is used, and in Strychalski
and Guy [7], a staggered grid finite difference method. As an
alternative, there are boundary element formulations that are
set up directly on the polygonal chain [9]. In 3D, the fluid
flow becomes significantly more expensive, and tracking points
on a surface whilst maintaining a good representation becomes
much more involved. In Maxian et al. [10], a spectral method
for the flow is coupled with two approaches for the surface,
one based on a parameterization with spherical harmonics and
one based on a piecewise linear representation. In Campbell
and Bagchi [11, 12] a surface finite element method for
reaction-diffusion equations on the cell membrane is coupled
with a projection method for the flow. In both approaches
the immersed boundary method is used for the coupling.

Alternatively to tracking the membrane, interface capturing
methods may be used. We are not aware of such an approach
to cell blebbing but in Moure and Gomez [13] 3D simulations
of a phase field model for moving cells are presented, which
uses isogeometric analysis for the spatial approximation and a
second order stable time discretisation involving a two-stage
predictor-corrector scheme.

The coupling between the surface terms and the bulk flowmay
also be realized using variational approaches that are amenable to
finite element techniques. In the last chapter of Barrett et al. [14]
this is presented for vesicles formed by biomembranes that are
governed by the Helfrich energy [15]. Such methods address the
quality of the evolving surface mesh but a convergence analysis
seems out of reach. However, accounting for the fluid flow with a
simple drag force or just relaxing some elastic surface energy with
a gradient flow dynamics leads to geometric evolution equations,
and for the simplest one, the mean curvature flow, convergence
of a surface finite element method has been proved recently
[16]. Cell blebbing will lead to a more complicated problem
but as our focus is on the onset of blebbing, which involves
only small deformations, we can expect reasonable results by
parameterizing the membrane position over a reference surface.
We choose the initial surface as a reference surface and show that
the emerging PDE problem can then be of the form (1). This
motivates one of our main objectives, namely to prove weak well-
posedness and convergence of a surface finite element method
for such type of problems. To this end, we proceed essentially
as in Elliott and Ranner [17], where the Cahn–Hilliard equation,
a scalar parabolic fourth order equation, on an evolving surface
is analyzed. The procedure involves splitting the fourth-order
problem into two equation of second order by introducing a
support field, namely

w = −1Ŵ0u,

that can be interpreted as the curvature of the membrane. The
essential challenge is the non-linear second order term in (1). To
deal with it, we exploit the above linear equation to show strong
convergence of the gradient of u.

The surface finite element method dates at least back to Dziuk
[18] for the Laplace–Beltrami operator on stationary surfaces
and has seen significant development since [19]. It is a versatile
tool that can be used for cell motility modeled by a geometric
evolution equation coupled with a systems of surface reaction-
diffusion equations [20] and can be coupled with bulk finite
elements in one of the adjacent domains [21, 22] in a fitted
approach in the sense that the surface mesh is the boundary of
a bulk mesh. Also approaches for the unfitted case of a surface
mesh intersecting a fixed bulk mesh rather arbitrarily have been
developed, where we mention the trace finite element method
[23] and the cut finite element method [24]. In both methods,
PDEs are solved on the intersection of a surface with a, usually,
Cartesian bulk mesh on which additional terms are set up for
stabilization to deal with small intersection patches. For the
case of a PDE on an evolving surface the trace finite element
method has been analyzed in depth [25]. All these methods
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FIGURE 1 | Sketch of some objects defined in in sections 2.1, 4 for the

abstract framework and the specific cell blebbing model, respectively. The cell

membrane Ŵ(t) is parameterized by u over the initial surface Ŵ0 which, unlike in

this sketch, is closed and of spherical topology. Force densities arising from

membrane tension, denoted f tension, point outwards in concave areas (as in the

sketch) and inwards in convex areas. Linker molecules (indicated in orange)

connect the membrane with the cortex, which is close to the initial surface and

not explicitly indicated. They are modeled with a force density that points

toward the initial surface when the molecules are stretched. The force vanishes

if the linkers break. The pressure f pressure points in the direction of the unit

normal νŴ0 of Ŵ0, which is the external unit normal of the cell in its initial shape.

have in common that they are usually not provided by PDE
software packages out of the box but require expert knowledge
to implement them. One of our objectives is therefore to make
the methodology we have developed accessible by providing
code that enables users to implement specific problems with
relative ease.

Let us briefly summarize our objectives and achievements, and
outline the paper:

• The surface PDE (1) is analyzed for well-posedness using
surface finite element techniques. Stability estimates for
the semi-discrete scheme are derived and exploited to show
convergence. Under slightly more restrictive assumptions on
the quality of the solution, error estimates are shown. The
suitable abstract variational problem is thoroughly formulated
in section 2.2, and the finite element approach is presented and
analyzed in section 3.

• The force balance model in Tyson et al. [4] and Collier
et al. [5], which is based on ideas in Young and Mitran
[6] and Strychalski and Guy [7], is extended from curves in
2D to surfaces in 3D. More precisely, a continuum model is
presented such that, when restricting the model to a curve in
2D and discretising the governing equations using standard
finite difference methods, the original computational model is
obtained. This specific model has been used for some numerical
simulations and is derived in section 4.

• A software framework for numerical simulations has been
developed. It features a high-level interface to implement a
problem in the Unified Form Language (UFL) [26], which
enables a user to conveniently alter the variational problem.
Whilst the overall program control and the time stepping
are done at the high level, bindings to the Distributed
Unified Numerics Environment (DUNE) [27, 28] are used for
efficiently discretising and solving the spatial problems, more
precisely, the Python bindings to the DUNE-FEM module
[29, 30]. Section 5 contains the time discretisation, details
on the implementation, and numerical simulations, which also
demonstrate the extensibility of the software package.

2. VARIATIONAL PROBLEM
FORMULATION

2.1. Setting and Notation
Let [0,T] for some T > 0 denote a time interval and let �(t),
t ∈ [0,T], be an open, time dependent bounded domain. Its
evolving boundary Ŵ(t) = ∂�(t) is parameterized over the initial
(smooth) surface Ŵ0 = Ŵ(0), i.e., Ŵ(t) = u(Ŵ0, t) for some
function u :Ŵ0 × [0,T] → R

3 such that u(·, 0) = idŴ0 is the
identic map of Ŵ0. The setup is illustrated in Figure 1, which
also shows some forces acting on the surface that are explained
in section 4. The dependence on t will usually be dropped in the
following. We furthermore introduce the following notation:

d signed distance to Ŵ0, well-defined in a thin layer

around Ŵ0, convention: d < 0 inside of �(0),

νŴ0 = ∇ d outwards pointing unit normal of Ŵ0,

H = ∇2 d shape operator of Ŵ0,

κ = trace(H)νŴ0 curvature vector pf Ŵ0,

P = I − νŴ0 ⊗ νŴ0 projection to the tangent space,

= ∇Ŵ0 idŴ0 where I ∈ R
3×3 is the identity matrix,

∇Ŵ0η = P∇η surface gradient of any differentiable function η :Ŵ0 → R

= (D1η,D2η,D3η) extended to a thin layer around Ŵ0,

1Ŵ0η = ∇Ŵ0 · (∇Ŵ0η) Laplace–Beltrami operator on Ŵ0 for η smooth enough,

dσ surface area element when integrating over Ŵ0,

A :B =
∑3

i,j=1 Ai,jBi,j scalar product for matrices A,B ∈ R
3×3,

|A| =
√
A :A (Frobenius) norm for a matrix A ∈ R

3×3.

We aim for approximating the PDE problem (1) using finite
elements and thus require a variational formulation. We say that
a function f ∈ L1(Ŵ0) has a weak derivative ηi = Dif ∈ L1(Ŵ0) if

∫

Ŵ0
f Diϕdσ = −

∫

Ŵ0
ηiϕdσ +

∫

Ŵ0
fϕκ idσ , i = 1, 2, 3,

holds true for all smooth functions ϕ with compact support. We
also use∇Ŵ0 to denote this weak derivative and write∇k

Ŵ0 , k ∈ N,

for the k-th derivative. Sobolev spaces on Ŵ0 are defined by
H0(Ŵ0) = L2(Ŵ0) and

Hk = Hk(Ŵ0) =
{

η ∈ L2(Ŵ0)
∣

∣∇ l
Ŵ0η ∈ L2(Ŵ0), l = 1, . . . , k

}

.

For a function η ∈ H1 and a vector field v ∈ (L2)3 the definition
of the weak derivative yields that

∫

Ŵ0
(∇Ŵ0 · v)ηdσ = −

∫

Ŵ0
v · ∇Ŵ0ηdσ +

∫

Ŵ0
ηv · κdσ . (2)

For the L2 “mass” inner product and for the H1 “stiffness”
semi-inner product of vector valued functions we write

m(v, z) =
∫

Ŵ0
v · zdσ , v, z ∈ (L2)3,

s(v, z) =
∫

Ŵ0
∇Ŵ0v :∇Ŵ0zdσ , v, z ∈ (H1)3.

Based on these Sobolev spaces we will consider the Bochner spaces

L2
Hk =

{

ζ :(0,T) → Hk
∣

∣

∫ T

0
‖ζ (t)‖2

Hkdt <∞
}

,
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L∞
Hk =

{

ζ :(0,T) → Hk
∣

∣ ess sup
t∈(0,T)

‖ζ (t)‖Hk <∞
}

.

2.2. Assumptions and Weak Formulation
In order to enable us to approximate (1) with linear finite
elements, we split up the fourth order operator by using
the curvature

w = −1Ŵ0u.

The function ψ :R
3×3 → [0,∞] is assumed to be

continuously differentiable with uniformly Lipschitz continuous
partial derivative, i.e., denoting withψ ′ this (3×3 tensor-valued)
partial derivative we assume that there is a constant Cψ > 0 such

|ψ ′(A)− ψ ′(B)| ≤ Cψ |A− B| ∀A,B ∈ R
3×3. (3)

This implies that |ψ ′(A)| ≤ Cψ |A|+C for some constant C > 0.
Moreover, we assume that ψ ′ is tangential in the following sense:

ψ ′(A)νŴ0 = 0 ∀A ∈ R
3×3 with AνŴ0 = 0.

Note that then ψ ′(A)κ = 0 because κ points in the normal
direction. The PDE (1) involves the term ∇Ŵ0 · ψ ′(∇Ŵ0u), and
thus by (2)

∫

Ŵ0
(∇Ŵ0 · ψ ′(∇Ŵ0v)) · zdσ = −

∫

Ŵ0
ψ ′(∇Ŵ0v) :∇Ŵ0zdσ

for sufficiently smooth functions v, z. With a slight abuse of
notation we write

s(ψ ′; v, z) =
∫

Ŵ0
ψ ′(∇Ŵ0v) :∇Ŵ0zdσ , v, z ∈ (H1)3.

