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Data
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Dealing with massive data is a challenging task for machine learning. An important

aspect of machine learning is function approximation. In the context of massive data,

some of the commonly used tools for this purpose are sparsity, divide-and-conquer, and

distributed learning. In this paper, we develop a very general theory of approximation

by networks, which we have called eignets, to achieve local, stratified approximation.

The very massive nature of the data allows us to use these eignets to solve inverse

problems, such as finding a good approximation to the probability law that governs

the data and finding the local smoothness of the target function near different points

in the domain. In fact, we develop a wavelet-like representation using our eignets. Our

theory is applicable to approximation on a general locally compact metric measure space.

Special examples include approximation by periodic basis functions on the torus, zonal

function networks on a Euclidean sphere (including smooth ReLU networks), Gaussian

networks, and approximation on manifolds. We construct pre-fabricated networks so

that no data-based training is required for the approximation.

Keywords: Kernel based approximation, distributed learning, machine learning, inverse problems, probability

estimation

1. INTRODUCTION

Rapid advances in technology have led to the availability and need to analyze a massive data. The
problem arises in almost every area of life from medical science to homeland security to finance.
An immediate problem in dealing with a massive data set is that it is not possible to store it in a
computer memory; we therefore have to deal with the data piecemeal to keep access to an external
memory to aminimum. The other challenge is to devise efficient numerical algorithms to overcome
difficulties, for example, in using the customary optimization problems inmachine learning. On the
other hand, the very availability of a massive data set should lead also to opportunities to solve some
problems heretofore considered unmanageable. For example, deep learning often requires a large
amount of training data, which, in turn, helps us to figure out the granularity in the data. Apart
from deep learning, distributed learning is also a popular way of dealing with big data. A good
survey with the taxonomy for dealing with massive data was recently conducted by Zhou et al. [1].

As pointed out in Cucker and Smale [2], Cucker and Zhou [3], and Girosi and Poggio [4], the
main task in machine learning can be viewed as one of approximation of functions based on noisy
values of the target function, sampled at points that are themselves sampled from an unknown
distribution. It is therefore natural to seek approximation theory techniques to solve the problem.
However, most of the classical approximation theory results are either not constructive or study
function approximation only on known domains. In this century, there is a new paradigm to
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consider function approximation on data-defined manifolds; a
good introduction to the subject is in the special issue [5] of
Applied and Computational Harmonic Analysis, edited by Chui
and Donoho. In this theory, one assumes themanifold hypothesis,
i.e., that the data is sampled from a probability distribution µ∗

supported on a smooth, compact, and connected Riemannian
manifold; for simplicity, even that µ∗ is the Riemannian volume
measure for the manifold, normalized to be a probability
measure. Following (e.g., [6–10]), one constructs first a “graph
Laplacian” from the data and finds its eigen decomposition.
It is proved in the abovementioned papers that as the size of
the data tends to infinity, the graph Laplacian converges to the
Laplace-Beltrami operator on the manifold, and the eigenvalues
(eigenvectors) converge to the corresponding quantities on the
manifold. A great deal of work is devoted to studying the
geometry of this unknown manifold (e.g., [11, 12]) based on the
so-called heat kernel. The theory of function approximation on
such manifolds is also well-developed (e.g., [13–17]).

A bottleneck in this theory is the computation of the
eigendecomposition of a matrix, which is necessarily huge in the
case of big data. Kernel-based methods have been used also in
connection with approximation onmanifolds (e.g., [18–22]). The
kernels used in this method are constructed typically as a radial
basis function (RBF) in the ambient space, and the methods are
traditional machine learning methods involving optimization. As
mentioned earlier, massive data poses a big challenge for the
solution of these optimization problems. The theoretical results
in this connection assume a Mercer’s expansion in terms of
the Laplacian eigenfunctions for the kernel, satisfying certain
conditions. In this paper, we develop a general theory including
several RBF kernels in use in different contexts (examples
are discussed in section 2). Rather than using optimization-
based techniques, we will provide a direct construction of the
approximation based on what we have called eignets. An eignet is
defined directly using the eigendecomposition on the manifold.
We thus focus directly on the properties of Mercer expansion in
an abstract and unified manner that enables us to construct local
approximations suitable for working with massive data without
using optimization.

It is also possible that the manifold hypothesis does not hold,
and there is a recent work [23] by Fefferman et al. proposing
an algorithm to test this hypothesis. On the other hand, our
theory for function approximation does not necessarily use the
full strength of Riemannian geometry. In this paper, we have
therefore decided to work with a general locally compact metric
measure space, isolating those properties which are needed for
our analysis and substituting some that are not applicable in the
current setting.

Our motivation comes from some recent works on distributed
learning by Zhou et al. [24–26] as well as our own work on
deep learning [27, 28]. For example, in Lin et al. [26], the
approximation is done on the Euclidean sphere using a localized
kernel introduced in Mhaskar [29], where the massive data is
divided into smaller parts, each dense on the sphere, and the
resulting polynomial approximations are added to get the final
result. In Chui et al. [24], the approximation takes place on
a cube, and exploits any known sparsity in the representation

of the target function in terms of spline functions. In Mhaskar
and Poggio [28] and Mhaskar [27], we have argued that from a
function approximation point of view, the observed superiority
of deep networks over shallow ones results from the ability of
deep networks to exploit any compositional structure in the
target function. For example, in image analysis, one may divide
the image into smaller patches, which are then combined in a
hierarchical manner, resulting in a tree structure [30]. By putting
a shallow network at each node to learn those aspects of the target
function that depend upon the pixels seen up to that level, one can
avoid the curse of dimensionality. In some sense, this is a divide-
and-conquer strategy, not so much on the data set itself but on
the dimension of the input space.

The highlights of this paper are the following.

• In order to avoid an explicit, data-dependent

eigendecomposition, we introduce the notion of an eignet,
which generalizes several radial basis function and zonal
function networks. We construct pre-fabricated eignets,

whose linear combinations can be constructed just by using
the noisy values of the target function as the coefficients, to
yield the desired approximation.

• Our theory generalizes the results in a number of examples

used commonly in machine learning, some of which we will
describe in section 2.

• The use of optimization methods, such as empirical risk
minimization has an intrinsic difficulty, namely, theminimizer
of this risk may have no connection with the approximation

error. There are also other problems, such as local minima,
saddle points, speed of convergence, etc. that need to be taken
into account, and the massive nature of the data makes this

an even more challenging task. Our results do not depend
upon any kind of optimization in order to determine the

necessary approximation.
• We developed a theory for local approximation using eignets

so that only a relatively small amount of data is used in
order to approximate the target function in any ball of
the space, the data being sub-sampled using a distribution

supported on a neighborhood of that ball. The accuracy of
approximation adjusts itself automatically depending upon the
local smoothness of the target function on the ball.

• In normal machine learning algorithms, it is customary to

assume a prior on the target function called smoothness class
in approximation theory parlance. Our theory demonstrates
clearly how a massive data can actually help to solve the
inverse problem to determine the local smoothness of the
target function using a wavelet-like representation based solely
on the data.

• Our results allow one to solve the inverse problem of

estimating the probability density from which the data is
chosen. In contrast to the statistical approaches that we
are aware of, there is no limitation on how accurate the
approximation can be asymptotically in terms of the number
of samples; the accuracy is determined entirely by the
smoothness of the density function.

• All our estimates are given in terms of
probability of the error being small rather
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than the expected value of some loss function
being small.

This paper is abstract, theoretical, and technical. In section 2, we
present a number of examples that are generalized by our set-
up. The abstract set-up, together with the necessary definitions
and assumptions, are discussed in section 3. The main results are
stated in section 4 and proved in section 8. The proofs require
a great deal of preparation, which is presented in sections 5–
7. The results in these sections are not all new. Many of
them are new only in some nuance. For example, we have
proven in section 7 the quadrature formulas required in the
construction of our pre-fabricated networks in a probabilistic
setting, and we have also substituted an estimate on the gradients
by certain Lipschitz condition, which makes sense without the
differentiability structure on the manifold as we had done in
our previous works. Our Theorem 7.1 generalizes most of our
previous results in this direction with the exception of [31,
Theorem 2.3]. We have striven to give as many proofs as possible,
partly for the sake of completion and partly because the results
were not stated earlier in exactly the same form as needed here.
InAppendix A, we give a short proof of the fact that the Gaussian
upper bound for the heat kernel holds for arbitrary smooth,
compact, connected manifolds. We could not find a reference
for this fact. In Appendix B, we state the main probability theory
estimates that are used ubiquitously in the paper.

2. MOTIVATING EXAMPLES

In this paper, we aim to develop a unifying theory applicable to
a variety of kernels and domains. In this section, we describe
some examples which have motivated the abstract theory to be
presented in the rest of the paper. In the following examples,
q ≥ 1 is a fixed integer.

Example 2.1. Let T
q = R

q/(2πZq) be the q-dimensional
torus. The distance between points x = (x1, · · · , xq) and
y = (y1, · · · , yq) is defined by max1≤k≤q |(xk − yk) mod 2π |.
The trigonometric monomial system {exp(ik · ◦) : k ∈ Z

q} is
orthonormal with respect to the Lebesgue measure normalized to
be a probability measure on T

q. We recall that the periodization
of a function f :Rq → R is defined formally by f ◦(x) =∑

k∈Zq f (x + 2kπ). When f is integrable then the Fourier
transform of f at k ∈ Z

q is the same as the k-th Fourier
coefficient of f ◦. This Fourier coefficient will be denoted by

f̂ ◦(k) = f̂ (k). A periodic basis function network has the form
x 7→

∑n
k=1 akG(x− xk), where G is a periodic function called the

activation function. The examples of the activation functions in
which we are interested in this paper include:

1. Periodization of the Gaussian.

G(x) =
∑

k∈Zq

exp(−|x− 2πk|22/2) ,

Ĝ(k) = (2π)q/2 exp(−|k|22/2).

2. Periodization of the Hardy multiquadric1.

G(x) =
∑

k∈Zq

(α2 + |x− 2πk|22)−1 ,

Ĝ(k) = π (q+1)/2

Ŵ
(
q+1
2

)
α
exp(−α|k|2), α > 0.

Example 2.2. If x = (x1, · · · , xq) ∈ [−1, 1]q, there exists a
unique θ = (θ1, · · · , θq) ∈ [0,π]q such that x = cos(θ).
Therefore, [−1, 1]q can be thought of as a quotient space of
T
q where all points of the form ε ⊙ θ = {(ε1θ1, · · · , εqθq)},

ε = (ε1, · · · , εq) ∈ {−1, 1}q, are identified. Any function on
[−1, 1]q can then by lifted to T

q, and this lifting preserves all the
smoothness properties of the function. Our set-up below includes
[−1, 1]q, where the distance and the measure are defined via the
mapping to the torus, and suitably weighted Jacobi polynomials
are considered to be the orthonormalized family of functions.
In particular, if G is a periodic activation function, x = cos(θ),
y = cos(φ), then the function G�(x, y) =

∑
ε∈{−1,1}q G(ε ⊙

(θ − φ)) is an activation function on [−1, 1]q with an
expansion

∑
k∈Zq

+
bkTk(x)Tk(y), where Tk’s are tensor product,

orthonormalized, Chebyshev polynomials. Furthermore, bk’s
have the same asymptotic behavior as Ĝ(k)’s.

