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Apraxia of speech is an impairment in the planning and programming of speech typically

accompanied by aphasia (language impairment) secondary to a left hemisphere stroke.

It is unknown if the structural and functional connections to the damaged area implicate

the integrity of the cognitive functions of the prefrontal cortex (PFC). The present study

examines the feasibility of measuring hemodynamic activity in the PFC in response to

the structure of practice and during treatment. This multiple-baseline single case-design

study involving two individuals with chronic acquired apraxia of speech measured the

hemodynamic changes in PFC activity during treatment across the intervention period

using functional near-infrared spectroscopy (fNIRS). Two models—a generalized linear

model and a spatial varying coefficient model—are used to distinguish the repeated

measures of PFC activity differences corresponding to the stage of practice and time of

intervention. There were significant differences in the pattern of PFC activity associated

with the structure of practice and the time of intervention. The outcomes from this pilot

study demonstrate the utility of fNIRS to identify cognitive effort during speech motor

learning. The implications include consideration for statistical methods used for fNIRS

analysis and its potential use as a clinical tool to complement behavior changes to guide

patient-directed intervention to optimize patient outcomes.

Keywords: fNIRS, prefrontal cortex activity, generalized linear model, spatial varying, Moran statistics, apraxia of

speech

INTRODUCTION

The complex neurobiology of speech involves distributed networks in cortical and subcortical
brain regions [1]. A compromise to networks of interconnected regions following a stroke can
result in apraxia of speech (AOS; is a sensorimotor impairment in the planning and programming
for speech), aphasia (language disorder), and/or dysarthria (a disorder of speech execution and
control) [2, 3]. The anatomical location and size of the lesion can affect the processing of regions
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functionally and structurally connected to the damaged area, [3–
5] including the prefrontal cortex (PFC) [6]. Consequently, post-
stroke communication deficits often involve concomitant speech,
language and cognitive impairments. In general, behavioral
interventions for AOS are efficacious; however, there is limited
evidence to support a particular treatment [7–9].

One of the contributing factors to the limited evidence
for AOS, treatment methods is the incomplete understanding
of the underlying neural mechanisms responsible for motor
planning and programming for typical and disordered speech.
Advancements in functional neuroimaging and computational
modeling have resulted in two widely recognized models for
speech motor control, Directions into Velocities of Articulators
(DIVA), and speech sequencing, Gradient Order DIVA
(GODIVA) [10, 11]. The core characteristics of AOS, as
explained in the DIVA model, are the result of impaired
feedforward control and difficulty integrating feedback to correct
or refine motor programs [12]. The GODIVA model explains
suprasegmental characteristics of AOS, result from errors within
the higher-level mechanisms involving temporary phonological
buffer (working memory) and sequential activation in longer
utterances for fluent speech [12]. Although the combined
models have a limited explanation of motor planning, they do
provide a framework to guide the interpretation of behavior and
neuroimaging studies for AOS cases involving multiple sites.

Functional near-infrared spectroscopy (fNIRS) is an
established neuroimaging technique to non-invasively monitor
concentration changes of oxygenated hemoglobin (HbO) and
deoxygenated hemoglobin (HbR) evoked neural activity in the
cerebral cortex using light in the infrared spectrum [13]. The
wavelength absorption signal correlates spatially and temporally
with the functional magnetic resonance imaging (fMRI) blood
oxygen-level dependent signal during cognitive tasks [14–16].
The resistance to motion artifact and the ability to use in a
natural therapeutic setting makes fNIRS ideal for repeated
measures of the brain’s underlying cognitive processes during
learning and performance across the course of treatment [17].
Investigations using fNIRS during language and cognitive tasks
across the age span report changes in PFC activity between
persons with aphasia, persons without aphasia, and healthy
adults during confrontation naming tasks, [18] verbal fluency,
[19, 20], and memory learning [21] are related to age and cortical
integrity. To our knowledge there are no investigations involving
persons with AOS during a speech, cognitive, or learning task
over time.

The cognitive functions and its implications in the
rehabilitation in persons with post-stroke acquired AOS is
an understudied area, despite its potential influence on patient
outcomes. The dual-process learning theory explains that a high
level of bilateral PFC activity indicates a reliance on cognitive
control processes during the initial stages of practice [22]. The
areas of the prefrontal cortex associated with the cognitive
control processes for cognitive flexibility are the dorsal lateral
prefrontal cortex (DLPFC) andmedial prefrontal cortex (MPFC).
Specifically, Brodmann’s Area (BA) 9, 10, and 46 are associated
with tasks involving salience detection and attention, working
memory, inhibition, and task switching for efficient adaption

and response to changing environments [23, 24]. In the case of
AOS, a heavy reliance on the PFC cognitive control processes are
likely for speech motor learning during rehabilitation [5]. This
information has clinical benefits to structure patient-centered
interventions to maximize treatment outcomes.