The function k :Ŵ0 × R
3 → R

3 is assumed to be bounded,
measurable with respect to the first argument, and uniformly
Lipschitz continuous in the second argument, i.e., there is some
constant Ck > 0 such that for all y ∈ Ŵ0

|k(y, a)− k(y, b)| ≤ Ck|a− b| ∀a, b ∈ R
3. (4)

This implies that |k(y, a)| ≤ Ck|a| + C for some constant C > 0.
The (weak) variational formulation of (1) reads:

Problem 2.1. Find u,w ∈ L2(0,T;H1(Ŵ0)) with ∂tu ∈
L2(0,T; L2(Ŵ0)) such that for all φ, η ∈ H1(Ŵ0) and almost all
t ∈ (0,T)

m(∂tu,φ)+ s(w,φ)+ s(ψ ′; u,φ)+m(k(·, u),φ) = 0, (5)

s(u, η)−m(w, η) = 0, (6)

and such that u(·, 0) = idŴ0 .

Remark 2.2. One could consider a functionψ that, like k, depends
on the position y on Ŵ0. For the finite element approximation
discussed in the next section, we make use of an approximation
kh of k (see around (10)). Something similar could be done forψ as
well. This would result in some additional terms that would need
to be estimated using a consistency assumption similar to (10).
As the procedure is similar to the one for k we omit the details
for conciseness.

3. SURFACE FINITE ELEMENT APPROACH

3.1. Surface Triangulations and Finite
Elements
The membrane Ŵ0 is approximated by a family of polyhedral
surfaces {Ŵ0

h
}h, each one being of the form

Ŵ0
h =

⋃

E∈Th

E ⊂ R
3

where the E are closed, flat non-degenerate triangles whose
pairwise intersection is a complete edge, a single point, or empty.
For each E belonging to the set Th of triangles we denote by
h(E) = diam(E) its diameter and then identify h = maxE∈Th

h(E)
with the maximal edge length of the whole triangulation. We
assume that the vertices of Ŵ0

h
belong to Ŵ0 so that Ŵ0

h
is a

piecewise linear interpolation of Ŵ0. We also assume that h is
small enough so that Ŵ0

h
lies in the thin layer around Ŵ0 in which

the signed distance function d is well-defined. Furthermore, we
assume that Ŵ0

h
is the boundary of a domain that approximates

�(0) and denote the external unit normal, which is defined on
the triangles and thus piecewise constant, with νŴ0

h
. By Ph =

I − νŴ0
h
⊗ νŴ0

h
we denote the projection to the tangent space in

points on Ŵ0
h
where it exists (i.e., in the interiors of the triangles

E ∈ Th). This gives rise to the piecewise (i.e., triangle by triangle)
definition of a surface gradient ∇Ŵ0

h
on Ŵ0

h
. The same notation

∇Ŵ0
h
is used again for the weak derivative. We write dσh for the

surface area element when integrating functions on Ŵ0
h
.

For the error analysis we have to measure the distance of
functions such as u on Ŵ0 to functions such as the finite element
solution onŴ0

h
. For this purpose, we assume that for each yh ∈ Ŵ0

h

there is a unique point y ∈ Ŵ0 such that

yh = y+ d(yh)νŴ0 (y). (7)

This bijection gives rise to the lift of any function η :Ŵ0
h
→ R to

Ŵ0 defined by

ηℓ :Ŵ0 → R, ηℓ(y) = η(yh).

Writing µh for the local change of the surface area element, i.e.,
dσh = µhdσ , integrals transform as

∫

Ŵ0
h

ηdσh =
∫

Ŵ0
ηℓµhdσ . (8)

A straightforward calculation show that in points where both η
and ηℓ are differentiable

∇Ŵ0
h
η(yh) = Qh(y)∇Ŵ0ηℓ(y) where

Qh(y) = Ph(yh)(I − d(yh)H(y))P(y). (9)

The following two lemmas on the errors due to the
approximation of the surface and on the stability of the lift
are due to Dziuk [18], Dziuk and Elliott [31].
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Lemma 3.1. The following estimates hold true for some constant
C > 0 independent of h:

‖1− µh‖L∞(Ŵ0) ≤ Ch2,

‖Qh − P‖L∞(Ŵ0) ≤ Ch.

Lemma 3.2. Let η :Ŵ0
h
→ R with its lifted counterpart ηℓ :Ŵ0 →

R. Let also E ∈ Th and Eℓ = {y ∈ Ŵ0 | yh ∈ E}
with y as in (7) for a given yh. The following estimates
hold true with a constant C > 0 independent of h and the
element E:

1

C

∥

∥

∥
ηℓ

∥

∥

∥

L2(Eℓ)
≤ ‖η‖L2(E) ≤ C

∥

∥

∥
ηℓ

∥

∥

∥

L2(Eℓ)
,

1

C

∥

∥

∥
∇Ŵ0ηℓ

∥

∥

∥

L2(Eℓ)
≤

∥

∥

∥
∇Ŵ0

h
η

∥

∥

∥

L2(E)
≤ C

∥

∥

∥
∇Ŵ0ηℓ

∥

∥

∥

L2(Eℓ)
.

These inequalities generalize to the whole surfaces by summing
over the elements.

The standard finite element space used throughout is

Sh = {φh ∈ C0(Ŵ0
h) |φh|E is linear for each E ∈ Th}.

Note that the identic map of Ŵ0
h
belongs to S3

h
. Bilinear forms

corresponding tom and s are defined for finite element functions
Rh,Zh ∈ S3

h
on the triangulation by

mh(Rh,Zh) =
∫

Ŵ0
h

Rh · Zhdσh,

sh(Rh,Zh) =
∫

Ŵ0
h

∇Ŵ0
h
Rh :∇Ŵ0

h
Zhdσh,

and we will also use again the notation sh(ψ
′;Rh,Zh) =

∫

Ŵ0
h
ψ ′(∇Ŵ0

h
Rh) :∇Ŵ0

h
Zhdσh. For the discrepancy to the forms on

Ŵ0 we note the following result:

Lemma 3.3. ([18]) There is a constant C > 0 independent of h
such that for all Rh,Zh ∈ S3

h

|mh(Rh,Zh)−m(rh, zh)| ≤ Ch2‖Rh‖L2(Ŵ0
h
)‖Zh‖L2(Ŵ0

h
),

|sh(Rh,Zh)− s(rh, zh)| ≤ Ch2‖∇Ŵ0
h
Rh‖L2(Ŵ0

h
)‖∇Ŵ0

h
Zh‖L2(Ŵ0

h
),

where rh = Rℓ
h
and zh = Zℓh.

We define the Ritz projection5h :H
1(Ŵ0) → Sh by

sh(5h(ξ ),φh) = s(ξ ,φℓh) ∀φh ∈ Sh,
∫

Ŵ0
h

5h(ξ )dσh =
∫

Ŵ0
ξdσ .

It’s lift is denoted by πh(ξ ) = 5h(ξ )
ℓ and has the following

approximation properties:

Lemma 3.4. ([17]) If ξ ∈ H1(Ŵ0) then

‖ξ − πh(ξ )‖H1(Ŵ0) → 0, ‖ξ − πh(ξ )‖L2(Ŵ0) ≤ Ch‖ξ‖H1(Ŵ0),

and if ξ ∈ H2(Ŵ0) then

‖ξ − πh(ξ )‖L2(Ŵ0) + h‖∇Ŵ0 (ξ − πh(ξ ))‖L2(Ŵ0) ≤ Ch2‖ξ‖H2(Ŵ0)

where C > 0 is a constant independent of h and ξ .
The projection and the convergence results extend to functions in
L2
H1 with a pointwise (in time) definition of the projection and with

the norms ‖ · ‖Hk replaced by ‖ · ‖L2
Hk
, k = 0, 1, 2.

3.2. Semi-discrete Problem
In applications, we may only have access to a triangulated surface
Ŵ0
h
but not Ŵ0, for instance, when Ŵ0

h
is computed from image

data. In such cases we may also know functions such as k

only approximately. For instance, the specific choice (55) of
k for our numerical simulations involves the unit normal νŴ0

and the cortex position uc, both of which may not be known
exactly if we only have Ŵ0

h
rather than Ŵ0. However, we have the

approximations νŴ0
h
or uc,h = idŴ0

h
− l0νŴ0

h
at our disposition.

For the analysis of the abstract model we therefore assume that
k is approximated by some function (properly, a h family of
functions) kh :Ŵ

0
h
× R

3 → R
3 that has the same regularity

properties as k. In particular, kh is Lipschitz continuous in the
second argument with the same Lipschitz constant Ck > 0
independently of h. We define its lift kℓh :Ŵ

0 × R
3 → R

3 by

kℓh(y, a) = kh(yh, a), a ∈ R
3, with y and yh related as defined

around (7). We assume that kh is an approximation of k in the
following sense: There is a constant C > 0 independent of h such
that for all a ∈ R

3

‖k(·, a)− kℓh(·, a)‖L∞(Ŵ0) ≤ C(1+ |a|)h. (10)

Problem 3.5. FindUh,Wh ∈ C1(0,T; S3
h
)×C0(0,T; S3

h
) such that

for all 8h,Hh ∈ S3
h
and all t ∈ (0,T)

mh(∂tUh,8h)+ sh(Wh,8h)+ sh(ψ
′;Uh,8h)

+mh(kh(·,Uh),8h) = 0, (11)

sh(Uh,Hh)−mh(Wh,Hh) = 0, (12)

and such that Uh(·, 0) = idŴ0
h
.

In the next subsection we will show the following main result:

Theorem 3.6. The semi-discrete problems 3.5 are well-posed for
all h > 0 small enough. As h → 0 the lifted solutions (uh,wh) =
(Uℓ

h
,Wℓ

h
) converge to some functions (u,w) that uniquely solve the

abstract variational problem 2.1 and satisfy

‖u‖2L∞
H1

+ ‖w‖2
L2
H1

≤ C (13)

with some C > 0 that depends on data only.
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3.3. Proof of Theorem 3.6
We generally follow the procedure in Elliott and Ranner [17].
Essential differences consist in the approximation of the data
k by kh and the non-linear function ψ ′ of the gradient. To
deal with the former, the consistency assumption (10) will turn
out sufficient, whilst for the latter we will exploit the relations
(6) and (12) to show strong convergence of the gradient of
the deformation.

Short time existence for (11), (12) is straightforward to show.
Estimates are now derived that are, at first, only valid at times of
existence but then in the usual way can be used to show existence
over the whole time interval by a continuation argument. We
therefore state these estimates directly on the whole time interval.
We also use the standard notion of C > 0 for a generic constant
that depends on the problem data but not on any solution, and
which may change from line to line.

Testing with 8h = Uh in (11) and Hh = Wh in (12) and
subtracting these identities yields that

1

2

d

dt
‖Uh‖2L2 + ‖Wh‖2L2 = −sh(ψ

′;Uh,8h)−mh(kh(Uh),8h)

≤ C
(

‖∇Ŵ0
h
Uh‖2L2 + ‖Uh‖2L2 + 1

)

. (14)

Here and in the following we use the Lipschitz continuity of
ψ ′ and kh, which implies linear growth [see (3), (4) and the
comments after]. Choosing Hh = Uh in (12) and applying
Young’s inequality we see that

‖∇Ŵ0
h
Uh‖2L2 = sh(Uh,Uh) = mh(Wh,Uh)

≤ ε̂

2
‖Wh‖2L2 +

1

2ε̂
‖Uh‖2L2 ,

for ε̂ > 0, and choosing ε̂ small enough we thus obtain from
(14) that

1

2

d

dt
‖Uh‖2L2 +

1

2
‖Wh‖2L2 ≤ C

(

‖Uh‖2L2 + 1
)

.