Example 2.3. Let Sq = {x ∈ R
q+1

: |x|2 = 1} be the unit
sphere in R

q+1. The dimension of Sq as a manifold is q. We
assume the geodesic distance ρ on Sq and the volumemeasureµ∗

are normalized to be a probability measure. We refer the reader
to Müller [33] for details, describing here only the essentials to
get a “what-it-is-all-about” introduction. The set of (equivalence
classes) of restrictions of polynomials in q+ 1 variables with total
degree < n to S

q are called spherical polynomials of degree < n.
The set of restrictions of homogeneous harmonic polynomials
of degree ℓ to S

q is denoted by Hℓ with dimension dℓ. There

is an orthonormal basis {Yℓ,k}dℓk=1
for each Hℓ that satisfies an

addition formula

dℓ∑

k =1

Yℓ,k(x)Yℓ,k(y) = ω−1
q−1pℓ(1)pℓ(x · y),

where ωq−1 is the volume of S
q−1, and pℓ is the degree

ℓ ultraspherical polynomial so that the family {pℓ} is
orthonormalized with respect to the weight (1 − x2)(q−2)/2

on (−1, 1). A zonal function on the sphere has the form
x 7→ G(x · y), where the activation function G :[−1, 1] → R has
a formal expansion of the form

G(t) = ω−1
q−1

∞∑

ℓ=0

Ĝ(ℓ)pℓ(1)pℓ(t).

In particular, formally,G(x·y) =
∑∞
ℓ=0 Ĝ(ℓ)

∑dℓ
k=1

Yℓ,k(x)Yℓ,k(y).
The examples of the activation functions in which we are
interested in this paper include

1A Hardy multiquadric is a function of the form x → (α2 + |x|22)−1, x ∈ R
q. It

is one of the oft-used function in theory and applications of radial basis function

networks. For a survey, see the paper [32] of Hardy.
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1.

Gr(x) : = (1− 2rx+ r2)−(q−1)/2, x ∈ [−1, 1], 0 < r < 1.

It is shown in Müller [33, Lemma 18] that

Ĝr(ℓ) =
(q− 1)ωq

2ℓ+ q− 1
rℓ, ℓ = 1, 2, · · · .

2.

GE
r (x) : = exp(rx), x ∈ [−1, 1], r > 0.

It is shown in Mhaskar et al. [34, Lemma 5.1] that

ĜE
r (ℓ) =

ωqr
ℓ

2ℓ Ŵ(ℓ+ q+1
2 )

(
1+ O(1/ℓ)

)
.

3. The smooth ReLU functionG(t) = log(1+et) = t++O(e−|t|).
The function G has an analytic extension to the strip R +
(−π ,π)i of the complex plane. So, Bernstein approximation
theorem [35, Theorem 5.4.2] can be used to show that

lim sup
ℓ→∞

|Ĝ(ℓ)|1/ℓ = 1/π .

Example 2.4. Let X be a smooth, compact, connected
Riemannian manifold (without boundary), ρ be the geodesic
distance on X, µ∗ be the Riemannian volume measure
normalized to be a probability measure, {λk} be the sequence
of eigenvalues of the (negative) Laplace-Beltrami operator on
X, and φk be the eigenfunction corresponding to the eigenvalue
λk; in particular, φ0 ≡ 1. This example, of course, includes
Examples 2.1–2.3. An eignet in this context has the form
x 7→

∑n
k=1 akG(x, xk), where the activation function G has a

formal expansion of the form G(x, y) =
∑

k b(λk)φk(x)φk(y).
One interesting example is the heat kernel:

∞∑

k=0

exp(−λ2kt)φk(x)φk(y).

Example 2.5. Let X = R
q, ρ be the ℓ∞ norm on X, µ∗

be the Lebesgue measure. For any multi-integer k ∈ Z
q
+,

the (multivariate) Hermite function φk is defined via the
generating function

∑

k∈Zq
+

φk(x)√
2|k|1k!

wk = π−1/4 exp

(
−1

2
|x− w|22 + |w|22/4

)
,w ∈ C

q.

(2.1)
The system {φk} is orthonormal with respect to µ∗, and satisfies

1φk(x)− |x|22φk(x) = −(2|k|1 + 1)φk(x), x ∈ R
q,

where 1 is the Laplacian operator. As a consequence of the so
called Mehler identity, one obtains [36] that

exp

(
−|x−

√
3

2
y|22

)
exp(−|y|22/4)

=
(

3

2π

)−q/2 ∑

k∈Zd
+

φk(x)φk(y)3
−|k|1/2. (2.2)

A Gaussian network is a network of the form x 7→∑n
k=1 ak

(
−|x− zk|22

)
, where it is convenient to think of zk =√

3

2
yk.

3. THE SET-UP AND DEFINITIONS

3.1. Data Spaces
Let X be a connected, locally compact metric space with metric
ρ. For r > 0, x ∈ X, we denote

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}, 1(x, r) = closure(X \ B(x, r)).

If K ⊆ X and x ∈ X, we write as usual ρ(K, x) = infy∈K ρ(y, x).
It is convenient to denote the set
{x ∈ X; ρ(K, x) ≤ r} by B(K, r). The diameter of K is defined by
diam(K) = supx,y∈K ρ(x, y).

For a Borel measure ν on X (signed or positive), we denote by
|ν| its total variation measure defined for Borel subsets K ⊂ X by

|ν|(K) = sup
U

∑

U∈U
|ν(U)|,

where the supremum is over all countable measurable partitions
U of K. In the sequel, the term measure will mean a signed
or positive, complete, sigma-finite, Borel measure. Terms, such
as measurable will mean Borel measurable. If f :X → R is
measurable, K ⊂ X is measurable, and ν is a measure, we define2

‖f ‖p,ν,K =





{∫

K
|f (x)|pd|ν|(x)

}1/p
, if 1 ≤ p <∞,

|ν|−ess sup
x∈K

|f (x)|, if p = ∞.

The symbol Lp(ν,K) denotes the set of all measurable functions
f for which ‖f ‖p,ν,K < ∞, with the usual convention that
two functions are considered equal if they are equal |ν|-almost
everywhere on K. The set C0(K) denotes the set of all uniformly
continuous functions on K vanishing at ∞. In the case when
K = X, we will omit the mention of K, unless it is necessary
to mention it to avoid confusion.

We fix a non-decreasing sequence {λk}∞k=0
, with λ0 = 0

and λk ↑ ∞ as k → ∞. We also fix a positive sigma-finite
Borel measure µ∗ on X, and a system of orthonormal functions

2|ν|−ess supx∈K |f (x)| = inf
{
t : |ν|

(
{x ∈ K : |f (x)| > t}

)
= 0

}
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{φk}∞k=0
⊂ L1(µ∗,X) ∩ C0(X), such that φ0(x) > 0 for all x ∈ X.

We define

5n = span {φk : λk < n}, n > 0. (3.1)

It is convenient to write5n = {0} if n ≤ 0 and5∞ =
⋃

n>05n.
It will be assumed in the sequel that5∞ is dense in C0 (and, thus,
in every Lp, 1 ≤ p < ∞). We will often refer to the elements of
5∞ as diffusion polynomials in keeping with [13].

Definition 3.1. We will say that a sequence {an} (or a function
F :[0,∞) → R) is fast decreasing if lim

n→∞
nSan = 0 (respectively,

lim
x→∞

xSf (x) = 0) for every S > 0. A sequence {an} has polynomial

growth if there exist c1, c2 > 0 such that |an| ≤ c1n
c2 for all n ≥ 1,

and similarly for functions.

Definition 3.2. The space X (more precisely, the tuple 4 =
(X, ρ,µ∗, {λk}∞k=0

, {φk}∞k=0
)) is called a data space if each of the

following conditions is satisfied.

1. For each x ∈ X, r > 0, B(x, r) is compact.
2. (Ball measure condition) There exist q ≥ 1 and κ > 0with the

following property: for each x ∈ X, r > 0,

µ∗(B(x, r)) = µ∗ ({y ∈ X : ρ(x, y) < r}
)
≤ κrq. (3.2)

(In particular, µ∗ ({y ∈ X : ρ(x, y) = r}
)
= 0.)

3. (Gaussian upper bound) There exist κ1, κ2 > 0 such that for
all x, y ∈ X, 0 < t ≤ 1,

∣∣∣∣∣

∞∑

k=0

exp(−λ2kt)φk(x)φk(y)
∣∣∣∣∣ ≤ κ1t

−q/2 exp

(
−κ2

ρ(x, y)2

t

)
.

(3.3)
4. (Essential compactness) For every n ≥ 1, there exists a compact

set Kn ⊂ X such that the function n 7→ diam(Kn) has
polynomial growth, while the functions

n 7→ sup
x∈X\Kn

∑

λk<n

φk(x)
2

and

n 7→
∫

X\Kn


∑

λk<n

φk(x)
2




1/2

dµ∗(x)

are both fast decreasing. (Necessarily, n 7→ µ∗(Kn) has
polynomial growth as well.)

Remark 3.1. We assume without loss of generality that Kn ⊆
Km for all n < m and that µ∗(K1) > 0.

Remark 3.2. If X is compact, then the first condition as well as

the essential compactness condition are automatically satisfied.

We may takeKn = X for all n. In this case, we will assume tacitly
that µ∗ is a probability measure, and φ0 ≡ 1.

Example 3.1. (Manifold case) This example points out that our
notion of data space generalizes the set-ups in Examples 2.1–
2.4. Let X be a smooth, compact, connected Riemannian
manifold (without boundary), ρ be the geodesic distance on
X, µ∗ be the Riemannian volume measure normalized to be
a probability measure, {λk} be the sequence of eigenvalues
of the (negative) Laplace-Beltrami operator on X, and φk
be the eigenfunction corresponding to the eigenvalue λk; in
particular, φ0 ≡ 1. If the condition (3.2) is satisfied, then
(X, ρ,µ∗, {λk}∞k=0

, {φk}∞k=0
) is a data space. Of course, the

assumption of essential compactness is satisfied trivially (see
Appendix B for the Gaussian upper bound).

Example 3.2. (Hermite case) We illustrate how Example 2.5
is included in our definition of a data space. Accordingly,
we assume the set-up as in that example. For a > 0, let
φk,a(x) = a−q/2φk(ax). With λk =

√
|k|1, the system 4a =

(Rq, ρ,µ∗, {λk}, {φk,a}) is a data space. When a = 1, we will
omit its mention from the notation in this context. The first two
conditions are obvious. The Gaussian upper bound follows by the
multivariateMehler identity [37, Equation 4.27]. The assumption
of essential compactness is satisfied with Kn = B(0, cn) for a
suitable constant c (cf. [38, Chapter 6]).

In the rest of this paper, we assume X to be a data space.
Different theorems will require some additional assumptions,
two of which we now enumerate. Not every theorem will need
all of these; we will state explicitly which theorem uses which
assumptions, apart from X being a data space.