One treatment protocol for AOS, Motor Learning Guided
(MLG), structures the practice and schedules the feedback based
on on the principles of motor learning framework found to
foster acquisition and learning of a limb motor skill [25]. The
three-stage treatment protocol uses a distributed, random order,
practice schedule of variable whole task stimuli, and provides
delayed terminal summary knowledge of results feedback at
a 20% frequency rate. The measure of speech motor changes
is the retention of learning from one session to the next. At
the beginning of each treatment session prior to initiating the
treatment protocol, productions are elicited using a written
prompt of the stimuli. The rating of these productions using a
Likert scale is the behavior indicator for speech motor learning.
Multiple single-case treatment studies report positive outcomes
[26–29]. A recent single-case treatment study involving two
individuals with chronic AOS and aphasia, report positive
treatment effects on treated items while comparing two methods
to measure speech motor learning [27]. This study highlights
the challenges clinicians face to measure changes in speech
production in the presence of aphasia.

This same study investigated the utility of using fNIRS to
detect PFC activity associated with the structure of practice
during the treatment across the intervention period. In this
pilot study, we use a computational modeler framework to
identify brain activity measured using fNIRS in these two
individuals with chronic acquired AOS and aphasia during
each treatment day across the intervention period. First, a
generalized linear model (GLM) was used to detect differences in
participants’ PFC neural activity across the intervention period
[30–33]. Upon detection, a novel statistical method involving
spatial correlation presents the structural connectivity in the
brain [34].

METHODS

Participants
The participants in this study are a 68-year-old male (P1), 91
months post-onset of a left hemisphere stroke, and a 61-year-old
male (P2), 86 months post-onset of a left hemisphere stroke. Both
participants are right-handed. They met the inclusion criteria
of normal or corrected-to-normal vision, sufficient unaided
hearing, and functional reading competency to participate in
the study. Both participant’s speech characteristics include sound
distortions and distorted sound substitutions increasing with
articulatory complexity or increased rate of speech. They both
had an overall slow rate of speech with longer segmental
and intersegmental durations and equal stress across syllables.
Please see Johnson et al. [27] for a complete description of
participants, stimuli, and behavioral outcome measures. Prior to
participation in this study, written informed consent according
to IRB approval was obtained.
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Experimental Procedure
Stimuli
The stimuli practiced during each treatment session consisted
of 5 phrases (Appendix). A structured interview identified the
specific content, and the severity of AOS determined the length
and complexity of the stimuli.

Experimental Design
This was a multiple baseline single-case design study
across participants and behaviors performed according to
recommended procedures [35]. Treatment sessions occurred
for 30min, two times a week, across 9 weeks for a total of 18
treatment sessions.

Participants were seated comfortably at ∼5m distance from
a computer monitor. Each session began with an oral reading
task used as a measure of speech motor learning, proceeded by
the intervention following the Motor Learning Guided (MLG)
treatment protocol, as previously described [36]. There are three
stages in the MLG protocol, each stage differing by practice
structure. Each practice session presented stimuli in random
order and imposed a two-minute break between each stage of
practice. The fNIRS recorded the prefrontal cortex activity during
each treatment session. Each stage began with a blank screen and
the 30 s fNIRS baseline measure. After the baseline measure, the
written prompt for the stimuli was provided one at a time using
a programmed PowerPoint presentation with a set-pause time
between each production (Figure 1).

The differences between the stages of practice in the MLG
protocol are the method to elicit productions and the delay
time between productions. Stage 1 elicits productions using a
written prompt and clinician verbal model, while Stage 2 and
Stage 3 elicit productions using a written prompt only. The delay
imposed between productions in Stage 1 and Stage 2 is 4 s, while
in Stage 3, it is 10 s. The 18 days of intervention trained stimuli
according to behavior outcomes; P1 practiced set 1 for days 1–12
and set 2 for days 13–18, whereas P2 practiced the same set for
the 18 days [27].

Data Acquisition
A 16-channel continuous-wave fNIRS system (fNIR Imager
Model 1100; fNIR Devices, LLC) recorded changes in
hemodynamic activity of oxygenated (HbO) and deoxygenated
(HbR) hemoglobin levels of the anterior PFC [37, 38], as
previously described [39] and shown in Figure 2. The data
were recorded and processed using COBI Studio software
version 1.5.0.51 and fNIRSoft version 4.9.6716.18813 (BioPac
TM systems).