A Gronwall argument therefore yields the estimate

‖Uh‖2L∞
L2
+ ‖Wh‖2L2

L2
≤ C. (15)

Testing with 8h = Wh in (11) and Hh = ∂tUh in (12) and then
adding these equations yields that

sh(∂tUh,Uh)+ sh(Wh,Wh) = −sh(ψ
′;Uh,Wh)−mh(kh(Uh),Wh).

With Hh = Wh in (12) and using Young’s inequality again we
get for any small ε̂ > 0 that

‖Wh‖2L2 = mh(Wh,Wh) = sh(Uh,Wh)

≤ ε̂‖∇Ŵ0
h
Wh‖2L2 +

1

4ε̂
‖Uh‖2L2 .

Using the Lipschitz continuity of ψ ′ and kh again we thus can
conclude that

1

2

d

dt
‖∇Ŵ0

h
Uh‖2L2 + ‖∇Ŵ0

h
Wh‖2L2

≤ 1

2
‖ψ ′(∇Ŵ0

h
Uh)‖2L2 +

1

2
‖∇Ŵ0

h
Wh‖2L2

+1

2
‖kh(Uh)‖2L2 +

1

2
‖Wh‖2L2

≤ 1+ ε̂
2

‖∇Ŵ0
h
Wh‖2L2 + C

(

‖Uh‖2L2 + ‖∇Ŵ0
h
Uh‖2L2 + 1

)

.

Choosing ε̂ small enough and then applying (15) and a Gronwall
argument we obtain the estimate

‖∇Ŵ0
h
Uh‖2L∞

L2
+ ‖∇Ŵ0

h
Wh‖2L2

L2
≤ C. (16)

Taking the time derivative of (12) (note that, using that ∂tUh

exists, this equation can be used to show that ∂tWh exists) yields
that sh(∂tUh,Hh) = mh(∂tWh,Hh). We test this with Hh = Wh

and subtract it from (11) with 8h = ∂tUh to obtain that

mh(∂tUh, ∂tUh) + mh(∂tWh,Wh)+ sh(ψ
′;Uh, ∂tUh)

+ mh(kh(Uh), ∂tUh) = 0.

Noting that

sh(ψ
′;Uh, ∂tUh) =

∫

Ŵ0
h

ψ ′(∇Ŵ0
h
Uh) : ∂t∇Ŵ0

h
Uhdσh

=
∫

Ŵ0
h

d

dt
ψ(∇Ŵ0

h
Uh)dσh

and using the Lipschitz continuity of kh again we see that

‖∂tUh‖2L2 + 1
2
d
dt
‖Wh‖2L2 +

d
dt

(

∫

Ŵ0
h
ψ(∇Ŵ0

h
Uh)dσh

)

≤ C(‖Uh‖2L2 + 1)+ 1
2‖∂tUh‖2L2 .

Therefore, with (15) we obtain the estimate

‖∂tUh‖2L2
L2
+ ‖Wh‖2L∞

L2
+ sup

t∈[0,T]

∫

Ŵ0
h

ψ(∇Ŵ0
h
Uh)dσh ≤ C. (17)

These estimates (15)–(17) are now lifted from Ŵ0
h
to Ŵ0. We can

then apply compactness arguments to deduce the existence of
limits (u,w), which we will show to satisfy Problem 2.1. As a first
step, the stability estimate (13) will be derived. Using Lemma 3.2
the lifted solutions satisfy the estimates

‖uh‖2L∞
H1

+ ‖wh‖2L2
H1

≤ C, (18)

‖∂tuh‖2L2
L2
+ ‖wh‖2L∞

L2
≤ C. (19)

Hence, there are functions u ∈ L2
H1 with ∂t ∈ L2

L2
and w ∈ L2

H1

such that for a subsequence as h → 0

uh ⇀ u in L2
H1 , ∂tuh ⇀ ∂tu in L2

L2
, (20)

uh → u in L2
L2

and a.e., wh ⇀ w in L2
H1 , (21)

and these limits also satisfy (18) and (19) and, thus, the stability
estimate (13).
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Let us now show that (u,w) satisfies (6). For any η ∈ L2
H1 let

Hh = 5h(η) denote its Ritz projection with the lift ηh = πh(η).
Then sh(Uh,Hh) = mh(Wh,Hh), whence

∫ T

0
s(u, ηh)−m(w, ηh)dt =

∫ T

0

(

s(u, ηh)− s(uh, ηh)
)

dt

+
∫ T

0

(

s(uh, ηh)− sh(Uh,Hh)
)

dt

+
∫ T

0

(

mh(Wh,Hh)−m(wh, ηh)
)

dt

+
∫ T

0

(

m(wh, ηh)−m(w, ηh)
)

dt

=: J1 + J2 + J3 + J4.

By the properties of the Ritz projection (Lemma 3.4) we have
that ηh = πh(η) → η in L2

H1 . Thanks to (20) we thus have that
J1 → 0 as h → 0, and similarly J4 → 0 thanks to (21). Lemma
3.3 together with the estimates (16) and (17) ensures that J2 → 0
and J3 → 0 as h → 0. Therefore, (u,w) satisfies the following
identity, which implies (6):

∫ T

0

(

s(u, η)−m(w, η)
)

dt = 0 ∀η ∈ L2
H1 . (22)

Next, we show strong convergence of ∇Ŵ0uh. We note that

‖∇Ŵ0 (u− uh)‖2L2
L2

=
∫ T

0
s(u− uh, u− πh(u))dt

+
∫ T

0
s(u− uh,πh(u)− uh)dt = :K1 + K2.

Using again Lemma 3.4 we see that πh(u) → u in L2
H1 , and with

(20) this implies thatK1 → 0. Regarding the second termwe note
that thanks to (22) and (12)

K2 =
∫ T

0

(

m(w,πh(u)− uh)−m(wh,πh(u)− uh)
)

dt

+
∫ T

0

(

m(wh,πh(u)− uh)−mh(Wh,5h(u)− Uh)
)

dt

+
∫ T

0

(

sh(Uh,5h(u)− Uh)− s(uh,πh(u)− uh)
)

dt

= :K21 + K22 + K23.

As both πh(u) → u and uh → u by (21) we see that πh(u)−uh →
0 in L2

L2
as h → 0. With wh ⇀ w in the same space we obtain

that K21 → 0. From the definition and properties of the Ritz
projection it easily follows that ‖5h(ξ )‖H1 ≤ C‖ξ‖H1 with some
C > 0 independent of h and ξ ∈ H1(Ŵ0). The stability estimate
(13), which is already proved, and the estimates (15) and (16)
therefore yield that ‖5h(u) − Uh‖H1 is uniformly bounded in h.
Using (15) and (16) again forWh and Lemma 3.3 we obtain that
K22 → 0 and K23 → 0 as h → 0. This finally shows that

uh → u in L2
H1 and a.e. (23)

To conclude the proof of Theorem 3.6 we need to show that
(u,w) satisfies (5). For any φ ∈ L2

H1 let 8h = 5h(φ) be its Ritz
projection with lift φh = πh(φ). Then

∫ T

0

(

m(∂tu,φ)−mh(∂tUh,8h)
)

dt

=
∫ T

0

(

m(∂tu,φ)−m(∂tuh,φ)
)

dt

+
∫ T

0

(

m(∂tuh,φ)−m(∂tuh,φh)
)

dt

+
∫ T

0

(

m(∂tuh,φh)−mh(∂tUh,8h)
)

dt

= : L1 + L2 + L3. (24)

Thanks to (21) we have that L1 → 0 as h → 0. Lemma 3.4 on
the Ritz projection ensures that L2 → 0. It also ensures that8h is
uniformly bounded in h, and with Lemma 3.3 and (17) we obtain
that L3 → 0. Altogether

∫ T

0
mh(∂tUh,8h)dt →

∫ T

0
m(∂tu,φ)dt. (25)

Analogously one can show that

∫ T

0
sh(Wh,8h)dt →

∫ T

0
s(w,φ)dt. (26)

Next, we can write

∫ T

0

(

s(ψ ′; u,φ)− sh(ψ
′;Uh,8h)

)

dt

=
∫ T

0

∫

Ŵ0

(

ψ ′(∇Ŵ0u) :∇Ŵ0φ − ψ ′(∇Ŵ0uh) :∇Ŵ0φ
)

dσdt

+
∫ T

0

∫

Ŵ0

(

ψ ′(∇Ŵ0uh) :∇Ŵ0φ − ψ ′(∇Ŵ0uh) :∇Ŵ0φh

)

dσdt

+
∫ T

0

(

∫

Ŵ0
ψ ′(∇Ŵ0uh) :∇Ŵ0φhdσ −

∫

Ŵ0
h

ψ ′(∇Ŵ0
h
Uh) :∇Ŵ0

h
8hdσh

)

dt

= :M1 +M2 +M3. (27)

Thanks to (23) and the Lipschitz continuity of ψ ′ we have that
ψ ′(∇Ŵ0uh) → ψ ′(∇Ŵ0u) in L2

L2
and almost everywhere, whence

M1 → 0 as h → 0. For the second term we observe that

M2 ≤
∫ T

0
‖ψ ′(∇Ŵ0uh)‖L2(Ŵ0)‖∇Ŵ0φ − ∇Ŵ0φh‖L2(Ŵ0)dt

≤
∫ T

0
C
(

‖∇Ŵ0uh‖L2(Ŵ0) + 1
)

‖φ − φh‖H1(Ŵ0)dt

→ 0

thanks to the estimate (16) and Lemma 3.4. In the last term we lift
the second integral toŴ0 (recall (8) and (9) for the transformation

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 June 2020 | Volume 6 | Article 21

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Stinner et al. SFEM for Cell Blebbing

of the derivative):

M3 =
∫ T

0

(

∫

Ŵ0
ψ ′(∇Ŵ0uh) :∇Ŵ0φhdσ

−
∫

Ŵ0
ψ ′(Qh∇Ŵ0uh) :Qh∇Ŵ0φhµhdσ

)

dt

=
∫ T

0

∫

Ŵ0

(

ψ ′(∇Ŵ0uh)− ψ ′(Qh∇Ŵ0uh)
)

:∇Ŵ0φhdσdt

+
∫ T

0

∫

Ŵ0
ψ ′(Qh∇Ŵ0uh) :

(

P − µhQh

)

∇Ŵ0φhdσdt. (28)