The first of these deals with the product of two diffusion
polynomials. We do not know of any situation where it is not
satisfied but are not able to prove it in general.

Definition 3.3. (Product assumption) There exists A∗ ≥ 1 and a
family {Rj,k,n ∈ 5A∗n} such that for every S > 0,

lim
n→∞

nS
(

max
λk ,λj<n, p=1,∞

‖φkφj − Rj,k,nφ0‖p
)
= 0. (3.4)

We say that an strong product assumption is satisfied if, instead
of (3.4), we have for every n > 0 and P,Q ∈ 5n, PQ ∈ 5A∗n.

Example 3.3. In the setting of Example 3.2, if P,Q ∈ 5n, then
PQ = Rφ0 for some R ∈ 52n. So, the product assumption holds
trivially. The strong product assumption does not hold. However,
if P,Q ∈ 5n, then PQ ∈ span{φk,√2

: λk < n
√
2}. The manifold

case is discussed below in Remark 3.3.

Remark 3.3. One of the referees of our paper has pointed out
three recent references [39–41], on the subject of the product
assumption. The first two of these deal with the manifold case
(Example 3.1). The paper [41] extends the results in Lu et al. [40]
to the case when the functions φk are eigenfunctions of a more
general elliptic operator. Since the results in these two papers
are similar qualitatively, we will comment on Lu et al. [40] and
Steinerberger [39].
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In this remark only, let Kt(x, y) =
∑

k exp(−λ2kt)φk(x)φk(y).
Let λk, λj < n. In Steinerberger [39], Steinerberger relates
EAn(2,φkφj) [see (3.6) below for definition] with

∥∥∥∥
∫

X

Kt(◦, y)(φk(y)− φk(◦))(φj(y)− φj(◦))dµ∗(y)

∥∥∥∥
2,µ∗

.

While this gives some insight into the product assumption,
the results are inconclusive about the product assumption
as stated. Also, it is hard to verify whether the
conditions mentioned in the paper are satisfied for a
given manifold.

In Lu et al. [40], it is shown that for any ǫ, δ > 0, there
exists a subspace V of dimension Oδ(ǫ

−δn1+δ) such that for all
φk,φj ∈ 5n, infP∈V ‖φkφj−P‖2,µ∗ ≤ ǫ. The subspaceV does not
have to be 5An for any A. Since the dimension of span{φkφj} is
O(n2), the result is meaningful only if 0 < δ < 1 and ǫ ≥ n1−1/δ .

In Geller and Pesenson [42, Theorem 6.1], it is shown that
the strong product assumption (and, thus, also the product
assumption) holds in the manifold case when the manifold
is a compact homogeneous manifold. We have extended this
theorem in Filbir and Mhaskar [17, Theorem A.1] for the
case of eigenfunctions of general elliptic partial differential
operators on arbitrary compact, smooth manifolds provided
that the coefficient functions in the operator satisfy some
technical conditions.

In our results in section 4, we will need the following condition,
which serves the purpose of gradient in many of our earlier
theorems on manifolds.

Definition 3.4. We say that the system 4 satisfies Bernstein-

Lipschitz condition if for every n > 0, there exists Bn > 0 such
that

|P(x)− P(y)| ≤ Bnρ(x, y)‖P‖∞, x, y ∈ X, P ∈ 5n. (3.5)

Remark 3.4. Both in the manifold case and the Hermite case,
Bn = cn for some constant c > 0. A proof in the Hermite case
can be found in Mhaskar [43] and in the manifold case in Filbir
and Mhaskar [44].

3.2. Smoothness Classes
We define next the smoothness classes of interest here.

Definition 3.5. A function w :X → R will be called a weight

function if wφk ∈ C0(X)∩L1(X) for all k. If w is a weight function,
we define

En(w; p, f ) = min
P∈5n

‖f −Pw‖p,µ∗ , n > 0, 1 ≤ p ≤ ∞, f ∈ Lp(X).

(3.6)
We will omit the mention of w if w ≡ 1 on X.

We find it convenient to denote by Xp the space {f ∈
Lp(X) : limn→∞ En(p, f ) = 0}; i.e., Xp = Lp(X) if 1 ≤ p < ∞
and X∞ = C0(X).

Definition 3.6. Let 1 ≤ p ≤ ∞, γ > 0, and w be a
weight function.
(a) For f ∈ Lp(X), we define

‖f ‖Wγ ,p,w = ‖f ‖p,µ∗ + sup
n>0

nγ En(w; p, f ), (3.7)

and note that

‖f ‖Wγ ,p,w ∼ ‖f ‖p,µ∗ + sup
n∈Z+

2nγ E2n (w; p, f ). (3.8)

The space Wγ ,p,w comprises all f for which ‖f ‖Wγ ,p,w <∞.
(b) We write C∞

w =
⋂
γ>0 Wγ ,∞,w. If B is a ball in X, C∞

w (B)
comprises functions in f ∈ C∞

w , which are supported on B.
(c) If x0 ∈ X, the space Wγ ,p,w(x0) comprises functions f such
that there exists r > 0 with the property that, for every φ ∈
C∞
w (B(x0, r)), φf ∈ Wγ ,p,w.

Remark 3.5. In both the manifold case and the Hermite case,
characterizations of the smoothness classes Wγ ,p are available
in terms of constructive properties of the functions, such as
the number of derivatives, estimates on certain moduli of
smoothness or K-functionals, etc. In particular, the class C∞

coincides with the class of infinitely differentiable functions
vanishing at infinity.

We can now state another assumption that will be needed in
studying local approximation.

Definition 3.7. (Partition of unity) For every r > 0, there exists
a countable family Fr = {ψk,r}∞k=0

of functions in C∞ with the
following properties:

1. Each ψk,r ∈ Fr is supported on B(xk, r) for some xk ∈ X.
2. For every ψk,r ∈ Fr and x ∈ X, 0 ≤ ψk,r(x) ≤ 1.
3. For every x ∈ X, there exists a finite subset Fr(x) ⊆ Fr such

that

∑

ψk,r∈Fr(x)

ψk,r(y) = 1, y ∈ B(x, r). (3.9)

We note some obvious observations about the partition of unity
without the simple proof.

Proposition 3.1. Let r > 0, Fr be a partition of unity.

(a) Necessarily,
∑

ψk,r∈Fr(x)

ψk,r is supported on B(x, 3r).

(b) For x ∈ X,
∑
ψk,r∈Fr

ψk,r(x) = 1.

The constant convention In the sequel, c, c1, · · · will denote
generic positive constants depending only on the fixed quantities
under discussion, such as 4, q, κ , κ1, κ2, the various smoothness
parameters, and the filters to be introduced. Their value may be
different at different occurrences, even within a single formula. The
notation A ∼ B means c1A ≤ B ≤ c2A.

We end this section by defining a kernel that plays a central
role in this theory.
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Let H :[0,∞) → R be a compactly supported function. In the
sequel, we define

8N(H; x, y) =
∞∑

k=0

H(λk/N)φk(x)φk(y), N > 0, x, y ∈ X.

(3.10)
If S ≥ 1 is an integer, andH is S times continuously differentiable,
we introduce the notation

‖|H|‖S : = max
0≤k≤S

max
x∈R

|H(k)(x)|.

The following proposition recalls an important property of these
kernels. Proposition 3.2 is proven in Maggioni and Mhaskar [13]
and more recently in much greater generality in Mhaskar [45,
Theorem 4.3].

Proposition 3.2. Let S > q be an integer, H :R → R be an even,
S times continuously differentiable, compactly supported function.
Then, for every x, y ∈ X, N > 0,

|8N(H; x, y)| ≤ cNq‖|H|‖S
max(1, (Nρ(x, y))S)

. (3.11)

In the sequel, let h :R → [0, 1] be a fixed, infinitely differentiable,
even function, non-increasing on [0,∞), with h(t) = 1 if |t| ≤
1/2 and h(t) = 0 if t ≥ 1. If ν is any measure with a bounded
total variation on X, we define

σn(ν, h; f )(x) =
∫

X

8n(h; x, y)f (y)dν(y). (3.12)

We will omit the mention of h in the notations; e.g., write
8n(x, y) = 8n(h; x, y), and the mention of ν if ν = µ∗.
In particular,

σn(f )(x) =
∞∑

k=0

h

(
λk

n

)
f̂ (k)φk(x),

n > 0, x ∈ X, f ∈ L1(X)+ C0(X), (3.13)

where for f ∈ L1 + C0, we write

f̂ (k) =
∫

X

f (y)φk(y)dµ
∗(y) (3.14)

.

3.3. Measures
In this section, we describe the terminology involving measures.

Definition 3.8. Let d ≥ 0. A measure ν ∈ M will be called
d–regular if

|ν|(B(x, r)) ≤ c(r + d)q, x ∈ X. (3.15)

The infimum of all constants c that work in (3.15) will be denoted
by |||ν|||R,d, and the class of all d-regular measures will be denoted
byRd.

For example, µ∗ itself is in R0 with |||µ∗|||R,0 ≤ κ [cf. (3.2)].
More generally, if w ∈ C0(X) then the measure wdµ∗ is R0 with
|||µ∗|||R,0 ≤ κ‖w‖∞,µ∗ .

Definition 3.9. (a) A sequence {νn} of measures on X is called
an admissible quadrature measure sequence if the sequence
{|νn|(X)} has polynomial growth and

∫

X

Pdνn =
∫

X

Pdµ∗, P ∈ 5n, n ≥ 1. (3.16)

(b) A sequence {νn} of measures on X is called an admissible

product quadrature measure sequence if the sequence {|νn|(X)}
has polynomial growth and

∫

X

P1P2dνn =
∫

X

P1P2dµ
∗, P1, P2 ∈ 5n, n ≥ 1. (3.17)

(c) By abuse of terminology, we will say that a measure νn is
an admissible quadrature measure (respectively, an admissible

product quadrature measure) of order n if |νn| ≤ c1n
c (with

constants independent of n) and (3.16) [respectively, (3.17)] holds.

In the case when X is compact, a well-known theorem
called Tchakaloff ’s theorem [46, Exercise 2.5.8, p. 100] shows
the existence of admissible product quadrature measures (even
finitely supported probability measures). However, in order to
construct such measures, it is much easier to prove the existence
of admissible quadrature measures, as we will do in Theorem 7.1,
and then use one of the product assumptions to derive admissible
product quadrature measures.

Example 3.4. In the manifold case, let the strong product
assumption hold as in Remark 3.3. If n ≥ 1 and C ⊂ X

is a finite subset satisfying the assumptions of Theorem 7.1,
then the theorem asserts the existence of an admissible
quadrature measure supported on C. If {νn} is an admissible
quadrature measure sequence, then {νA∗n} is an admissible
product quadrature measure sequence. In particular, there exist
finitely supported admissible product quadrature measures of
order n for every n ≥ 1.