The positioning of the headpiece followed the standard sensor
placement procedure [37, 40] and secured using an adjustable
headband and a dark cap to reduce ambient light. The sensor
has a source-detector distance of 2.5 cm and a sampling rate of
2Hz. Manual markers indicate the beginning and end of each
stimulus presentation and participant production. The markers
ware labeled by phrase presentation to account for the random
presentation of stimuli.

fNIRS Data Processing
The modified Beer-Lambert law converted the fNIRS raw light
intensity signals to changes in oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) concentrations. The sum
of HbO and HbR yields the change in total hemoglobin (HbT)
described as an indicator of variations in the regional cerebral
blood volume. The automated sliding-window artifact rejection
algorithm uses a coefficient-of-variation approach to assess the
signal quality and reject problematic channels with bad contact
or saturated raw light intensity [13]. The algorithm resulted in
the rejection of 6.3% of the data secondary to artifacts. Following
the application of the sliding-window artifact rejection algorithm,
the changes in HbO and HbR time series for each channel
were bandpass filtered at 0.1Hz to reduce the slow signal drift
and remove the physiological artifacts. Lastly, Correlation Based
Signal Improvement was used to improve signal quality [41].
For statistical analysis, the mean value [HbO, HbR, HbT] was
calculated by averaging the recorded [HbO, HbR, HbT] values
during each stimulus block, and subtracting the mean change in
HbO, HbR, and HbT of the recorded global baseline (first 30 s)
for each stage of the treatment protocol. Imputation from the
previous and next values’ average replaced the missing values.
With more than 600 observations per subject, we had sufficient
statistical power to study the PFC activity.

Analysis
The goal of this analysis is to identify any significant differences
between the participant’s intensity and response amplitude by
patterns of activity during practice and the number of days
performing the task. The locations of interest in the PFC included
the left and right hemisphere and isolated Brodmann area (BA) 9,
10, and 46. The channels assigned to each group were determined
based on the Montreal Neurological Institute (MNI) cortical
virtual spatial registration for the 16-channels for older adults
[42]. The first grouping associated with the DLPFC (BA 9 and
46), contained channels 1, 2, and 15, and the second grouping of
the MPFC (BA 10) contained channels 3–14 and 16 (Figure 3).
The two models considered, are a GLM and a Spatial Varying
Coefficients Model. These analyses were performed in SAS using
proc GLM and in R using the spatstat package.

Generalized Linear Model
In a conventional study, effects of participants, days, and location,
a GLM is based on the fact that intensity, is a function of
many sources, including nuisance or errors. Many authors have
proposed the GLMmodel for similar PFC data [30–33]. Amixed-
effect model can also be used. Such a model can be described
as follows:

Yitkl = µ + αi + γt + τk + δl + ǫitkl,

• where:
• µ is the overall intensity
• αi represents the effect due to location, i = 1, . . . , I
• γt represents the effect due to day, t = 1, . . . ,T
• τk represents the effect due to participant, k = 1, . . . ,K
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FIGURE 1 | Schematic of practice schedule according to motor learning guided treatment protocol.

FIGURE 2 | Functional near-infrared configuration.

• δl represents the effect due to stage, l = 1, . . . , L

The model can be expressed as

• Y = Xβ + ε,

where Y is the vector of measured intensity by location and day,
X is the design matrix, β is the vector of regression coefficients
and ε is the vector of error terms. Here, the design matrix X

FIGURE 3 | Optode grouping for regions of interest. Red, Broadmann’s Area

9; Green, Broadmann’s Area 10; Blue, Broadmann’s Area 46.

includes information about location, day, participant, and stage.
The assumptions that the errors are independent and normally
distributed will be made and validated in the investigations.
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Estimation of the parameter set β is such that β̂ =

(X
′

X)−1X′Y assuming that the design matrix X is invertible.
If not, using the generalized equation will allow us to obtain
a solution, even though they will not be unique. Normality is
a strong assumption, and there are other techniques that have
been proposed to remedy and avoid biases [32]. Huppert [43]
mentions that errors in fNIRS are not independent. Tools are
currently under consideration to analyze data under region based
interest however, no standard recommendation exists at this
time [44].