We can now apply the Lipschitz continuity of ψ ′ and the
geometric error estimates in Lemma 3.1 (which imply that
‖Qh‖L∞(Ŵ0) is uniformly bounded in h) to obtain that

|M3| ≤
∫ T

0
Cψ

∣

∣∇Ŵ0uh − Qh∇Ŵ0uh
∣

∣ |∇Ŵ0φh|dt

+
∫ T

0
C
(

|Qh∇Ŵ0uh| + 1
)(

|P − Qh| + |Qh|
∣

∣1− µh

∣

∣

)

|

∇Ŵ0φh|dt ≤ Cψ‖P − Qh‖L∞(Ŵ0)‖∇Ŵ0uh‖L2
L2
‖∇Ŵ0φh‖L2

L2

+ C
(

‖Qh‖L∞(Ŵ0) + 1
)(

‖P − Qh‖L∞(Ŵ0)

+ ‖1− µh‖L∞(Ŵ0)

)

‖∇Ŵ0uh‖L2
L2
‖∇Ŵ0φh‖L2

L2

≤ Ch‖∇Ŵ0uh‖L2
L2
‖∇Ŵ0φh‖L2

L2
. (29)

Using estimate (18) and that also ‖φh‖L2
H1

≤ C‖φ‖L2
H1

is

uniformly bounded (follows from Lemma 3.4) we see thatM3 →
0, and we can conclude that

∫ T

0
sh(ψ

′;Uh,8h)dt →
∫ T

0
s(ψ ′; u,φ)dt. (30)

For the last term in (5) we note that

∫ T

0

(

m(k(u),φ)−mh(kh(Uh),8h)
)

dt

=
∫ T

0

(

m(k(u),φ)−m(k(uh),φ)
)

dt +
∫ T

0
m(k(uh),φ − φh)dt

+
∫ T

0

(

m(k(uh),φh)−mh(kh(Uh),8h)
)

dt

=:N1 + N2 + N3. (31)

Thanks to (21) and the Lipschitz continuity of k we have that
k(uh) → k(u) in L2

L2
and almost everywhere, so that N1 → 0

as h → 0. The second term converges to zero thanks to φh → φ

in L2
L2
. Regarding N3, we lift the second integral to Ŵ0:

N3 =
∫ T

0

(

∫

Ŵ0
k(uh) · φhdσ −

∫

Ŵ0
kℓh(uh) · φhµhdσ

)

dt

=
∫ T

0

∫

Ŵ0

(

k(uh)− kℓh(uh)
)

· φhµhdσdt

+
∫ T

0

∫

Ŵ0
(1− µh)k

ℓ
h(uh) · φhdσdt. (32)

Using now the consistency (10) of the approximation of k by kh,
the Lipschitz continuity of kh, and the geometric error estimates
in Lemma (3.1) we obtain that

|N3| ≤
∫ T

0

(

∫

Ŵ0
Ch(1+ |uh|)|φh|dσ

)

dt

+
∫ T

0

(

‖1− µh‖L∞(Ŵ0)

∫

Ŵ0
C(|uh| + 1)|φh|dσ

)

dt

≤ Ch
(

1+ ‖uh‖L2
L2

)

‖φh‖L2
L2

→ 0 (33)

using estimate (18) and that also ‖φh‖L2
L2

≤ C‖φ‖L2
L2

is

uniformly bounded. Altogether

∫ T

0
mh(kh(Uh),8h)dt →

∫ T

0
m(k(u),φ)dt. (34)

The convergence results (25), (26), (30), and (34) show that (u,w)
satisfies (5), which is the limit of (11) as h → 0.

In the next section we show error estimates. These techniques
can also be used to show uniqueness of the solution (u,w) to
Problem 2.1. We therefore omit the details for brevity. This
concludes the proof of Theorem 3.6.

3.4. Error Estimates
Deriving error estimates is possible when assuming higher
regularity of the solution, henceforth:

Assume that u, ∂tu,w ∈ L2
H2 . (35)

We will derive error estimates on the triangulated surfaces and
for this purpose us the bijection (7) to define the inverse lift of
the solution (u,w) to Ŵ0

h
:

u−ℓ,w−ℓ
:Ŵ0

h → R
3, u−ℓ(yh) = u(y), w−ℓ(yh) = w(y).

We use the Ritz projection to split the errors into a projection
error ρ and a discrete error θ :

u−ℓ − Uh =
(

u−ℓ −5h(u)
)

+
(

5h(u)− Uh

)

= : ρ(u) + θ (u),

w−ℓ −Wh =
(

w−ℓ −5h(w)
)

+
(

5h(w)−Wh

)

= : ρ(w) + θ (w).

Thanks to the regularity assumption (35), the properties of
the Ritz projection (Lemma 3.4), and the properties of the
lift (Lemma 3.2) error bounds for the projection errors are
straightforward:

‖ρ(u)‖L2
L2(Ŵ0

h
)

+ h‖∇Ŵ0
h
ρ(u)‖L2

L2(Ŵ0
h
)

≤ Ch2‖u‖L2
H2
, (36)

‖ρ(w)‖L2
L2(Ŵ0

h
)

+ h‖∇Ŵ0
h
ρ(w)‖L2

L2(Ŵ0
h
)

≤ Ch2‖w‖L2
H2
. (37)

To estimate the discrete errors let 8h ∈ S3
h
, test (11) with −8h

and test (5) with−φh, which is the lift of 8h. We get that

−mh(∂tUh,8h)− sh(Wh,8h)− sh(ψ
′;Uh,8h)−mh(kh(Uh),8h)

= −m(∂tu,φh)− s(w,φh)− s(ψ ′; u,φh)−m(k(u),φh).
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Now we add the terms mh(∂t5h(u),8h), sh(5h(w),8h),
sh(ψ

′;5h(u),8h), and mh(kh(5h(u)),8h) on both sides. Using
that sh(5h(w),8h) = s(w,φh) by the definition of the Ritz
projection this yields that

mh(∂tθ
(u),8h)+ sh(θ

(w),8h)+ sh(ψ
′;5h(u),8h)

− sh(ψ
′;Uh,8h)+mh(kh(5h(u)),8h)−mh(kh(Uh),8h)

=
(

mh(∂t5h(u),8h)−m(∂tu,φh)
)

+
(

sh(ψ
′;5h(u),8h)

− s(ψ ′; u,φh)
)

+
(

mh(kh(5h(u)),8h)−m(k(u),φh)
)

= : Et(8h)+ Eψ (8h)+ Ek(8h). (38)

Proceeding similarly with (6) and (12) for any Hh ∈ S3
h
with lift

ηh we obtain that

sh(θ
(u),Hh)−mh(θ

(w),Hh)

= mh(5h(w),Hh)−m(w, ηh)

= :Ew(Hh). (39)

The error terms satisfy the following estimates:

Lemma 3.7. There is some C > 0 independent of h (sufficiently
small) such that for all 8h,Hh ∈ S3

h

|Et(8h)| ≤Ch2‖∂tu‖H2(Ŵ0)‖8h‖L2(Ŵ0
h
), (40)

|Eψ (8h)| ≤Ch‖u‖H2(Ŵ0)‖∇Ŵ0
h
8h‖L2(Ŵ0

h
), (41)

|Ek(8h)| ≤Ch
(

1+ ‖u‖H2(Ŵ0)

)

‖8h‖L2(Ŵ0
h
), (42)

|Ew(Hh)| ≤Ch2‖w‖H2(Ŵ0)‖Hh‖L2(Ŵ0
h
). (43)

Proof: To show the estimates, we will frequently apply Lemma
3.3 on the approximation of the bilinear forms, Lemma 3.2 on the
stability of the lift, and Lemma 3.4 on the Ritz projection without
explicitly pointing it out for conciseness.

The Ritz projection commutes with the time derivative thanks
to the regularity of u. Therefore

Et(8h) =
(

mh(∂t5h(u),8h)−m(∂tπh(u),φh)
)

+
(

m(πh(∂tu),φh)−m(∂tu,φh)
)

= : L̃3 + L̃1.

The term L̃3 is similar to L3 in (24) but without the time
integral and with πh(∂tu) instead of uh and thus can also be
estimated similarly:

|L̃3| ≤ Ch2‖5h(∂tu)‖L2(Ŵ0
h
)‖8h‖L2(Ŵ0

h
)

≤ Ch2‖∂tu‖H2(Ŵ0)‖8h‖L2(Ŵ0
h
).

Furthermore,

|L̃1| ≤ ‖πh(∂tu)− ∂tu‖L2(Ŵ0)‖φh‖L2(Ŵ0)

≤ Ch2‖∂tu‖H2(Ŵ0)‖8h‖L2(Ŵ0
h
),

which altogether yields (40).

We can also split up Eψ :

Eψ (8h) =
(

sh(ψ
′;5h(u),8h)− s(ψ ′;πh(u),φh)

)

+
(

s(ψ ′;πh(u),φh)− s(ψ ′; u,φh)
)

= : M̃3 + M̃1.

The first term M̃3 is similar to the term M3 in (27), without the
time integral and with πh(u) instead of uh. Following the lines of
(28) and (29) we obtain that

|M̃3| ≤ Ch‖∇Ŵ0πh(u)‖L2(Ŵ0)‖∇Ŵ0φh‖L2(Ŵ0)

≤ Ch‖u‖H2(Ŵ0)‖∇Ŵ0
h
8h‖L2(Ŵ0

h
).

Using that ψ ′ is Lipschitz, the other term is estimated as

|M̃1| ≤ Cψ‖∇Ŵ0πh(u)− ∇Ŵ0u‖L2(Ŵ0)‖∇Ŵ0φh‖L2(Ŵ0)

≤ Ch‖u‖H2(Ŵ0)‖∇Ŵ0
h
8h‖L2(Ŵ0

h
),

which together shows (41).
For the third estimate we use the splitting

Ek(8h) =
(

mh(kh(5h(u)),8h)−m(k(πh(u)),φh)
)

+
(

m(k(πh(u)),φh)−m(k(u),φh)
)

= : Ñ3 + Ñ1.

Noting and exploiting the similarity of Ñ3 with N3 in (27) we
proceed as in (32) and (33) to obtain that

|Ñ3| ≤ Ch
(

1+ ‖πh(u)‖L2(Ŵ0)

)

‖φh‖L2(Ŵ0)

≤ Ch
(

1+ ‖u‖H2(Ŵ0))
)

‖8h‖L2(Ŵ0
h
).

Furthermore,

|Ñ1| ≤ Ck‖πh(u)− u‖L2(Ŵ0)‖φh‖L2(Ŵ0) ≤ Ch2‖u‖H2(Ŵ0)‖8h‖L2(Ŵ0
h
),

which finally yields the estimate (42).
The last estimate (43) can be proved analogously to (40). This

concludes the proof of Lemma 3.7.

With these estimates we can derive the following estimates for
the error:

Theorem 3.8. Assume that (u,w) solves Problem 2.1 and satisfies
u, ∂tu,w ∈ L2

H2(Ŵ0)
. For all sufficiently small h the solution

(Uh,Wh) of Problem 3.5 satisfies

‖u−l − Uh‖2L∞
L2(Ŵ0

h
)

+ ‖w−l −Wh‖2L2
L2(Ŵ0

h
)

+ ‖∇Ŵ0
h
(u−l − Uh)‖2L2

L2(Ŵ0
h
)

≤ Ch2

with a constant C > 0 independent of h.