Example 3.5. We consider the Hermite case as in Example 3.2.
For every a > 0 and n ≥ 1, Theorem 7.1 applied with the system
4a yields admissible quadrature measures of order n supported
on finite subsets of Rq (in fact, of [−cn, cn]q for an appropriate
c). In particular, an admissible quadrature measure of order n

√
2

for 4√
2 is an admissible product quadrature measure of order n

for4 = 41.

3.4. Eignets
The notion of an eignet defined below is a generalization of the
various kernels described in the examples in section 2.

Definition 3.10. A function b :[0,∞) → (0,∞) is called a
smooth mask if b is non-increasing, and there exists B∗ = B∗(b) ≥
1 such that the mapping t 7→ b(B∗t)/b(t) is fast decreasing. A
function G :X × X → R is called a smooth kernel if there exists

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 October 2020 | Volume 6 | Article 30

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Mhaskar Kernel-Based Massive Data Analysis

a measurable function W = W(G) :X → R such that we have a
formal expansion (with a smooth mask b)

W(y)G(x, y) =
∑

k

b(λk)φk(x)φk(y), x, y ∈ X. (3.18)

If m ≥ 1 is an integer, an eignet with m neurons is a function of
the form x 7→

∑m
k=1 akG(x, yk) for yk ∈ X.

Example 3.6. In the manifold case, the notion of eignet includes
all the examples stated in section 2 with W ≡ 1, except for
the example of smooth ReLU function described in Example 2.3.
In the Hermite case, (2.2) shows that the kernel G(x, y) =

exp

(
−|x−

√
3

2
y|22

)
defined onRq×R

q is a smooth kernel, with

λk = |k|1, φk as in Example 2.5, and b(t) =
(

3

2π

)−q/2

3−t/2.

The functionW here isW(y) = exp(−|y|22/4).
Remark 3.6. It is possible to relax the conditions on the mask
in Definition 3.10. Firstly, the condition that b should be
non-increasing is made only to simplify our proofs. It is not
difficult to modify them without this assumption. Secondly,
let b0 :[0,∞) → R satisfy |b0(t)| ≤ b1(t) for a smooth
mask b1 as stipulated in that definition. The function b2 =
b + 2b1 is then a smooth mask and so is b1. Let Gj(x, y) =∑∞

k=0 bj(λk)φk(x)φk(y), j = 0, 1, 2. Then G0(x, y) = G2(x, y) −
2G1(x, y). Therefore, all of the results in sections 4 and 8 can be
applied once withG2 and once withG1 to obtain a corresponding
result for G0 with different constants. For this reason, we will
simplify our presentation by assuming the apparently restrictive
conditions stipulated in Definition 3.10. In particular, this
includes the example of the smooth ReLU network described in
Example 2.3.

Definition 3.11. Let ν be a measure on X (signed or having
bounded variation), and G ∈ C0(X× X). We define

DG,n(x, y) =
∞∑

k=0

h (λk/n) b(λk)
−1φk(x)φk(y), n ≥ 1, x, y ∈ X,

(3.19)
and

Gn(ν; x, y) =
∫

X

G(x, z)W(z)DG,n(z, y)dν(z). (3.20)

Remark 3.7. Typically, we will use an approximate product
quadrature measure sequence in place of the measure ν,
where each of the measures in the sequence is finitely
supported, to construct a sequence of networks. In the case
when X is compact, Tchakaloff ’s theorem shows that there
exists an approximate product quadrature measure of order
m supported on (dim(5m) + 1)2 points. Using this measure
in place of ν, one obtains a pre-fabricated eignet Gn(ν) with
(dim(5m) + 1)2 neurons. However, this is not an actual
construction. In the presence of the product assumption,
Theorem 7.1 leads to the pre-fabricated networks Gn in a
constructive manner with the number of neurons as stipulated in
that theorem.

4. MAIN RESULTS

In this section, we assume the Bernstein-Lipschitz condition
(Definition 3.4) in all the theorems. We note that the measure
µ∗ may not be a probability measure. Therefore, we take the
help of an auxiliary function f0 to define a probability measure
as follows. Let f0 ∈ C0(X), f0 ≥ 0 for all x ∈ X, and dν∗ =
f0dµ

∗ be a probability measure. Necessarily, ν∗ is 0-regular, and
k : |||ν∗|||R,0 ≤ k‖f0‖∞,µ∗ . We assume noisy data of the form (y, ǫ),
with a joint probability distribution τ defined for Borel subsets
of X × � for some measure space �, and with ν∗ being the
marginal distribution of y with respect to τ . Let F(y, ǫ) be a
random variable following the law τ , and denote

f (y) = Eτ (F(y, ǫ)|y). (4.1)

It is easy to verify using Fubini’s theorem that if F is integrable
with respect to τ , then, for any x ∈ X,

Eτ (F(y, ǫ)8n(x, y)) = σn(ν
∗; f )(x) : =

∫

X

f (y)8n(x, y)dν
∗(y).

(4.2)
Let Y be a random sample from τ , and {νn} be an admissible
product quadrature sequence in the sense of Definition 3.9. We
define [cf. (3.20)]

Gn(Y;F)(x) = Gn(νB∗n,Y;F)(x)

= 1

|Y|
∑

(y,ǫ)∈Y
F(y, ǫ)Gn(νB∗n; x, y), x ∈ X, n = 1, 2, · · · ,(4.3)

where B∗ is as in Definition 3.10.

Remark 4.1. We note that the networks Gn are prefabricated
independently of the data. The network Gn therefore has only |Y|
terms depending upon the data.

Our first theorem describes local function recovery using local
sampling. We may interpret it in the spirit of distributed learning
as in Chui et al. [24] and Lin et al. [26], where we are taking
a linear combination of pre-fabricated networks Gn using the
function values themselves as the coefficients. The networks Gn

have essentially the same localization property as the kernels 8n

(cf. Theorem 8.2).

Theorem 4.1. Let x0 ∈ X and r > 0. We assume the partition
of unity and find a function ψ ∈ C∞ supported on B(x0, 3r),
which is equal to 1 on B(x0, r), m =

∫
X
ψdµ∗, and let f0 = ψ/m,

dν∗ = f0dµ
∗. We assume the rest of the set-up as described. If

f0f ∈ Wγ ,∞, then for 0 < δ < 1, and |Y| ≥ cnq+2γ rq log(nBn/δ),

Probτ







∥∥∥∥∥∥
m

|Y|
∑

(y,ǫ)∈Y
F(y, ǫ)Gn(νB∗n; ◦, y)

−f
∥∥
∞,µ∗ ,B(x0 ,r)

≥ c3n
−γ








≤ δ. (4.4)
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Remark 4.2. If {y1, · · · , yM} is a random sample from some
probability measure supported on X, s =

∑M
ℓ=1 f0(yℓ), and

we construct a sub-sample using the distribution that associates
the mass f0(yj)/s with each yj, then the probability of selecting
points outside of the support of f0 is 0. This leads to a sub-
sample Y . If M ≥ cnq+2γ log(nBn/δ), then the Chernoff bound,
Proposition B.1(b), can be used to show that |Y| is large, as
stipulated in Theorem 4.1.

Next, we state two inverse theorems. Our first theorem obtains
accuracy on the estimation of the density f0 using eignets instead
of positive kernels.

Theorem 4.2. With the set-up as in Theorem 8.3, let γ > 0,
f0 ∈ Wγ ,∞, and

|Y| ≥ ‖f0‖∞,µ∗nq+2γ log

(
nBn

δ

)
.

Then, with F ≡ 1,

Probτ







∥∥∥∥∥∥
1

|Y|
∑

(y,ǫ)∈Y
Gn(νB∗n; ◦, y)− f0

∥∥∥∥∥∥
∞

≥ c3n
−γ






 ≤ δ.

(4.5)

Remark 4.3. Unlike density estimation using positive kernels,
there is no inherent limit on the accuracy predicted by (4.5) on
the estimation of f0.

The following theorem gives a complete characterization of
the local smoothness classes using eignets. In particular, Part (b)
of the following theorem gives a solution to the inverse problem
of determining what smoothness class the target function belongs
to near each point of X. In theory, this leads to a data-based

detection of singularities and sparsity analogous to what is
assumed in Chui et al. [24] but in a much more general setting.

Theorem 4.3. Let f0 ∈ C0(X), f0(x) ≥ 0 for all x ∈ X, and
dν∗ = f0dµ

∗ be a probability measure, τ , F, and let f be as
described above. We assume the partition of unity and the product
assumption. Let S ≥ q + 2, 0 < γ ≤ S, x0 ∈ X, 0 < δ < 1.
For each j ≥ 0, suppose that Yj is a random sample from τ with

|Yj| ≥ 2c12
j(q+2S)|||ν∗|||R,0 log(c22jB2j/δ). Then with τ -probability

≥ 1− δ,
(a) If f0f ∈ Wγ ,∞(x0) then there exists a ball B centered at x0 such
that

sup
j≥1

2jγ ‖G2j (Yj;F)− G2j−1 (Yj;F)‖∞,µ∗ ,B <∞. (4.6)

(b) If there exists a ball B centered at x0 for which (4.6) holds, then
f0f ∈ Wγ ,∞,φ0 (x0).

5. PREPARATORY RESULTS

We prove a lower bound on µ∗(B(x, r)) for x ∈ X and 0 < r ≤ 1
(cf. [47]).

Proposition 5.1. We have

µ∗(B(x, r)) ≥ crq, 0 < r ≤ 1, x ∈ X. (5.1)

In order to prove the proposition, we recall a lemma, proved in
Mhaskar [14, Proposition 5.1].

Lemma 5.1. Let ν ∈ Rd, N > 0. If g1 :[0,∞) → [0,∞) is a
non-increasing function, then, for any N > 0, r > 0, x ∈ X,

Nq

∫

1(x,r)
g1(Nρ(x, y))d|ν|(y) ≤

c
2q(1+ (d/r)q)q

1− 2−q
|||ν|||R,d

∫ ∞

rN/2
g1(u)u

q−1du. (5.2)

PROOF OF PROPOSITION 5.1.

Let x ∈ X, r > 0 be fixed in this proof, although the constants
will not depend upon these. In this proof, we write

Kt(x, y) =
∞∑

k=0

exp(−λ2kt)φk(x)φk(y).

The Gaussian upper bound (3.3) shows that for t > 0,

∫

1(x,r)
|Kt(x, y)|dµ∗(y) ≤ κ1t

−q/2

∫

1(x,r)
exp(−κ2ρ(x, y)2/t)dµ∗(y).

(5.3)
Using Lemma 5.1 with d = 0, dν = dµ∗, g1(u) = exp(−u2),
N = √

κ2/t, we obtain for r2/t ≥ (q− 2)/κ2:

∫

1(x,r)
|Kt(x, y)|dµ∗(y)

≤ c

∫ ∞

Nr/2
uq−1 exp(−u2)du = c1

∫ ∞

(Nr/2)2
uq/2−1e−udu

≤ c2(r
2/t)(q−2)/2 exp(−κ2r2/(4t)). (5.4)

Therefore, denoting in this proof only that κ0 = ‖φ0‖∞, we
obtain that

1 =
∫

X

Kt(x, y)φ0(y)dµ
∗(y) ≤ κ0

∫

X

|Kt(x, y)|dµ∗(y)

≤ κ0κ2t
−q/2µ∗(B(x, r))+ c3(r

2/t)(q−2)/2 exp(−κ2r2/(4t).
(5.5)

We now choose t ∼ r2 so that c3(r
2/t)(q−2)/2 exp(−κ3r2/(4t)) ≤

1/2 to obtain (5.1) for r ≤ c4. The estimate is clear for c4 < r ≤
1.
Next, we prove some results about the system {φk}.