As previously described in section Analysis, two groupings
of channels were considered for this analysis and four different
comparisons were of interest within the groupings. Groupings
and comparisons of interest are:

• Grouping 1: L (channels 1 and 2) and R (channels 15)
• Grouping 2: L (channels 3–8) and R (channels 9–14, 16)

• Case 1: Compare P1 day 1–12 to P2 day 1–12
• Case 2: Compare P1 day 13–18 to P2 day 1–6
• Case 3: Compare P2 day 1–6 to P2 day 13–18
• Case 4: Compare P1 day 1–6 to P1 day 13–18

Spatial Varying Coefficients Model
To assess the spatial connectivity between the channels, a model
parcellation of the channel network is adapted. The advantages
of this approach include: biological interpretability, reduction in
the parameters to estimate, and quantification of the measure
of spatial correlation [34, 42]. However, this model does require
precise locations and a distance locator. To take advantage of the
data, the model should incorporate:

a) Limited assumptions
b) Dependent component analysis
c) Spatio-temporal correlation approach

To reveal the structure of the functioning of the channels,
interaction of the patterns in the brain activity is studied such
that the impact is associated with the distance of the blood
flow between the channels’ proximities. A general framework
for the spatial model is that the regions of the brain interact
after adjustment on the distance between them such that closer
regions are more alike. The goal is to identify any regions of
the brain that have strong correlation(s). Since the regions are
spatial representations (based on MNI coordinates), we adopted
the spatial correlation proposed by Moran [45] and further
developed by many authors such as Chen et al. [46] We provide
additional benefits in the stage of practice and day (temporal)
parameters which substantially describe the complex spatial
signal control in the brain image data for the two participants.
The 16 channels observed were depicted as regions determined
by some coordinate system denoted as the pair (xi, yi), we rewrite
as (xit , yit) to include day/time information for the change in
HbO, HbR, and HbT signals.

We define the model of the Moran intensities as follows:

Mt
ii′ =

∑

i, i′

wt
ii′ f (Yit , Yi′t), where

• wt
ii′ represents the spatial weight between regions i and i′ for

the tth day at each stage and will be defined as wii′ = e−dii′/d,

the geographical weight, where d is the average of distances
between all possible pairs of points i and i′.

• for the distance matrix, dii′ , distance is measured as one step
(up, down, left, right) along the shortest distance path between
regions and when the regions coincide, (i.e., i = i′), the
distance is taken from a central node (along the brain stem).

• f (Yit , Yi′t) can be seen as the absolute value of the difference
in observed intensities at regions i and i′ for the tth day and for
each stage. Generally, the value of this function is smaller for
closer regions.

If we ignore the f (Yit , Yi′t), then we will have a symmetric matrix
function of the locations only, and we can consider it as a design
matrix, and call itM :

Mn×n =







M11 · · · M1n

...
. . .

...
Mn1 · · · Mnn







In presenting the autocorrelation between the channel locations,
we recall the Pearson correlation coefficient. In the spatial setting,
the correlation is formulated as:

I =
n

S

∑n
i,j=1 wij (xi − x)

(

xj − x
)

∑

n

i=1

(xi − x)2 ,

where S is the sum of all weights wi,j between the i and j
observations capturing the closeness of those observations from
the channel locations to the main blood and oxygenation supply
line. These correlations can be calculated for each day and lead to
higher correlations for closer regions.

MODEL RESULTS

The analysis provides estimations of the PFC activity for two
participants across the intervention period. The significant
difference in PFC activity in the regions of interest was associated
with parameters of the schedule of practice and time of
intervention. The analysis considered two groupings of channels,
and five comparisons were of interest within the groupings.

Generalized Linear Model
Grouping 1 looked at hemodynamic activity in BA 9 and 46.
The overall models for Grouping 1 were all significant (Table 1).
Case 1 compared the hemodynamic activity for both participants
according to the left and right hemispheres (location) and stages
across 12 treatment days. There was a significant difference
in oxygenation between the left and right hemispheres across
treatment days and between participants. However, the mean
HbO was not significantly different for stage (Figure 4). The
HbR was significantly different across treatment days, between
the left and right hemispheres, and stage. The HbT (total
blood volume) was significantly different between participants

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 September 2020 | Volume 6 | Article 32

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Johnson et al. PFC During Speech Motor Learning

TABLE 1 | GLM results for Grouping 1.