Proof: We proceed as for deriving (15) but start with (38), where

we test with 8h = θ (u), and with (39), where we choose Hh =
θ (w). Taking the difference we obtain that

mh(∂tθ
(u), θ (u))+mh(θ

(w), θ (w)) = −sh(ψ
′;5h(u), θ

(u))
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+ sh(ψ
′;Uh, θ

(u))−mh(kh(5h(u)), θ
(u))+mh(kh(Uh), θ

(u))

+ Et(θ
(u))+ Eψ (θ

(u))+ Ek(θ
(u))− Ew(θ

(w)).

In Lemma 3.7 we absorb the norm of u into C to obtain that

|Et(θ (u))| ≤ Ch4 + 1

2
‖θ (u)‖2

L2(Ŵ0
h
)
,

|Eψ (θ (u))| ≤ Ch2 + 1

2
‖∇Ŵ0

h
θ (u)‖2

L2(Ŵ0
h
)
,

and similarly for the other two errors. Using that ψ ′ and kh are
Lipschitz we then get that

1

2

d

dt
‖θ (u)‖2

L2(Ŵ0
h
)
+ ‖θ (w)‖2

L2(Ŵ0
h
)
≤

∫

Ŵ0
h

Cψ |∇Ŵ0
h
Uh

− ∇Ŵ0
h
5h(u)| |∇Ŵ0

h
θ (u)|dσh +

∫

Ŵ0
h

Ck|Uh −5h(u)| |θ (u)|dσh

+ |Et(θ (u))| + |Eψ (θ (u))| + |Ek(θ (u))| + |Ew(θ (w))|
≤ Cψ‖∇Ŵ0

h
θ (u)‖2

L2(Ŵ0
h
)
+ Ck‖θ (u)‖2L2(Ŵ0)

+ C(h2 + h4)

+ ‖θ (u)‖2
L2(Ŵ0

h
)
+ 1

2
‖∇Ŵ0

h
θ (u)‖2

L2(Ŵ0
h
)
+ 1

2
‖θ (w)‖2

L2(Ŵ0
h
)
. (44)

SubstitutingHh = θ (u) in (39) gives for any ε̂ > 0 that

‖∇Ŵ0
h
θ (u)‖2

L2(Ŵ0
h
)
≤ ε̂

2
‖θ (w)‖2

L2(Ŵ0
h
)
+ 1

2ε̂
‖θ (u)‖2

L2(Ŵ0
h
)

+Ch4 + ‖θ (u)‖2
L2(Ŵ0

h
)
. (45)

We can thus estimate the terms involving ‖∇Ŵ0
h
θ (u)‖2

L2(Ŵ0
h
)
on

the right-hand-side of (44) by terms involving ε̂‖θ (w)‖2
L2(Ŵ0

h
)
.

Choosing now ε̂ > 0 small enough, these terms involving
‖θ (w)‖2

L2(Ŵ0
h
)
can then be absorbed in the left-hand-side to

that altogether

d

dt
‖θ (u)‖2

L2(Ŵ0
h
)
+ ‖θ (w)‖2

L2(Ŵ0
h
)
≤ C‖θ (u)‖2

L2(Ŵ0
h
)
+ Ch2.

By standard interpolation theory (recall that the identic map of
the triangulated surface Ŵ0

h
linearly interpolates the identic map

of Ŵ0) the initial error satisfies

‖θ (u)(0)‖2
L2(Ŵ0

h
)

≤ ‖ρ(u)(0)‖2
L2(Ŵ0

h
)
+ ‖u−ℓ(0)− Uh(0)‖2L2(Ŵ0

h
)

≤ Ch2 + ‖id−ℓ
Ŵ0 − idŴ0

h
‖2
L2(Ŵ0

h
)
≤ Ch2.

Applying Gronwall therefore yields that

‖θ (u)‖2L∞
L2(Ŵ0

h
)

+ ‖θ (w)‖2
L2
L2(Ŵ0

h
)

≤ Ch2.

From (45) we now see that also

‖∇Ŵ0
h
θ (u)‖2

L2
L2(Ŵ0

h
)

≤ Ch2.

Together with (36) and (37) these two estimates conclude the
proof of Theorem 3.8.

4. CONTINUUM MODEL FOR THE ONSET
OF BLEBBING

4.1. Force Contributions
Mathematical models that aim to provide insight into the
mechanisms that control cell blebbing require an approach to
describe the evolving geometry and have to account for various
force contributions acting on the plasma membrane. Based on
previous ideas [4–7] we postulate that a force balance of the form

f pressure + f coupling + f tension + f reg + f drag = 0 (46)

governs the cell membrane’s shape. The contributions are force
densities on the cell membrane and are modeled in a form such
that a surface partial differential equation of the form (1) is
obtained. Figure 1 gives an idea of the setup. We specifically aim
for generalizing the model in Tyson et al. [4] and Collier et al.
[5] for curves in 2D to surfaces in 3D but also put the force
contributions into the wider literature context.

• Pressure: Building up internal pressure, for instance, by actin-
myosin contraction in the cortex, is essential for blebbing
(see Charras et al. [32] and references). We write the
corresponding force density as

f pressure =
p0

V(u)
νŴ0 , (47)

where V(u) = max{
∫

Ŵ0
1
3u · νŴ0dσ , 0} is an approximation

of the volume of � and p0 is a pressure coefficient so that
p0/|V(u)| is the pressure difference between interior and
exterior of the cell. This simple assumption of a constant
(in space) pressure difference should be sufficient to study
the influence of the initial shape on the blebbing propensity.
However, for the dynamics of blebs the pressure distribution
will be of importance and requires to model the ambient fluid
as in Strychalski andGuy [33] and Fang et al. [34] and probably
also the actin-myosin biochemistry.

• Coupling between membrane and cortex: Forces arise due to
molecules connecting the membrane with the actin cortex,
and when the membrane detaches during the blebbing process
these linkers break. Figure 1 gives an impression of such a
force (denoted by f coupling). An actin scar is left behind the
bleb [4, 7] that disintegrates in the longer run, and the cortex
reassembles close to the new membrane position. However,
as we are interested in short times and the onset of blebbing
we assume the cortex to be stationary and positioned a small
distance l0 away from the initial membrane. Connection
points of linkers in the cortex are given by uc = idŴ0 − l0νŴ0 .
The linker molecules can be modeled as the density of simple
springs with parameter kl and assumed to be initially at rest.
In a continuum setting this can be modeled with an energy

density ecoupling = kl
2 (|u − uc| − l0)

2 as long as they are
intact. As a critical length uB is exceeded they break. Moreover,
when they get closer than a distance uR to the cortex then
the repulsion force is increased to prevent any intersection. A

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 June 2020 | Volume 6 | Article 21

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Stinner et al. SFEM for Cell Blebbing

model for the force density thus reads

f coupling = −kcoupling(|u− uc|)
(

(u− uc)− l0
(u− uc)

|u− uc|
)

, (48)

with

kcoupling(y) = kl
(

1+ kLH(uR − y)
)

H(uB − y) (49)

with some constant kL > 0 and the Heaviside functionH(r) =
1 if r ≥ 0 and H(r) = 0 otherwise. The assumption of a
constant kl, which corresponds to a homogeneous linker, is a
simplification. The cell usually is able to control the density
and, thus, the local effective linker strength by its biochemistry
[35]. We briefly report on a way to account for membrane-
bound biochemistry in section 5.5.

• Tension: Lateral tension in curved membranes leads to net
forces in normal direction that, in the case of isotropic
materials, are proportional to the curvature. The distribution
of tension is of relevance in moving cells [36]. It has been
noted in Tyson et al. [4] and further investigated in Collier
et al. [5] that the propensity of blebs in concave regions of
the cell membrane is higher. In such areas, the force due
to the membrane tension points outwards (Figure 1 gives an
impression, the force is denoted by f tension) and then adds to
the pressure whilst in convex regions it opposes the pressure.
We consider an energy density of the form

etension = kψ

2

(

|∇Ŵ0u| −
√
2x0

)2
, (50)

where kψ > 0 and x0 ∈ [0, 1] are parameters. Note that

|∇Ŵ0u(·, 0)| = |∇Ŵ0 idŴ0 | = |P| =
√
2 so that in the case

x0 = 1 the membrane initially is at rest.
If Ŵ0 was a curve in 2D then we would obtain the model
in Tyson et al. [4] and Collier et al. [5], which is motivated
by chains of linear springs with spring constant kψ and
resting length x0. More sophisticated elastic energies for
membranes than (50) can be derived from discrete models
for meshes formed by springs [37, 38] and then usually also
account for resistance to bending (discussed further below
around (52)). Let us also note that biomembranes, the basic
component of cell membranes, rupture when stretched beyond
a few percentages. Whilst this seems satisfied by the small
deformations during the onset of blebbing that we study,
the area increase during full bleb formation can be more
significant and require the supply of membrane area [39],
which then is likely to affect the tension, too.
The (tension) force density is given by minus the variation of
our energy (50),

f tension = kψ∇Ŵ0 ·
(

∇Ŵ0u−
√
2x0

∇Ŵ0u

|∇Ŵ0u|
)

. (51)

• Regularization: The membrane resists bending, though much
less than stretching. The corresponding elastic energy may
be modeled as in Helfrich [15] and Woolley et al. [40], see
[41] for a discussion of minimal approaches. The impact of

the bending force on the blebbing site selection and its shape
has been found to be significantly smaller than that of the
tension [4]. However, we suspect that it is of relevance in
the area where the bleb is connected with the cell as there the
curvature and its derivative can be high. Therefore, we want
methodology and software capable of addressing this aspect
for future studies. We here choose a simple linear bending
model that may be considered as a regularization with the
energy density

ereg = kb
2 |1Ŵ0u|2

where kb is a (small) bending resistance coefficient. Minus its
variation yields the regularization force density

f reg = −kb1
2
Ŵ0u. (52)

• Viscous drag: Blebbing approaches often explicitly account for
the fluid in the interior and exterior of the cell, which then is
assumed Newtonian and viscous [6, 7, 9]. Our focus is on the
onset of blebbing rather than on the time evolution and the
growth of blebs. We therefore only postulate a viscous drag
force density that opposes any membranes movement:

f drag = −ω∂tu,

where ω is an effective material parameter related to the
viscosity of the ambient fluid. Though this approach might
yield a good approximation to the dynamics, at least at
short time scales, it should rather be considered as another
regularization term and a mean to decrease membrane energy
in a controlled way. It may also enable us to compute bleb
shapes, noting that the drag force is zero if the membrane is
at rest, i.e., if ∂tu = 0. To address questions such as the origin
of the fluid in the bleb (from outside of the cell via pores in the
membrane [42] or from inside through the cortex [43]) our
approach will be insufficient, of course.