Lemma 5.2. For n ≥ 1, we have
∑

λk<n

φk(x)
2 ≤ cnq, x ∈ X. (5.6)

and

dim(5n) ≤ cnqµ∗(Kn). (5.7)

In particular, the function n 7→ dim(5n) has polynomial growth.
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PROOF. The Gaussian upper bound with x = y implies that

∞∑

k=0

exp(−λ2kt)φk(x)
2 ≤ ct−q/2, 0 < t ≤ 1, x ∈ X.

The estimate (5.6) follows from a Tauberian theorem [44,
Proposition 4.1]. The essential compactness now shows that for
any R > 0,

∫

X\Kn

∑

λk<n

φk(x)
2dµ∗(x) ≤



 sup

x∈X\Kn

∑

λk<n

φk(x)
2





1/2

∫

X\Kn


∑

λk<n

φk(x)
2




1/2

dµ∗(x) ≤ cn−R.

In particular,

dim(5n) =
∫

X

∑

λk<n

φk(x)
2dµ∗(x)

≤
∫

Kn

∑

λk<n

φk(x)
2dµ∗(x)+ cn−R ≤ cnqµ∗(Kn).

Next, we prove some properties of the operators σn and
diffusion polynomials. The following proposition follows easily
from Lemma 5.1 and Proposition 3.2. (cf. [14, 48]).

Proposition 5.2. Let S, H be as in Proposition 3.2, d > 0, ν ∈ Rd,
and x ∈ X.
(a) If r ≥ 1/N, then

∫

1(x,r)
|8N(H; x, y)|d|ν|(y) ≤ c(1+(dN)q)(rN)−S+q|||ν|||R,d‖|H|‖S.

(5.8)
(b) We have
∫

X

|8N(H; x, y)|d|ν|(y) ≤ c(1+ (dN)q)|||ν|||R,d‖|H|‖S, (5.9)

‖8N(H; x, ◦)‖ν;X,p ≤ cNq/p′ (1+ (dN)q)1/p|||ν|||1/p
R,d

‖|H|‖S,
(5.10)

and
∥∥∥∥
∫

X

|8N (H; ◦, y)|d|ν|(y)
∥∥∥∥
p

≤ c(1+(dN)q)1/p
′ |||ν|||1/p

′

R,d
(|ν|(X))1/p‖|H|‖S.

(5.11)

The following lemma is well-known; a proof is given in Mhaskar
[15, Lemma 5.3].

Lemma 5.3. Let (�1, ν), (�2, τ ) be sigma–finite measure spaces,
9 :�1 ×�2 → R be ν × τ–integrable,

M∞ : = ν−ess sup
x∈�1

∫

�2

|9(x, y)|dτ (y) <∞,

M1 : = τ−ess sup
y∈�2

∫

�1

|9(x, y)|dν(x) <∞, (5.12)

and formally, for τ–measurable functions f :�2 → R,

T(f , x) : =
∫

�2

f (y)9(x, y)dτ (y), x ∈ �1.

Let 1 ≤ p ≤ ∞. If f ∈ Lp(τ ;�2) then T(f , x) is defined for
ν–almost all x ∈ �1, and

‖Tf ‖ν;�1 ,p ≤ M
1/p
1 M

1/p′
∞ ‖f ‖τ ;�2 ,p, f ∈ Lp(�2, τ ). (5.13)

Theorem 5.1. Let n > 0. If P ∈ 5n/2, then σn(P) = P. Also, for
any p with 1 ≤ p ≤ ∞,

‖σn(f )‖p ≤ c‖f ‖p, f ∈ Lp. (5.14)

If 1 ≤ p ≤ ∞, and f ∈ Lp(X), then

En(p, f ) ≤ ‖f − σn(f )‖p,µ∗ ≤ cEn/2(p, f ). (5.15)

PROOF. The fact that σn(P) = P for all P ∈ 5n/2 is verified easily
using the fact that h(t) = 1 for 0 ≤ t ≤ 1/2. Using (5.9) with µ∗

in place of |ν| and 0 in place of d, we see that

sup
x∈X

∫

X

|8n(x, y)|dµ∗(y) ≤ c.

The estimate (5.14) follows using Lemma 5.3. The estimate (5.15)
is now routine to prove.

Proposition 5.3. For n ≥ 1, P ∈ 5n, 1 ≤ p ≤ ∞, and S > 0, we
have

‖P‖p,µ∗ ,X\K2n ≤ c(S)n−S‖P‖p,µ∗ ,X. (5.16)

PROOF. In this proof, all constants will depend upon S. Using
Schwarz inequality and essential compactness, it is easy to deduce
that

sup
x∈X\K2n

∫

X

|82n(x, y)|dµ∗(y) ≤ c1n
−S,

sup
y∈X

∫

X\K2n

|82n(x, y)|dµ∗(x) ≤ c1n
−S. (5.17)

Therefore, a use of Lemma 5.3 shows that

‖σ2n(f )‖p,µ∗ ,X\K2n ≤ cn−S‖f ‖p.

We use P in place of f to obtain (5.16).

Proposition 5.4. Let n ≥ 1, P ∈ 5n, 0 < p < r ≤ ∞. Then

‖P‖r ≤ cnq(1/p−1/r)‖P‖p, ‖P‖p ≤ cµ∗(K2n)
1/p−1/r‖P‖r .

(5.18)

PROOF. The first part of (5.18) is proved in Mhaskar [15,
Lemma 5.4]. In that paper, the measure µ∗ is assumed
to be a probability measure, but this assumption was not
used in this proof. The second estimate follows easily from
Proposition 5.3.
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Lemma 5.4. Let R, n > 0, P1, P2 ∈ 5n, 1 ≤ p, r, s ≤ ∞. If the
product assumption holds, then

EA∗n(φ0; p, P1P2) ≤ cn−R‖P1‖r‖P2‖s. (5.19)

PROOF. In view of essential compactness, Proposition 5.4 implies
that for any P ∈ 5n, 1 ≤ r ≤ ∞, ‖P‖2 ≤ c1n

c‖P‖r . Therefore,
using Schwarz inequality, Parseval identity, and Lemma 5.2, we
conclude that

∑

k

|P̂(k)| ≤ (dim(5n))
1/2‖P‖2 ≤ c1n

c‖P‖r . (5.20)

Now, the product assumption implies that for p = 1,∞, and
λk, λj < n, there exists Rj,k,n ∈ 5A∗n such that for any R > 0,

‖φkφj − Rj,k,nφ0‖p ≤ cn−R−2c, (5.21)

where c is the constant appearing in (5.20). The convexity
inequality

‖f ‖p ≤ ‖f ‖1/p
′

∞ ‖f ‖1/p1

shows that (5.21) is valid for all p, 1 ≤ p ≤ ∞. So, using (5.20),
we conclude that

∥∥∥∥∥∥
P1P2 −

∑

k,j

P̂1(k)P̂2(k)Rj,k,nφ0

∥∥∥∥∥∥
p

≤ cn−R−2c

(∑

k

|P̂1(k)|
)

(∑

k

|P̂2(k)|
)
≤ cn−R‖P1‖r‖P2‖s.

6. LOCAL APPROXIMATION BY DIFFUSION

POLYNOMIALS

In the sequel, we write g(t) = h(t)− h(2t), and

τj(f ) =
{
σ1(f ), if j = 0,

σ2j (f )− σ2j−1 (f ), if j = 1, 2, · · · .
(6.1)

We note that

τj(f )(x) = σ2j (µ
∗, g; f )(x) =

∫

X

f (y)82j (g; x, y)dµ∗(y), j = 1, 2, · · · .
(6.2)

It is clear from Theorem 5.1 that for any p, 1 ≤ p ≤ ∞,

f =
∞∑

j=0

τj(f ), f ∈ Xp, (6.3)

with convergence in the sense of Lp.

Theorem 6.1. Let 1 ≤ p ≤ ∞, γ > 0, f ∈ Xp, x0 ∈ X. We
assume the partition of unity and the product assumption.
(a) If B is a ball centered at x0, then

sup
n≥0

2nγ ‖f − σ2n (f )‖p,µ∗ ,B ∼ sup
j≥0

2jγ ‖τj(f )‖p,µ∗ ,B. (6.4)

(b) If there exists a ball B centered at x0 such that

sup
n≥0

2nγ ‖f − σ2n (f )‖p,µ∗ ,B ∼ sup
j≥0

2jγ ‖τj(f )‖p,µ∗ ,B <∞, (6.5)

then f ∈ Wγ ,p,φ0 (x0).
(c) If f ∈ Wγ ,p(x0), then there exists a ball B centered at x0 such
that (6.5) holds.

Remark 6.1. In the manifold case (Example 3.1), φ0 ≡ 1. So,
the statements (b) and (c) in Theorem 6.1 provide necessary and
sufficient conditions for f ∈ Wγ ,p(x0) in terms of the local rate
of convergence of the globally defined operator σn(f ) and the
growth of the local norms of the operators τj, respectively In the
Hermite case (Example 3.2), it is shown in Mhaskar [49] that
f ∈ Wγ ,p,φ0 if and only if f ∈ Wγ ,p. Therefore, the statements (b)
and (c) in Theorem 6.1 provide similar necessary and sufficient
conditions for f ∈ Wγ ,p(x0) in this case as well.

The proof of Theorem 6.1 is routine, but we sketch a proof for
the sake of completeness.

PROOF OF THEOREM 6.1

Part (a) is easy to prove using the definitions.
In the rest of this proof, we fix S > γ + q+ 2. To prove part (b),
let φ ∈ C∞ be supported on B. Then there exists {Rn ∈ 52n}∞n=0
such that

‖φ − Rn‖∞ ≤ c(φ)2−nS. (6.6)

Further, Lemma 5.4 yields a sequence {Qn ∈ 5A∗2n} such that

‖Rnσ2n (f )− φ0Qn‖p ≤ c2−nS‖Rn‖∞‖σ2n (f )‖p ≤ c(φ)2−nS‖f ‖p.
(6.7)

Hence,

EA∗2n (φ0; p, fφ)
≤ ‖fφ − φ0Qn‖p ≤ c(φ)2−nS‖f ‖p + ‖fφ − σ2n (f )Rn‖p
≤ c(φ)2−nS‖f ‖p + ‖(f − σ2n (f ))φ‖p + ‖σ2n (f )(φ − Rn)‖p
≤ c(φ)

{
2−nS‖f ‖p + ‖f − σ2n (f )‖p,µ∗ ,B + ‖σ2n (f )‖p‖φ − Rn‖∞

}

≤ c(φ)2−nS‖f ‖p + c(φ, f )(A∗2−n)γ .