With these choices, the force balance (46) yields the PDE.

p0

V(u)
νŴ0 − kcoupling(|u− uc|)

(

(u− uc)− l0
(u− uc)

|u− uc|
)

+ kψ∇Ŵ0 ·
(

∇Ŵ0u−
√
2x0

∇Ŵ0u

|∇Ŵ0u|
)

− kb1
2
Ŵ0u− ω∂tu = 0.

(53)

4.2. Non-dimensionalization and
Regularization
The PDE (53) has been non-dimensionalized by choosing a
length scale U and by using kψ as an energy density scale.
Choosing the time scale 2 = U2ω/kψ then eliminates
the viscosity parameter ω. We furthermore define the non-
dimensional parameters λb = kb/(U

2kψ ), λl = klU
2/kψ , and

λp = p0/(U
2kψ ) and note that x0 and kL are non-dimensional

already. Writing again Ŵ0, u, uc, uB, uR, l0, and V(u) for
the respective non-dimensional objects, Equation (53) in non-
dimensional form and rearranged reads
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∂tu+ λb12
Ŵ0u− ∇Ŵ0 ·

(

∇Ŵ0u−
√
2x0

∇Ŵ0u

|∇Ŵ0u|
)

+ λl
(

1+ kLH(uR − |u− uc|)
)

H(uB − |u− uc|)
(

(u− uc)− l0
u− uc

|u− uc|
)

−
λp

V(u)
νŴ0 = 0. (54)

Note that the model in Tyson et al. [4] and Collier et al. [5] is
obtained by reducing the dimension of this Equation (54) (i.e.,Ŵ0

is a curve in 2D). The curve then is parameterized by arc-length,
and their computational model is obtained by using standard
finite difference techniques.

Equation (54) can be cast in the form (1) (without loss of
generality we can assume that λb = 1 as we may divide by λb,
rescale in time, and absorb the 1/λb term into k and ψ defined
below) by defining

k(u) = λl
(

1+ kLH(uR − |u− uc|)
)

H(uB − |u− uc|)
(

(u− uc)− l0
u− uc

|u− uc|
)

−
λp

V(u)
νŴ0 (55)

and

ψ(∇Ŵ0u) = 1

2

(

|∇Ŵ0u| −
√
2x0

)2

so that ψ ′(∇Ŵ0u) =
(

1−
√
2x0

|∇Ŵ0u|
)

∇Ŵ0u. (56)

Note neither k nor ψ ′ satisfy the Lipschitz continuity conditions
in section 2.2. We still used them for the simulations in section 5
but also have redone some simulations with regularized versions
of k and ψ ′. To ensure that the assumptions in section 2.2 are
satisfied, smoothing the Heaviside function and ensuring that
the denominators do not degenerate is sufficient. With a small
parameter ε > 0 the choice

λcoupling,ε(y) = λl

(

1+ kL

1+ exp(2(y− uR)/ε)

) 1

1+ exp(2(y− uB)/ε)

and then

k(u) = −λcoupling,ε(|u− uc|)
(

1− l0

|u− uc| + ε
)

(u− uc)

+ p0

V(u)+ ε νŴ0 (y) (57)

satisfies the assumptions around (4). The approximation

kh(yh,Uh) = −kcoupling,ε(|Uh − uc,h(yh)|)
(

(Uh − uc,h(yh))− l0
(Uh − uc,h(yh))

|Uh − uc,h(yh)| + ε
)

+ p0

Vh(Uh)+ ε
νŴ0

h
(yh)

with

Vh(Uh) = max
{

∫

Ŵ0
h

1

3
Uh · νŴ0

h
dσh, 0

}

satisfies the consistency assumption (10). Similarly, the choice

ψ(∇Ŵ0u) = 1

2

(

√

|∇Ŵ0u|2 + ε −
√
2x0

)2

so that

ψ ′(∇Ŵ0u) =
(

1−
√
2x0

√

|∇Ŵ0u|2 + ε

)

∇Ŵ0u (58)

satisfies the assumptions around (3).

5. SOFTWARE AND SIMULATIONS

5.1. Time Discretisation
We performed some numerical simulations for (54) to illustrate
the capability of the theoretical framework that has been
presented and analyzed. The variational form with operator
splitting in Problem 2.1 is discretised in time with a simple semi-
implicit first order scheme as follows: We split the time interval
[0,T] into M ∈ N equal parts of size τ = T/M, denote the time
steps with t(m) = mτ , and write f (m) = f (t(m)) for any time
dependent fields or functions.

Problem 5.1. Given Ŵ0
h
, S3

h
∋ uc,h ≈ uc, and parameters λb, λl,

λp, l0, uB, kL, uR, for m = 0, . . . ,M − 1 find (U
(m+1)
h

,W
(m+1)
h

) ∈
S3
h
× S3

h
such that for all (8h,Hh) ∈ S3

h
× S3

h

∫

Ŵ0
h

1

τ
Uh

(m+1) · 8h + λb∇Ŵ0
h
W

(m+1)
h

:∇Ŵ0
h
8h

+ ∇Ŵ0
h
U

(m+1)
h

:∇Ŵ0
h
8h

+ λ
(m)
coupling

U
(m+1)
h

· 8hdσh

=
∫

Ŵ0
h

1

τ
Uh

(m) · 8h +
√
2x0

∇Ŵ0
h
U

(m)
h

:∇Ŵ08h

|∇Ŵ0
h
U

(m)
h

|

+ λ
(m)
coupling

(

uc,h + l0
U

(m)
h

− uc,h

|U(m)
h

− uc,h|

)

· 8h

+
λp

|Vh(U
(m)
h

)|
νŴ0

h
· 8hdσh, (59)

∫

Ŵ0
h

∇Ŵ0
h
U

(m+1)
h

: ∇Ŵ0
h
Hh −W

(m+1)
h

·Hhdσh = 0, (60)

with

λ
(m)
coupling

= λl
(

1+ kLH(uR−|U(m)
h

−uc,h|)
)

H(uB−|U(m)
h

−uc,h|).

5.2. Implementation
We have solved the above problem using the Python bindings
from the DUNE-FEM module [29], which is based on the
Distributed and Unified Numerics Environment (DUNE) [28].
DUNE is an open source C++ environment that uses a
static polymorphic interfaces to describe grid based numerical
schemes. The package provides a large number of realizations
of these interfaces including many finite element spaces on
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structured and unstructured grids. This approach allows for the
efficient and flexible simulation of a large variety of mathematical
models based on partial differential equations.

The Python bindings described in Dedner and Nolte [44]
simplify the rapid prototyping of new schemes and models,
while maintaining the efficiency and flexibility of the DUNE
framework. This is achieved by using the domain specific
language UFL [26] to describe the mathematical model and
implementing the high level program control within Python. All
computationally critical parts of the simulation are carried out
in C++ using just in time compilation of the required DUNE
components. Consequently, the assembly of the bilinear forms
and solving of the linear and non-linear problems is implemented
in C++ while the time loop and the input and output of
data is carried out using the Python scripting language. More
information on the concepts can be found in Dedner et al. [30].

Meshes can be provided using a GMsh file or, as done for
this work, by using the internal Dune Grid Format (DGF).
All simulations reported on in this paper were performed
using a first order Lagrange space over a simplicial, locally
adaptive, distributed grid, which can be used for both bulk
and surface domains [45]. Bindings for a number of different
solver packages are available through DUNE-FEM including the
iterative solvers from DUNE-ISTL [46] (used for this work),
direct solvers from the SuiteSparse package [47], and a number
of solvers and preconditioners from the PetSc package [48]. The
simulation results were exported using VTK and visualized using
ParaView [49].

In the following we show how to setup the grid and how some
parts of the mathematical model are defined within UFL. The full
code needed to perform the simulations shown in this paper is
available (see the Data Availability Statement).

The first listing shows how to read in a grid for a cell obtained
from experimental data that was used for the simulations in
section 5.4:

from dune . a l u g r i d impor t a l u S imp l e xGr i d
from dune . fem . sp a c e impor t l a g r a n g e
s u r f a c eG r i d = a l uS imp l e xGr i d ( " c e l l . dg f " ,
d imgr id =2 , dimworld =3)

s o l u t i o n S p a c e = l a g r a n g e ( s u r f a c eG r i d ,
dimRange =3 , o rde r =1 , s t o r a g e =" i s t l " )

# a vector-valued finite element function for the position,
# initialized with the vertex positions of the initial grid

p o s i t i o n = s o l u t i o n S p a c e . i n t e r p o l a t e
( lambda x : x , name=" p o s i t i o n " )

# another finite element function, later on used to store the
previous time step

po s i t i o n _n = p o s i t i o n . copy ( )

The following snippet demonstrates how the bending terms
and tension terms are defined using UFL. The remaining terms,
e.g., for the pressure and the linker-molecules, are defined in a
very similar way:

from u f l impor t T r i a l F un c t i o n ,
Te s tFunc t i on , inner , grad , s q r t

# test and trial function used to define the bilinear forms

u = T r i a l F u n c t i o n ( s o l u t i o n S p a c e )
ph i = Te s t Func t i on ( s o l u t i o n S p a c e )
w = T r i a l F u n c t i o n ( s o l u t i o n S p a c e )
e t a = Te s t Func t i on ( s o l u t i o n S p a c e )

# the bending terms using operator splitting

bending_im = lam_b ∗ i nn e r ( grad (w) , g rad ( ph i ) )

op_ sp l i t _ po s _ im = inne r ( grad ( u ) , g rad ( e t a ) )

o p_ s p l i t _ c u r v _ im = −i nn e r (w , e t a )

# the tension terms

t en s i on_ im = inne r ( grad ( u ) , g rad ( ph i ) )

t e n s i o n _ e x = s q r t ( 2 . 0 ) ∗ x_0 ∗
i nn e r ( grad ( p o s i t i o n _n ) , g rad ( ph i ) ) / \

s q r t ( i nn e r ( grad ( p o s i t i o n _n ) , g rad ( p o s i t i o n _n ) ) )

In each time step a saddle point problem is solved using a Uzawa-
type algorithm where a CG method is used to invert the Schur
complement as described, for example, in Braess [50]. The main
algorithm is implemented in Python calling C++ routines to
compute the matrix-vector operations and to solve the inner
problem. The time loop with the solver is fairly long and doesn’t
seem worthwhile listing here but, as stated above already, the
whole code is publicly available.

A number of tests have been performed for problems with
known solutions (u,w) to validate the convergence (rates) of
Theorems 3.6 and 3.8. Recall that the choices of the tension
term ψ (56), and the coupling term k (55), in the specific
model (54) do not satisfy the requirements of the analysis.
However, in our simulations, the denominators in these terms
did not become very small. Comparative simulations with the
regularized choices (58) and (57) with ε = 10−5 did not
reveal any essential difference. More details on computations
to support the theoretical results and validation of the code
can be found in Nixon [51]. For conciseness, we don’t report
on these here but focus on an investigation of the parameter
space instead.