Thus, fφ ∈ Wγ ,p,φ0 for every φ ∈ C∞ supported on B, and part
(b) is proved.

To prove part (c), we observe that there exists r > 0 such
that for any φ ∈ C∞(B(x0, 6r)), fφ ∈ Wγ ,p. Using partition of
unity [cf. Proposition 3.1(a)], we find ψ ∈ C∞(B(x0, 6r)) such
that ψ(x) = 1 for all x ∈ B(x0, 2r), and we let B = B(x0, r). In
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view of Proposition 3.2, |82n (x, y)| ≤ c(r)2−n(S−q) for all x ∈ B

and y ∈ X \ B(x0, 2r). Hence,

‖σ2n ((1− ψ)f )‖p ≤
∣∣∣∣
∫

X

|(1− ψ(y))f (y)82n (◦, y)|dµ∗(y)

∥∥∥∥
p

=
∣∣∣∣
∫

X\B(x0 ,2r)
|(1− ψ(y))f (y)82n (◦, y)|dµ∗(y)

∥∥∥∥
p

≤ c(ψ , r)2−n(S−q)‖f ‖p. (6.8)

Recalling that ψ(x) = 1 for x ∈ B and S− q ≥ γ + 2, we deduce
that

‖f − σ2n (f )‖p,µ∗ ,B = ‖ψ f − σ2n (f )‖p,µ∗ ,B

≤ ‖ψ f − σ2n (ψ f )‖p,µ∗ ,B + ‖σ2n ((1− ψ)f )‖p
≤ cE2n (ψ f )+ c(ψ , r)2−n(S−q)‖f ‖p
≤ c(r,ψ , f )2−nγ .

This proves part (c).
Let {9n :X × X → X} be a family of kernels (not necessarily

symmetric). With a slight abuse of notation, we define when
possible, for any measure ν with bounded total variation on X,

σ (ν,9n; f )(x) =
∫

X

f (y)9n(x, y)dν(y),

x ∈ X, f ∈ L1(X)+ C0(X), (6.9)

and

τj(ν, {9n}; f ) =
{
σ (ν,91; f ), if j = 0,

σ (ν,92j; f )− σ (ν,92j−1; f ), if j = 1, 2, · · · .
(6.10)

As usual, we will omit the mention of ν when ν = µ∗.

Corollary 6.1. Let the assumptions of Theorem 6.1 hold, and
{9n :X × X → X} be a sequence of kernels (not necessarily
symmetric) with the property that both of the following functions
of n are decreasing rapidly.

sup
x∈X

∫

X

|9n(x, y)−8n(x, y)|dµ∗(y),

sup
y∈X

∫

X

|9n(x, y)−8n(x, y)|dµ∗(x). (6.11)

(a) If B is a ball centered at x0, then

sup
n≥0

2nγ ‖f − σ (92n; f )‖p,µ∗ ,B ∼ sup
j≥0

2jγ ‖τj({9n}; f )‖p,µ∗ ,B.

(6.12)
(b) If there exists a ball B centered at x0 such that

sup
n≥0

2nγ ‖f −σ (92n; f )‖p,µ∗ ,B ∼ sup
j≥0

2jγ ‖τj({9n}; f )‖p,µ∗ ,B <∞,

(6.13)
then f ∈ Wγ ,p,φ0 (x0).
(c) If f ∈ Wγ ,p(x0), then there exists a ball B centered at x0 such
that (6.13) holds.

PROOF. In view of Lemma 5.3, the assumption about the
functions in (6.11) implies that ‖σ (9n; f ) − σn(f )‖p is
decreasing rapidly.

7. QUADRATURE FORMULA

The purpose of this section is to prove the existence of admissible
quadrature measures in the general set-up as in this paper. The
ideas are mostly developed already in our earlier works [17, 36,
43, 44, 50, 51] but always require an estimate on the gradient
of diffusion polynomials. Here, we use the Bernstein-Lipschitz
condition (Definition 3.4) instead.

If C ⊂ K ⊂ X, we denote

δ(K, C) = sup
x∈K

inf
y∈C

ρ(x, y), η(C) = inf
x,y∈C,x 6=y

ρ(x, y). (7.1)

If K is compact, ǫ > 0, a subset C ⊂ K is ǫ-distinguishable if
ρ(x, y) ≥ ǫ for every x, y ∈ C, x 6= y. The cardinality the maximal
ǫ-distinguishable subset of K will be denoted by Hǫ(K).

Remark 7.1. If C1 ⊂ C is a maximal δ(K, C)-distinguishable
subset of C, x 6= y, then it is easy to deduce that

δ(K, C) ≤ η(C1) ≤ 2δ(K, C), δ(K, C) ≤ δ(K, C1) ≤ 2δ(K, C).

In particular, by replacing C by C1, we can always assume that

(1/2)δ(K, C) ≤ η(C) ≤ 2δ(K, C). (7.2)

Theorem 7.1. We assume the Bernstein-Lipschitz condition. Let
n > 0, C1 = {z1, · · · , zM} ⊂ K2n be a finite subset, ǫ > 0.
(a) There exists a constant c(ǫ) with the following property: if
δ(K2n, C1) ≤ c(ǫ)min(1/n, 1/B2n), then there exist non-negative
numbers Wk satisfying

0 ≤ Wk ≤ cδ(K2n, C1)
q,

M∑

k=1

Wk ≤ cµ∗(B(K2n, 4δ(K2n, C1))),

(7.3)
such that for every P ∈ 5n,

∣∣∣∣∣

M∑

k=1

Wk|P(zk)| −
∫

X

|P(x)|dµ∗(x)

∣∣∣∣∣ ≤ ǫ

∫

X

|P(x)|dµ∗(x). (7.4)

(b) Let the assumptions of part (a) be satisfied with ǫ = 1/2.
There exist real numbers w1, · · · ,wM such that |wk| ≤ 2Wk,
k = 1, · · · ,M, in particular,

M∑

k=1

|wk| ≤ cµ∗(B(K2n, 4δ(K2n, C1))), (7.5)

and

M∑

k=1

wkP(zk) =
∫

X

P(x)dµ∗(x), P ∈ 5n. (7.6)

(c) Let δ > 0, C1 be a random sample from the probability law
µ∗
K2n

given by

µ∗
K2n

(B) = µ∗(B ∩K2n)

µ∗(K2n)
,
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and ǫn = min(1/n, 1/B2n). If

|C1| ≥ cǫ
−q
n µ∗(K2n) log

(
µ∗(B(K2n, ǫn))

δǫ
q
n

)
,

then the statements (a) and (b) hold with µ∗
K2n

-probability
exceeding 1− δ.

In order to prove Theorem 7.1, we first recall the following
theorem [52, Theorem 5.1], applied to our context. The statement
of Mhaskar [52, Theorem 5.1] seems to require that µ∗ is a
probability measure, but this fact is not required in the proof. It
is required only that µ∗(B(x, r)) ≥ crq for 0 < r ≤ 1.

Theorem 7.2. Let τ be a positive measure supported on a compact
subset of X, ǫ > 0, A be a maximal ǫ-distinguishable subset of
supp(τ ), and K = B(A, 2ǫ). There then exists a subset C ⊆ A ⊆
supp(τ ) and a partition {Yy}y∈C of K with each of the following
properties.

1. (volume property) For y ∈ C, Yy ⊆ B(y, 18ǫ), (κ1/κ2)7
−qǫq ≤

µ∗(Yy) ≤ κ2(18ǫ)
q, and

τ (Yy) ≥ (κ1/κ2)19
−qminy∈A τ (B(y, ǫ)) > 0.

2. (density property) η(C) ≥ ǫ, δ(K, C) ≤ 18ǫ.
3. (intersection property) Let K1 ⊆ K be a compact subset. Then

∣∣{y ∈ C :Yy ∩ K1 6= ∅}
∣∣ ≤ (κ22/κ1)(133)

qHǫ(K1).

PROOF OF THEOREM 7.1 (a), (b).

We observe first that it is enough to prove this theorem for
sufficiently large values of n. In view of Proposition 5.3, we may
choose n large enough so that for any P ∈ 5n,

‖P‖1,µ∗,X\K2n ≤ n−S‖P‖1 ≤ (ǫ/3)‖P‖1. (7.7)

In this proof, we will write δ = δ(K2n, C1) so thatK2n ⊂ B(C1, δ).
We use Theorem 7.2 with τ to be the measure associating the
mass 1 with each element of C1, and δ in place of ǫ. If A is
a maximal δ-distinguished subset of C1, then we denote in this
proof, K = B(A, 2δ) and observe that K2n ⊂ B(C1, δ) ⊂ K ⊂
B(K2n, 4δ). We obtain a partition {Yy} of K as in Theorem 7.2.
The volume property implies that each Yy contains at least one
element of C1. We construct a subset C of C1 by choosing exactly
one element of Yy ∩ C1 for each y. We may then re-index C1
so that, without loss of generality, C = {z1, · · · , zN} for some
N ≤ M, and re-index {Yy} as {Yk}, so that zk ∈ Yk, k =
1, · · · ,N. To summarize, we have a subset {z1, · · · , zN} ⊆ C1, and
a partition {Yk}Nk=1

of K ⊃ K2n such that each Yk ⊂ B(zk, 36δ)
and µ∗(Yk) ∼ δq. In particular (cf. (7.7)), for any P ∈ 5n,

‖P‖1 − ‖P‖1,µ∗,K ≤ (ǫ/3)‖P‖1. (7.8)

We now let Wk = µ∗(Yk), k = 1, · · · ,N, and Wk = 0, k =
N + 1, · · · ,M.

The next step is to prove that if δ ≤ c(ǫ)min(1/n, 1/B2n), then

sup
y∈X

N∑

k=1

∫

Yk

|82n(zk, y)−82n(x, y)|dµ∗(x) ≤ 2ǫ/3. (7.9)

In this part of the proof, the constants denoted by c1, c2, · · · will
retain their value until (7.9) is proved. Let y ∈ X. We let r ≥ δ to
be chosen later, and write in this proof,N = {k : dist(y,Yk) < r},
L = {k : dist(y,Yk) ≥ r} and for j = 0, 1, · · · , Lj = {k : 2jr ≤
dist(y,Yk) < 2j+1r}. Since r ≥ δ, and each Yk ⊂ B(zk, 36δ), there
are at most c1(r/δ)

q elements inN. Using the Bernstein-Lipschitz
condition and the fact that ‖82n(◦, y)‖∞ ≤ c2n

q, we deduce that

∑

k∈N

∫

Yk

|82n(zk, y)−82n(x, y)|dµ∗(x) ≤ c3µ
∗(Yk)n

qB2nδ(r/δ)
q

≤ c3µ
∗(B(zk, 36δ))n

qB2nδ(r/δ)
q ≤ c4(nr)

qB2nδ. (7.10)

Next, since µ∗(Yk) ∼ δq, we see that the number of elements
in each Lj is ∼ (2jr/δ)q. Using Proposition 3.2 and the fact that
S > q, we deduce that if r ≥ 1/n, then

∑

k∈L

∫

Yk

|82n(zk, y)−82n(x, y)|dµ∗(x)

=
∞∑

j=0

∑

k∈Lj

∫

Yk

|82n(zk, y)−82n(x, y)|dµ∗(x)

≤ c5n
q(nr)−S

∞∑

j=0

2−jS




∑

k∈Lj

µ∗(Yk)





≤ c6(nr)
q−S.