5.3. Brief Parameter Study
One question of interest has been whether surface tension and
pressure are sufficient to initiate blebbing without any weakening
of the cortex, as found in Collier et al. [5] in 2D. We also
further study the parameter space but remark that the simulation
results are at a qualitative level. An in-depth discussion involving
quantitative information is beyond the scope of this article and
left for future investigations. The parameters are steered into the
software at the high-level python interface which, in principle,
can be conveniently automated at that level for more substantial
parameter studies.

We consider an initial shape Ŵ0 obtained by deforming a
sphere of radius one by (all lengths in 10−6m )

y = (y1, y2, y3) → (4y1, 4y2, ỹ3),

ỹ3 = sign(y3)

{

(3− cos(πr/2))/2, if r ≤ 2,
√

4− (r − 2)2, if r > 2,
(61)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 June 2020 | Volume 6 | Article 21

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Stinner et al. SFEM for Cell Blebbing

FIGURE 2 | Illustration of the initial shape used for the simulation in section 5.3

by means of its mesh Ŵ0
h . For better visibility of the triangles, only ten

bisections were performed resulting in a mesh with 20480 vertices. A finer

mesh with 196608 vertices was used for the computations.

with r =
√

(4y1)2 + (4y2)2. This yields a shape similar to a
discocyte (or red blood cell, see Figure 2) with a volume of about
V(idŴ0 ) ≈ 1.5× 10−16m3 and a largest distance of 4.0× 10−6m
from the center. Let us briefly motivate this choice for the
initial shape. In the concave parts the force due to the membrane
tension points outwards and in the convex parts it points inwards.
When the cell membrane moves away from the cortex then the
coupling force, which is due to stretched linker molecules as long
as these are not broken, points inwards. Therefore, if pressure and
tension are able to overcome the coupling force and initialize a
bleb we will expect this to happen first (and possibly only) in the
concave parts of the initial shape.

Parameters for the various force densities vary in the literature,
not least due to differing cell types and differences in the models.
For the tension coefficient we chose kψ = 1.5×10−5N/m (ranges
from 2.0×10−6N/m [9] to 1.0×10−4N/m [52]), for the bending
coefficient kb = 7.5 × 10−20Nm (between 1.0 × 10−20Nm [40]
and 2.0 × 10−19Nm [9]), and for the linker spring coefficient
kl = 2.7 × 106N/m3 (close to 2.67 × 106N/m3 in Strychalski
and Guy [7]). The parameters x0 = 0.95, l0 = 4.0 × 10−8m,
and uB = 5.6 × 10−8m were chosen as in Collier et al. [5].
The parameters uR = 7.5 × 10−9m and kL = 500.0 were
chosen ad hoc but repeating some simulations with kL = 0
(particularly those with higher tension so that the membrane
got closer to the cortex) didn’t reveal any visual difference. As
discussed earlier around (47), pressure inside of the cell has to
be higher than outside of it to initiate blebbing. In the literature
we find values between 10Pa [40] and 81Pa [4]. We found that
a value of p0/|V(u(0))| ≈ 2.25Pa was already sufficient in our
simulations to break the linker molecules and, thus, to generate
a bleb site. With a length scale of U = 1.0 × 10−6m the set of
non-dimensional parameters is given in Table 1 and was used for
simulations unless stated otherwise.

TABLE 1 | Standard non-dimensional parameters for the numerical simulations in

section 5.3.

x0 λb λl l0 uB kL uR λp

0.95 0.005 18 0.04 0.056 500.0 0.0075 22.5

A triangulation Ŵ0
h
is obtained by starting with a cube with

vertices on the unit-sphere, then diagonally cutting the square
faces into triangles, and then bisecting all triangles 14 times such
that the longest edge is halved. New vertices are projected to the
unit-sphere after each refinement step. After, the above map (61)
is applied to the 196608 vertices. Figure 2 gives an impression of
a mesh thus obtained but with ten refinements only. The time
step size was set to τ = 0.0025. As mentioned, the model
serves to study the onset of blebbing and we therefore ended the
simulation at T = 2. At that time the final shapes usually weren’t
at rest yet but the deformations were sufficient to break linker
molecules and thus generate a blebbing site.

Figure 3 gives an overview of some shapes at the final time
for the data set in Table 1 and some variants (see Figure caption
for details). The initial shape Ŵ0 is axisymmetric around its
central axis. The initial shape Ŵ0

h
for the computations is not.

However, on visual inspection, also the computed shapes look
approximately axisymmetric. For this reasons, we compare cuts
through the centers for more insight. Figure 4 displays the slices
through the initial and the final shape that is visible in Figure 3A.
The color code from Figure 3 is used again so that parts of the
membrane with broken linkers are colored red. Differences are
predominant in the concave part of the initial shape, where the
membrane has moved outwards and detached. The tension force
in such concave parts points outwards and, together with the
pressure, initiates a bleb without requiring any weakening of
the cortex. This simulation thus supports the finding in Collier
et al. [5].

In Figure 5, we compare the final shapes for different
parameters of the linker strength λl, more precisely, slices of the
shapes in Figures 3A,B. Note that the color code is different (see
caption of Figure 5). The deformation isn’t much stronger as,
once the membrane is detached, the linker term doesn’t influence
the evolution any further. But a weaker linker strength λl and,
thus, less resistance to breaking leads to a wider bleb site.

A smaller resting length parameter x0 increases the surface
tension, which leads to a faster evolution and a stronger final
deformation. This is visible in Figure 6 where we compare the
slices of the shapes in Figures 3A,C, and the (red) curve for the
smaller x0 indicates that the membrane has moved further away
from the initial shape.

The impact of a higher pressure is illustrated in Figure 7where
slices through the shapes in Figure 3A (blue) and Figure 3D

(red) are overlayed. The effect resembles a bit that of a smaller
linker strength in that the deformation isn’t much different and in
that the bleb site is much bigger. The pressure term doesn’t break
down after detachment and continues to push outwards, though,
so that the membrane has moved a bit further throughout the
bleb site.
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FIGURE 3 | Final shapes for computations with the initial shape in Figure 2. The color scheme indicates the distance of the membrane to the cortex |Uh − uh,c|.
Values below the resting length l0 = 0.04 are highlighted in blue and values above the critical length of breaking uB = 0.056 in red, whilst values in between are

shaded as indicated on the bar. The parameters in Table 1 lead to the upper left shape (A). For (B), the linker strength was reduced by setting λl = 12. For (C), the

tension was increased by setting x0 = 0.85. For (D), the pressure was increased by setting p0 = 30.

FIGURE 4 | Slices through the central axis of shapes obtained in simulations that we report on in section 5.3. A magnified image of the black box is presented on the

right. The initial (dark gray) and the final shape (red/light blue) for the computation with the data from Table 1 are displayed. The color code is as in Figure 3. Strongly

deformed parts of the membrane, where the linkers are broken, are red and predominant in the concave part of the initial shape.

FIGURE 5 | Slices through the central axis of shapes obtained in simulations that we report on in section 5.3. A magnified image of the black box is presented on the

right. The final shapes for two computations are displayed. One for the standard parameters in Table 1 (blue), and one with a smaller linker strength parameter,

namely λl = 12 (red). In the latter case, the forces that keep the membrane attached to the cortex are smaller (see Equation (48), (49), λl corresponds to kl in the

dimensional model). The area where the membrane has detached from the cortex is bigger, so the blebbing region is wider.
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FIGURE 6 | Slices through the central axis of shapes obtained in simulations that we report on in section 5.3. A magnified image of the black box is presented on the

right. The final shapes for two computations are displayed. One for the standard parameters in Table 1 (blue), and one with x0 = 0.85 (red). The latter effectively

increases the membrane tension but also reduces the area at which the membrane is at rest (see Equations (50), (51) and in between). In the concave region of the

initial surface the membrane thus moves farther and its area shrinks further than before.

FIGURE 7 | Slices through the central axis of shapes obtained in simulations that we report on in section 5.3. A magnified image of the black box is presented on the

right. The final shapes for two computations are displayed. One for the standard parameters in Table 1 (blue), and one with a higher pressure parameter, namely

p0 = 30 (red). In the latter case, the cell membrane is further pushed outside, and the area where the membrane has detached from the cortex is wider.

TABLE 2 | Non-dimensional parameters for the simulation with an initial surface

obtained from image data, which we report on in section 5.4.

x0 λb λl l0 uB kL uR λp

0.95 0.125 0.72 0.2 0.28 500.0 0.15 150.0

5.4. Application to Experimental Data
Apart from given, “in-vitro” geometries and their influence on
blebbing, users may also be interested in studying the effect of
“in-vivo” geometries that are obtained from experimental data.
The image postprocessing outlined in Du et al. [53] enables users
to extract triangulated surfaces representing the cell membrane
from 3D images of cells, which then can be steered into the
software framework. This was done with data of a Dictyostelium
cell (also used in Du et al. [53]) moving by actin-driven pseudo-
pods without any blebbing. However, the purpose is again
to showcase the capability of the software framework rather
than to extract any quantitative information, which is left for
future investigations.

We used the non-dimensional parameters in Table 2, T = 20,
and τ = 0.02. Figure 8, left, shows the triangulated surface
Ŵ0
h
that has been obtained from the image data. On the right

of Figure 8 the final shape is displayed where the same color
code as in Figure 3 for the deformation strength is used. As in
the simulations before we observe that blebs form in concave
regions. We also see some deformations at the sides where small

protrusions become quite spiky. Both tension and resistance
to bending are expected to prevent any singularities to occur,
however the geometry seems under-resolved by the mesh in
these areas.

5.5. Extensibility
Due to the use of the Python scripting language for the high
level control of the simulation, it is fairly easy to extend our
mathematical model to include additional effects. So for example
we can conveniently add surface reaction-diffusion equations
to model some biochemistry occurring on the membrane, i.e.,
adding a system of the general form

∂tc− ∇Ŵ0 · (D∇Ŵ0c) = R(c) (62)

for some reactants c : Ŵ0 → R
r , where the function R :R

r →
R
r describes the reactions. The evolution of c can depend

on the evolution of the membrane, i.e., both the diffusion
tensor D and the source and sink term R may depend on
the deformation u. The reactants c may just be passive in
the sense that they do not influence the evolution of the
membrane but, in general, they will enter the evolution equation
for the surface deformation. For example, they may change
some material parameters and, thus, the forces acting on
the membrane.

As a proof of concept, we investigate the effect of adding a
chemical signal (scalar, c maps to R) to the model to contain
the spread of the bleb. In the current model a bleb will, in
general, not remain localized but the membrane will detach

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 June 2020 | Volume 6 | Article 21

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Stinner et al. SFEM for Cell Blebbing

FIGURE 8 | Application of the scheme in Problem 5.1 to a cell surface obtained from image data with the parameters from Table 2. The color scheme is as in

Figure 3. See section 5.4 for further details.

from large parts of the cortex. In experiments, bleb protrusion
stops, forming a fairly spherical cap attached to the part where
membrane and cortex still seem connected [2]. To reproduce
this phenomenon at least qualitatively, we add a scalar signal
c that is initially zero but is subsequently produced where the
linkers are broken, and it then diffuses along the membrane.
In regions where the linker molecules are still intact the signal
leads to an increase of the linker strength. This can prevent
further detachment of the cortex and effectively stop any further
protrusion of the bleb. We can localize this effect further by
making the diffusion tensor D in the reaction-diffusion equation
for the signal c depend on the cortex detachment from the
membrane. More precisely, we may assume a large diffusion
coefficient in regions where |u − uc| > uB and a small diffusion
coefficient elsewhere.

The variational form of the equation for the signal reads

∫

Ŵ0
∂tcz + Dc(χ(u)+ (1− χ(u))df )∇Ŵ0c · ∇Ŵ0zdσ

=
∫

Ŵ0
rcχ(u)(lc − c)zdσ (63)

for test functions zwith initial condition c(·, 0) = 0 and augments
Problem 2.1. Here, Dc > 0 is a diffusivity parameter and χ(u) =
H(|u − uc| − uB) (recall that H denotes the Heaviside function)
is the characteristic function of the region where the cortex is
detached. In the diffusion term, df is a reduction factor. If df = 1
then the diffusion is a uniform constant Dc while if df < 1
then the diffusion is reduced by this factor in regions where the
cortex is still attached. The signal is produced at a rate rc >

0 as soon as the cortex detaches up to a maximum value of
lc. We discretise (63) in space using the surface finite element
method introduced in section 3. In time we treat the diffusion
term implicitly and the reaction term explicitly, resulting in
a linear problem in each time step. The model for the signal
evolution can be conveniently added to the code with a couple
of lines:

from u f l impor t c o n d i t i o n a l

s p a c e_ c = l a g r a n g e ( s u r f a c eG r i d ,

dimRange =1 , o rde r=polOrder , s t o r a g e =" i s t l " )

s i g n a l = sp a c e_ c . i n t e r p o l a t e ( s p a c e_ c .

dimRange ∗ [ 0 ] , name=" c " )

s i g n a l _ n = s i g n a l . copy ( )

d e t a ched = c o n d i t i o n a l ( norm ( co rD i s tVec ) < u_B , 0 , 1 )

D = D_c ∗ ( d e t a ched +(1− de t a ched )∗ d_f )

s i gna lTe rms_ im = D ∗ i nn e r ( grad ( c ) , g rad ( z ) )

s i gn a lT e rms_ex =

r_c ∗ de t a ched ∗ ( l _ c−s i g n a l _ n [ 0 ] ) ∗ z [ 0 ]

s i gn a lMode l =

( i nn e r ( c , z )+ t au ∗ s i gna lTe rms_ im ) ∗ dx == \

( i nn e r ( s i gn a l _n , z)− t au ∗ s i gn a lT e rms_ex ) ∗ dx

As stated above, we assume that the signal is not passive but
influences the linker strength, i.e., λl in (55) is replaced by a c
dependent function.Wewant the linker strength to increase from
the original value λl to some value λL > λl when c increases
from some value cb > 0 to some value cB > cb. For this purpose
we define

l(c) = λl + ξ (c)(λL − λl)

where ξ is a piecewise definedmonotone C1 weight function with
ξ (c) = 0 for c < cb and ξ (c) = 1 for c > cB:

cub i c = lambda x :

( x−c_b )∗∗2 ∗ (3∗ c_B−c_b − 2∗x ) / ( c_B−c_b )∗∗3
x i = lambda x : c o n d i t i o n a l ( x<c_b , 0 ,

c o n d i t i o n a l ( x>c_B , 1 , c ub i c ( x ) ) )

l = l _ l + ( l_L− l _ l )∗ x i ( s i g n a l _ n [ 0 ] )

Note that we treat the impact of the signal on the
surface evolution explicitly in time to simplify the presentation.
Consequently, we can solve for the new membrane deformation
and the new signal concentration in separate steps within the
time loop. Details are available in the published code (see theData
Availability Statement). In summary, the signal evolution and its
interaction with the surface evolution is characterized by seven
additional constant parameters,Dc, lc, rc, df for the signal and λL,
cb, cB for the surface.

We test the effect of the signal on the evolution of blebs
with an artificial surface geometry but with less symmetry
than in section 5.3. Figure 9, left, gives an impression of Ŵ0.
In particular, the surface is not rotationally symmetric. Non-
dimensional parameters that remain fixed for all simulations that
we report on further below are given on the left of Table 3.
They coincide with the parameters used in section 5.3 (see
Table 1) except for a smaller x0 (this increases the tension force)
and a larger λp (this increases the pressure difference). All the
simulations reported on in this subsection were carried out on
a triangulated surface with around 40 000 elements with a
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FIGURE 9 | Surface evolution with parameters given by Table 3 for the extended model in section 5.5 but with rc = 0 so that the signal c remains zero. The left figure

shows the initial surface. The white curve indicates a plane along which we cut the shapes for visualization purposes in Figures 10,11. In the middle and on the right,

both the initial surface and the deformed surface are displayed at the final time T = 5. The initial surface is fully displayed with the white line in the middle and cut on

the right to illustrate the cutting procedure. The coloring of the original surface indicates the magnitude of the deformation as in Figure 3.

TABLE 3 | Non-dimensional parameters for the numerical simulations discussed

in section 5.5.

x0 λb λl l0 uB kL uR λp

0.8 0.005 18 0.04 0.056 500.0 0.0075 60

Dc lc rc df λL cb cB

10 1.2 12 1 450 0.2 1

On the top, the values for the membrane evolution equation (equation for u), and on

the bottom, the additional parameters needed for the signal equation and the coupling

between the two equations.

time step of 0.001. To reach time t = 5 required about 1h
of computing time on a single core of an Intel Xeon E5-2667
3.20GHz processor.

We first checked the case rc = 0, for which c = 0 solves
(62), i.e., there is no signal. Figure 9, middle and right, displays
the surface at the final time T = 5. We spot that the cortex has
detached from themembrane everywhere.Wewill show now that
this can be prevented from happening by accounting for a signal
and a strengthening of the linker terms.

We next consider the case df = 1 so that the diffusion
parameterDc is constant. The additional parameters required for
the signal and the coupling are given on the right of Table 3. The
evolution of the surface with signal is shown in Figure 10. We
see the signal being generated where the deformation is strong,
i.e., where membrane moves away from the initial shape and
thus from the cortex. However, at time t = 5 the membrane is
still close to the initial shape in regions away from the concave
parts. Comparing this with the simulation without the signal (see
Figure 9, right) it is clearly visible that the increase of the linker
strength due to the diffusing signal leads to a localization of the
blebs. We also see in Figure 10 that the shape is not stationary at
time t = 5 but the deformation continues to grow, which we now
want to prevent.

We reduce the diffusion coefficient in regions where the
linkers are not broken by setting df = 0.01 whilst keeping the
other parameters as in the previous simulation. The expectation
is that the strengthening of the linkers is more focused on the

boundary of the bleb than before and increases there faster as
the signal is not transported away by the diffusion. Thus, also
the linker strength should increase faster at the boundary of the
bleb. The simulation result is demonstrated in Figure 11. Now,
the simulation reaches a stationary state at time t ≈ 2.5 with a
small bleb that has developed in the concave region at the top
of the surface. At the beginning of the simulation, secondary
protrusions also start to develop at the three saddle-shaped sides
of the surface. Subsequently, the resulting production of the
signal c leads to a strengthening of the linkers, which then pull
the cortex back so that the protrusion disappears again.

6. CONCLUSION

A general modeling framework for the onset of blebbing has
been presented and analyzed. It is formulated in terms of
partial differential equations on the initial membrane, which is
considered as a hypersurface. Various forces acting on the plasma
membrane due to its elastic properties, linker molecules coupling
it to the cell cortex, and pressure difference across the membrane
are accounted for. Fluid flow within and outside of the cell is
essentially neglected modulo a drag force but may be considered
in future studies.

The general framework is particularly flexible with regards
to membrane tension and the coupling forces. A convergence
analysis of a surface finite element discretisation shows its
robustness to model alterations within not too restrictive limits.
There are some open questions with regards to the discretisation
in time, and as blebs are local events, spatial mesh adaptivity may
be beneficial.

Software for a specific instance of the general model is
provided and has been used to perform some numerical
simulations. A convenient high-level interface in Python allows
for directly implementing the model in its variational form and
solving it by an efficient software back-end. Standard software
usually does not provide functionality for numerically solving
problems on moving domains or hypersurfaces in 3D out of
the box but requires a substantial amount of coding. We hope
that our approach will address this issue and simplify the
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FIGURE 10 | Surface evolution at time t = 0.25, 1.25, 2.5, 10 for the model in section 5.5 with the parameters given in Table 3. The diffusion of the signal is a uniform

constant. The color from blue via green and yellow to red corresponds to the signal strength: Dark red indicates c > cB, i.e., regions where the linkers (if not broken

yet) are maximally strengthened by the signal c, dark blue indicates c < cb and thus regions where the linker strength is not altered by c.

FIGURE 11 | The left three figures show the surface evolution at times t = 0.25, 1.25, 5 for the model in section 5.5 with the parameters given in Table 3 but with

df = 0.01, i.e., a reduction of the diffusivity of the signal to 1% of its original value in the region where the linkers are not broken. The color corresponds to the signal

strength and is the same as in Figure 10. The shape at the final time T = 5 is a stationary state. The figure on the very right displays slices through the shapes at the

final time T = 5 for two different grid resolutions and time steps. The yellow curve is the stationary state corresponding to the left three figures, i.e., using around

40 000 element and a time step of 0.001. The green curve corresponds to the final state on 160 000 elements and with a time step of 0.0005. As before, the white

curve shows the initial surface. The final deformed surface with the coarser triangulation also serves to give an impression of the grid resolution compared to the size

of the developed bleb.

implementation of such moving boundary problems. Future
work on the software will include improvements of the efficiency
of the implementation, by investigating, for example, the use
of well-established techniques like local grid adaptivity and
parallelization (which are available through the grid manager
used for the simulations shown here [45]) as well as incorporating
more sophisticated preconditioning methods in the linear solver
implementation. This will be an important step toward extending
the model to include, for example, fluid flow inside and outside
of the cell.

DATA AVAILABILITY STATEMENT

The Python scripts used to obtain the results reported on here are
available in a git repository hosted on the DUNE gitlab server:
https://gitlab.dune-project.org/bjorn.stinner/sfem_blebs.

The main scripts are blebbing_artgeom.py,
blebbing_imgdata.py, and blebbing_signal.py
used for the results from sections 5.3, 5.4, and 5.5, respectively.
The setup of the model, the time loop, and the solver used
are contained in blebbing_compute.py. Some auxiliary
functions can be found in blebbing_tools.py.

The experiments reported on in this paper, can be reproduced
using the DUNE-FEM docker container. A script “startdune.sh”
is available in the git repository to download and start the
container. This requires the “docker” software to be available
on the system. It can be downloaded for different platforms

including Linux, MacOS, and the latest Windows version. More
information is available under https://dune-project.org/sphinx/
content/sphinx/dune-fem/installation.html.
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