(7.11)

Since S > q, we may choose r ∼ǫ n such that c6(nr)
q−S ≤

ǫ/3, and we then require δ ≤ min(r, c7(ǫ)/B2n) so that, in
(7.10), c4(nr)

qB2nδ ≤ ǫ/3. Then (7.10) and (7.11) lead to (7.9).
The proof of (7.9) being completed, we resume the constant
convention as usual.

Next, we observe that for any P ∈ 5n,

P(x) =
∫

X

P(y)82n(x, y)dµ
∗(y), x ∈ X.

We therefore conclude, using (7.9), that

∣∣∣∣∣

N∑

k=1

µ∗(Yk)|P(zk)| −
∫

K
|P(x)|dµ∗(x)

∣∣∣∣

=
∣∣∣∣∣

N∑

k=1

∫

Yk

(
|P(zk)| − |P(x)|

)
dµ∗(x)

∣∣∣∣∣ ≤
N∑

k=1

∫

Yk

|P(zk)

−P(x)|dµ∗(x) ≤
N∑

k=1

∫

Yk

∣∣∣∣
∫

X

P(y)
{
82n(zk, y)

−82n(x, y)
}
dµ∗(y)

∣∣ dµ∗(x)

≤
∫

X

|P(y)|
{

N∑

k=1

∫

Yk

|82n(zk, y)−82n(x, y)|dµ∗(x)

}
dµ∗(y)

≤ (2ǫ/3)

∫

X

|P(y)|dµ∗(y).

Together with (7.8), this leads to (7.4). From the definition of
Wk = µ∗(Yk), k = 1, · · · ,N, Wk ≤ cδq, and

∑N
k=1 Wk =
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µ∗(K) = µ∗(B(K2n, 4δ)). Since Wk = 0 if k ≥ N + 1, we
have now proven (7.3), and we have thus completed the proof
of part (a).

Having proved part (a), the proof of part (b) is by now a
routine application of the Hahn-Banach theorem [cf. [17, 44, 50,
51]]. We apply part (a) with ǫ = 1/2. Continuing the notation in
the proof of part (a), we then have

(1/2)‖P‖1 ≤
N∑

k=1

Wk|P(zk)| ≤ (3/2)‖P‖1, P ∈ 5n. (7.12)

We now equip R
N with the norm |||(a1, · · · , aN)||| =∑N

k=1 Wk|ak| and consider the sampling operator S :5n →
R
N given by S(P) = (P(z1), · · · , P(zN)), let V be the range

of this operator, and define a linear functional x∗ on V by
x∗(S(P)) =

∫
X
Pdµ∗. The estimate (7.12) shows that the norm

of this functional is ≤ 2. The Hahn-Banach theorem yields a
norm-preserving extension X∗ of x∗ to R

N , which, in turn, can
be identified with a vector (w1, · · · ,wN) ∈ R

N . We set wk = 0
if k ≥ N + 1. Formula (7.6) then expresses the fact that X∗ is
an extension of x∗. The preservation of norms shows that |wk| ≤
2Wk if k = 1, · · · ,N, and it is clear that for k = N + 1, · · · ,M,
|wk| = 0 = Wk. This completes the proof of part (b).

Part (c) of Theorem 7.1 follows immediately from the first two
parts and the following lemma.

Lemma 7.1. Let ν∗ be a probability measure onX, K ⊂ supp(ν∗)
be a compact set. Let ǫ, δ ∈ (0, 1], C be a maximal ǫ/2-
distinguished subset of K, and νǫ = minx∈C ν

∗(B(x, ǫ/2)). If

M ≥ cν−1
ǫ log

(
c1µ

∗(B(K, ǫ))/(δǫq)
)
,

and {z1, · · · , zM} be random samples from the probability law ν∗

then

Probν∗
(
{δ(K, {z1, · · · , zM}) > ǫ}

)
≤ δ. (7.13)

PROOF. If δ(K, {z1, · · · , zM}) > ǫ, then there exists at least one
x ∈ C such that B(x, ǫ/2) ∩ {z1, · · · , zM} = ∅. For every x ∈ C,
px = ν∗(B(x, ǫ/2)) ≥ νǫ . We consider the random variable zj to
be equal to 1 if zj ∈ B(x, ǫ/2) and 0 otherwise. Using (B.2) with
t = 1, we see that

Prob
(
B(x, ǫ/2) ∩ {z1, · · · , zM}

= ∅) ≤ exp(−Mpx/2) ≤ exp(−cMνǫ).

Since |C| ≤ c1µ
∗(B(K, ǫ))/ǫq,

Prob
(
{δ(K, {z1, · · · , zM}) > ǫ}

)
≤ c1

µ∗(B(K, ǫ))

ǫq
exp(−cMνǫ).

We set the right-hand side above to δ and solve for M to prove
the lemma.

8. PROOFS OF THE RESULTS IN

SECTION 4

We assume the set-up as in section 4. Our first goal is to prove
the following theorem.

Theorem 8.1. Let τ , ν∗,F, f be as described section 4. We assume
the Bernstein-Lipschitz condition. Let 0 < δ < 1. We assume
further that |F(y, ǫ)| ≤ 1 for all y ∈ X, ǫ ∈ �. There exist
constants c1, c2, such that if M ≥ c1n

q|||ν∗|||R,0 log(cnBn/δ), and
{(y1, ǫ1), · · · , (yM , ǫM)} is a random sample from τ , then

Probν∗







∥∥∥∥∥∥
1

M

M∑

j=1

F(yj, ǫj)8n(◦, yj)− σn(ν∗; f )

∥∥∥∥∥∥
∞

≥ c3

√
nq|||ν∗|||R,0 log(cnBn|||ν∗|||R,0/δ)

M

})
≤ δ

|||ν∗|||R,0
.(8.1)

In order to prove this theorem, we record an observation. The
following lemma is an immediate corollary of the Bernstein-
Lipschitz condition and Proposition 5.3.

Lemma 8.1. Let the Bernstein-Lipschitz condition be satisfied.
Then for every n > 0 and ǫ > 0, there exists a finite set Cn,ǫ ⊂ K2n

such that |Cn,ǫ | ≤ cB
q
nǫ

−qµ∗(B(K2n, ǫ)) and for any P ∈ 5n,

∣∣∣∣∣max
x∈Cn,ǫ

|P(x)| − ‖P‖∞

∣∣∣∣∣ ≤ ǫ‖P‖∞. (8.2)

PROOF OF THEOREM 8.1.

Let x ∈ X. We consider the random variables

Zj = F(yj, ǫj)8n(x, yj), j = 1, · · · ,M.

Then in view of (4.2), Eτ (Zj) = σn(ν
∗; f )(x) for every j. Further,

Proposition 3.2 shows that for each j, |Zj| ≤ cnq. Using (5.10)
with ν∗ in place of ν, N = n, d = 0, we see that for each j,

∫

X×�
|Zj|2dτ ≤

∫

X

|8n(x, y)|2dν∗(y) ≤ cnq|||ν∗|||R,0.

Therefore, Bernstein concentration inequality (B.1) implies that
for any t ∈ (0, 1),

Prob







∣∣∣∣∣∣
1

M

M∑

j=1

F(yj, ǫj)8n(x, yj)− σn(ν∗; f )(x)

∣∣∣∣∣∣
≥ t/2








≤ 2 exp

(
−c

t2M

nq|||ν∗|||R,0

)
; (8.3)

We now note that Zj, σn(ν
∗; f ) are all in 5n. Taking a finite set

Cn,1/2 as in Lemma 8.1, so that |Cn,1/2| ≤ cB
q
nµ

∗(B(K2n, 1/2)) ≤
c1n

cB
q
n, we deduce that

max
x∈Cn,1/2

∣∣∣∣∣∣
1

M

M∑

j=1

F(yj, ǫj)8n(x, yj)− σn(ν∗; f )(x)

∣∣∣∣∣∣

≥ (1/2)

∥∥∥∥∥∥
1

M

M∑

j=1

F(yj, ǫj)8n(◦, yj)− σn(ν∗; f )

∥∥∥∥∥∥
∞

.
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Then (8.3) leads to

Prob







∥∥∥∥∥∥
1

M

M∑

j=1

F(yj, ǫj)8n(x, yj)− σn(ν∗; f )(x)

∥∥∥∥∥∥
∞

≥ t








≤ c1B
q
nn

c exp

(
−c2

t2M

nq|||ν∗|||R,0

)
. (8.4)

We set the right-hand side above equal to δ/|||ν∗|||R,0 and solve for
t to obtain (8.1) (with different values of c, c1, c2).

Before starting to prove results regarding eignets, we first
record the continuity and smoothness of a “smooth kernel” G as
defined in Definition 3.10.

Proposition 8.1. If G is a smooth kernel, then (x, y) 7→
W(y)G(x, y) is in C0(X× X) ∩ L1(µ∗ × µ∗;X× X). Further, for
any p, 1 ≤ p ≤ ∞, and3 ≥ 1,

sup
x∈X

∥∥∥∥∥∥
W(◦)G(x, ◦)−

∑

k : λk<3

b(λk)φk(x)φk(◦)

∥∥∥∥∥∥
p

≤ c13
cb(3).

(8.5)
In particular, for every x, y ∈ X, W(◦)G(x, ◦) andW(y)G(◦, y) are
in C∞.

PROOF. Let b be the smooth mask corresponding to G. For any
S ≥ 1, b(n) ≤ cn−Sb(n/B∗) ≤ cn−Sb(0). Thus, b itself is
decreasing rapidly. Next, let r > 0. Then remembering that
B∗ ≥ 1 and b is non-increasing, we obtain that for S > 0,
b(B∗3u) ≤ c(3u)−S−r−1b(3u), and

∫ ∞

3

trb(t)dt = (B∗3)r+1

∫ ∞

1/B∗
urb(B∗3u)du

≤ c3−S

∫ ∞

1/B∗
u−S−1b(3u)du

≤ c3−S

∫ ∞

1
u−S−1b(3u)du ≤ c3−Sb(3). (8.6)

In this proof, let s(t) =
∑

k : λk<t
φk(x)

2, so that s(t) ≤ ctq, t ≥ 1.
If 3 ≥ 1, then, integrating by parts, we deduce (remembering
that b is non-increasing) that for any x ∈ X,

∑

k : λk≥3
b(λk)φk(x)

2

=
∫ ∞

3

b(t)ds(t) = −b(3)s(3)−
∫ ∞

3

s(t)db(t)

≤ c1

{
3qb(3)−

∫ ∞

3

tqdb(t)

}
≤ c2

{
3qb(3)

+
∫ ∞

3

tq−1b(t)dt

}
≤ c33

qb(3). (8.7)

Using Schwarz inequality, we conclude that

sup
x,y∈X

∑

k : λk≥3
b(λk)|φk(x)φk(y)| ≤ c33

qb(3). (8.8)

In particular, since b is fast decreasing,W(◦)G(x, ◦) ∈ C0(X) (and
in fact, W(y)G(x, y) ∈ C0(X × X)) and (8.5) holds with p = ∞.
Next, for any j ≥ 0, essential compactness implies that

∫

X\K
2j+13


 ∑

k : λk∈[2j3,2j+13)

b(λk)φk(y)
2




1/2

dµ∗(y) ≤ c3−S−qb(2j3)1/2.

So, there exists r ≥ q such that

∫

X


 ∑

k : λk∈[2j3,2j+13)

b(λk)φk(y)
2
)1/2

dµ∗(y)

≤
∫

K
2j+13


 ∑

k : λk∈[2j3,2j+13)

b(λk)φk(y)
2




1/2

dµ∗(y)

+ c3−S−qb(2j3)1/2

≤ c
(
(2j3)qb(2j3)

)1/2
µ∗(K2j+13) ≤ c

(
(2j3)rb(2j3)

)1/2
.

Hence, for any x ∈ X,

∫

X

∑

k : λk≥3
b(λk)|φk(x)φk(y)|dµ∗(y)

=
∞∑

j=0

∫

X

∑

k : λk∈[2j3,2j+13)

b(λk)|φk(x)φk(y)|dµ∗(y)

≤
∞∑

j=0





∑

k : λk∈[2j3,2j+13)

b(λk)φk(x)
2





1/2

∫

X


 ∑

k : λk∈[2j3,2j+13)

b(λk)φk(y)
2




1/2

dµ∗(y)

≤ c

∞∑

j=0

(2j3)rb(2j3) ≤ c

∞∑

j=0

∫ 2j3

2j−13

tr−1b(t)dt

= c

∫ ∞

3/2
tr−1b(t)dt ≤ c3−Sb(3).

(8.9)

This shows that

sup
x∈X

∥∥∥∥∥∥
∑

k : λk≥3
b(λk)|φk(x)φk(◦)|

∥∥∥∥∥∥
1

≤ c3−Sb(3). (8.10)

In view of the convexity inequality,

‖f ‖p ≤ ‖f ‖1−1/p
∞ ‖f ‖1/p1 , 1 < p <∞,

(8.8) and (8.10) lead to

sup
x∈X

∥∥∥∥∥∥
∑

k : λk≥3
b(λk)|φk(x)φk(◦)|

∥∥∥∥∥∥
p

≤ c13
cb(3), 1 ≤ p ≤ ∞.
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In turn, this implies that WG(x, ◦) ∈ Lp for all x ∈ X, and
(8.5) holds.

A fundamental fact that relates the kernels 8n and the pre-
fabricated eignetsGn’s is the following theorem.

Theorem 8.2. Let G be a smooth kernel and {νn} be an admissible
product quadrature measure sequence. Then, for 1 ≤ p ≤ ∞,

{
sup
x∈X

‖Gn(νB∗n; x, ◦)−8n(x, ◦)‖p
}

is fast decreasing. In particular, for every S > 0

|Gn(νB∗n; x, y)| ≤ c(S)

{
nq

max(1, (Nρ(x, y))S)
+ n−2S

}
. (8.11)

PROOF. Let x ∈ X. In this proof, we define Pn = Pn,x by Pn(z) =∑
k : λk<B

∗n b(λk)φk(x)φk(z), z ∈ X, and note that Pn ∈ 5B∗n.
In view of Proposition 8.1, the expansion in (3.18) converges in
C0(X×X)∩L1(µ∗×µ∗;X×X), so that term-by-term integration
can be made to deduce that for y ∈ X,
∫

X

G(x, z)W(z)DG,n(z, y)dµ
∗(z) =

∫

X

Pn(z)DG,n(z, y)dµ
∗(z)

+
∑

k : λk≥B∗n

b(λk)φk(x)

∫

X

φk(z)DG,n(z, y)dµ
∗(z).

By definition,DG,n(◦, y) ∈ 5q
n, and, hence, each of the summands

in the last expression above is equal to 0. Therefore, recalling that
h(λk/n) = 0 if λk > n, we obtain

∫

X

G(x, z)W(z)DG,n(z, y)dµ
∗(z) =

∫

X

Pn(z)DG,n(z, y)dµ
∗(z)

=
∑

k : λk<B
∗n

b(λk)φk(x)

∫

X

φk(z)DG,n(z, y)dµ
∗(z)

=
∑

k : λk<B
∗n

b(λk)φk(x)h(λk/n)b(λk)
−1φk(y)

=
∑

k

h(λk/n)φk(x)φk(y)

= 8n(x, y). (8.12)

SinceDG,n(z, ◦) ∈ 5n ⊂ 5B∗n, and νB∗n is an admissible product
quadrature measure of order B∗n, this implies that

8n(x, y) =
∫

X

Pn(z)DG,n(z, y)dνB∗n(z), y ∈ X. (8.13)

Therefore, for y ∈ X,

Gn(νB∗n; x, y)−8n(x, y)

=
∫

X

{
W(z)G(x, z)− Pn(z)

}
DG,n(z, y)dνB∗n(z).

Using Proposition 8.1 (used with 3 = B∗n) and the fact that
{|νB∗n|(X)} has polynomial growth, we deduce that

‖Gn(νB∗n; x, ◦)−8n(x, ◦)‖p ≤ |νB∗n|(X)
×
∥∥W(◦)G(x, ◦)− Pn

∥∥
∞ sup

z∈X
‖DG,n(z, ◦)‖p

≤ c1n
cb(B∗n) sup

z∈X
‖DG,n(z, ◦)‖p. (8.14)

In view of Proposition 5.4 and Proposition 5.2, we see that for any
z ∈ X,

‖DG,n(z, ◦)‖2p ≤ c1n
2c‖DG,n(z, ◦)‖22

= c1n
2c

∑

k : λk<n

(
h (λk/n) b(λk)

−1φk(z)
)2

≤ c1n
2cb(n)−2‖8n(z, ◦)‖22 ≤ c1n

cb(n)−2‖8n(z, ◦)‖21
≤ c1n

cb(n)−2.

We now conclude from (8.14) that

‖Gn(νB∗n; x, ◦)−8n(x, ◦)‖p ≤ c1n
c b(B

∗n)

b(n)
.

Since {b(B∗n)/b(n)} is fast decreasing, this completes
the proof.

The theorems in section 4 all follow from the following
basic theorem.

Theorem 8.3. We assume the strong product assumption and the
Bernstein-Lipschitz condition. With the set-up just described, we
have

Probν∗
({∥∥Gn(Y;F)− σn(f0f )

∥∥
∞

≥ c3

√
nq|||ν∗|||R,0 log(cnBn|||ν∗|||R,0/δ)

|Y|

})
≤ δ

|||ν∗|||R,0
. (8.15)

In particular, for f ∈ X∞(X), Then

Probν∗

({
∥∥Gn(Y;F)− f0f

∥∥
∞

≥ c3

(√
nq|||ν∗|||R,0 log(cnBn|||ν∗|||R,0/δ)

|Y| + En/2(∞, f0f )

)})

≤ δ

|||ν∗|||R,0
. (8.16)

PROOF. Theorems 8.1 and Theorem 8.2 together lead to (8.15).
Since σn(ν

∗; f ) = σn(f0f ), the estimate 8.16 follows from
Theorem 5.1 used with p = ∞.

PROOF OF THEOREM 4.1.

We observe that with the choice of f0 as in this theorem,
|||ν∗|||R,0 ≤ ‖f0‖∞ ≤ 1/m. Using mδ in place of δ, we obtain
Theorem 4.1 directly from Theorem 8.3 by some simple
calculations.

PROOF OF THEOREM 4.2.

This follows directly from Theorem 8.3 by choosing
F ≡ 1.

PROOF OF THEOREM 4.3.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 October 2020 | Volume 6 | Article 30

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Mhaskar Kernel-Based Massive Data Analysis

In view of Theorem 8.3, our assumptions imply that for each
j ≥ 0,

Probν∗
({∥∥G2j (Y;F)− σ2j (f0f )

∥∥
∞ ≤ c2−jS

})
≤ δ/2j+1.

Consequently, with probability ≥ 1− δ, we have for each j ≥ 1,

∥∥G2j (Y;F)− G2j−1 (Yj;F)− τj(f0f )
∥∥
∞ ≤ c2−jS.

Hence, the theorem follows from Theorem 6.1.
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APPENDIX

A. GAUSSIAN UPPER BOUND ON

MANIFOLDS

Let X be a compact and connected smooth q-dimensional
manifold, g(x) = (gi,j(x)) be its metric tensor, and (gi,j(x)) be the
inverse of g(x). The Laplace-Beltrami operator onX is defined by

1(f )(x) = 1√
|g(x)|

n∑

i=1

n∑

j=1

∂i

(√
|g(x)| gi,j(x)∂jf

)
,

where |g| = det(g). The symbol of1 is given by

a(x, ξ ) = 1√
|g(x)|

n∑

i=1

n∑

j=1

(√
|g(x)| gi,j(x)

)
ξiξj.

Then a(x, ξ ) ≥ c|ξ |2. Therefore, Hörmander’s theorem [53,
Theorem 4.4], [54, Theorem 16.1] shows that for x ∈ X,

∑

λj<λ

φk(x)
2 ≤ cλq, λ ≥ 1. (A.1)

In turn, [44, Proposition 4.1] implies that

∞∑

k=0

exp(−λ2kt)φk(x)
2 ≤ ct−q/2, t ∈ (0, 1], x ∈ X.

Then [55, Theorem 1.1] shows that (3.3) is satisfied.

B. PROBABILISTIC ESTIMATES

We need the following basic facts from probability theory.
Proposition B.1(a) below is a reformulation of Boucheron et al.
[56, section 2.1, 2.7]. A proof of Proposition B.1(b) below is given
in Hagerup and Rüb [57, Equation (7)].

Proposition B.1. (a) (Bernstein concentration inequality) Let
Z1, · · · ,ZM be independent real valued random variables such that
for each j = 1, · · · ,M, |Zj| ≤ R, and E(Z2

j ) ≤ V. Then, for any
t > 0,

Prob



∣∣∣∣∣∣
1

M

M∑

j=1

(Zj − E(Zj))

∣∣∣∣∣∣
≥ t


 ≤ 2 exp

(
− Mt2

2(V + Rt)

)
.

(B.1)
(b) (Chernoff bound) Let M ≥ 1, 0 ≤ p ≤ 1, and Z1, · · · ,ZM be
random variables taking values in {0, 1}, with Prob(Zk = 1) = p.
Then for t ∈ (0, 1],

Prob

(
M∑

k=1

Zk ≤ (1− t)Mp

)
≤ exp(−t2Mp/2),

Prob

(∣∣∣∣∣

M∑

k=1

Zk −Mp

∣∣∣∣∣ ≥ tMp

)
≤ 2 exp(−t2Mp/2). (B.2)
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