Grouping 1, Case 1 HbO HbR HbT

Source DF SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F

Model 14 183.5487 13.1106 13.09 < 0.0001 84.4569 6.0326 11.03 < 0.0001 90.0819 6.4344 15.42 < 0.0001

Participant 1 23.0206 23.0206 22.98 < 0.0001 0.3657 0.3657 0.67 0.4137 10.1341 10.1341 24.29 < 0.0001

Day 11 149.5384 13.5944 13.57 < 0.0001 62.0548 5.6413 10.32 < 0.0001 75.6050 6.8732 16.47 < 0.0001

Location 1 9.5965 9.5965 9.58 0.002 5.3082 5.3082 9.71 0.0019 0.3347 0.3347 0.8 0.3706

Stage 1 1.3931 1.3931 1.39 0.2385 16.7282 16.7282 30.59 < 0.0001 4.0081 4.0081 9.61 0.002

Error 1,065 1066.8195 1.0017 582.4305 0.5469 444.3260 0.4172

Corrected

total

1,079 1250.3682 666.8874 534.4079

Grouping 1, Case 2 HbO HbR HbT

Source DF SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F

Model 13 70.1940 5.3995 8.09 < 0.0001 51.6237 3.9711 13.02 < 0.0001 31.2892 2.4069 8.19 < 0.0001

Participant 1 5.7708 5.7708 8.64 0.0034 9.5154 9.5154 31.21 < 0.0001 0.4657 0.4657 1.58 0.2087

Day 10 43.8210 4.3821 6.56 < 0.0001 25.9361 2.5936 8.51 < 0.0001 30.5549 3.0555 10.39 < 0.0001

Location 1 15.0519 15.0519 22.55 < 0.0001 11.9065 11.9065 39.05 < 0.0001 0.1841 0.1841 0.63 0.429

Stage 1 5.5502 5.5502 8.31 0.0041 4.2657 4.2657 13.99 0.0002 0.0844 0.0844 0.29 0.5923

Error 526 351.1338 0.6676 160.3800 0.3049 154.6135 0.2939

Corrected

total

539 421.3278 212.0036 185.9027

Grouping 1, Case 3 HbO HbR HbT

Source DF SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F

Model 13 69.6870 5.3605 13.27 < 0.0001 34.6996 2.6692 16.31 < 0.0001 32.6763 2.5136 13.06 < 0.0001

Day 11 33.8503 3.0773 7.62 < 0.0001 20.6024 1.8729 11.44 < 0.0001 26.8968 2.4452 12.7 < 0.0001

Location 1 7.8551 7.8551 19.44 < 0.0001 5.5188 5.5188 33.71 < 0.0001 0.2056 0.2056 1.07 0.3018

Stage 1 27.9816 27.9816 69.25 < 0.0001 8.5783 8.5783 52.4 < 0.0001 5.5738 5.5738 28.96 < 0.0001

Error 526 212.5316 0.4041 86.1068 0.1637 101.2422 0.1925

Corrected

total

539 282.2186 120.8064 133.9185

Grouping 1, Case 4 HbO HbR HbT

Source DF SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F

Model 13 163.3517 12.5655 8.36 < 0.0001 91.0219 7.0017 8.8 < 0.0001 57.7002 4.4385 6.62 < 0.0001

Day 11 114.1590 10.3781 6.9 < 0.0001 84.4629 7.6784 9.65 < 0.0001 46.6404 4.2400 6.32 < 0.0001

Location 1 22.1112 22.1112 14.7 0.0001 3.2222 3.2222 4.05 0.0447 2.8043 2.8043 4.18 0.0414

Stage 1 27.0815 27.0815 18.01 < 0.0001 3.3368 3.3368 4.19 0.0411 8.2555 8.2555 12.31 0.0005

Error 526 790.9344 1.5037 418.7175 0.7960 352.7480 0.6706

Corrected

total

539 954.2861 509.7394 410.4482

Grouping 1: L (optodes 1 and 2) and R (optode 15).

across treatment days and stages. For all cases compared, HbT
differed significantly across treatment days, remaining steady
and consistent between the left and right hemispheres. In case
2, the HbT did not differ between participants for stage only

when comparing the first six treatment days on P2’s second set
of stimuli and P1’s first (and only) set of stimuli.

Grouping 2 looked at hemodynamic models of BA 10. The
overall models for Grouping 2 were all significant (Table 2).
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FIGURE 4 | The mean HbO activity for Grouping 1 by stage for each participant. The vertical line at day 13 for participant 1 indicates set 1 to the left and set 2 to the

right.

In case 1, HbO was significant for all covariates; however, the
HbR for the location was not significant, and the HbR and HbT
for stages were not significant. The hemodynamic activity was
significant for all covariates during the first six training days for
P2 on set 2 and P1. The HbO and HbT were not significant
between the left and hemispheres for P1 during the first six
treatment days on both sets of stimuli, or P2 during the first
and last six treatment days. As illustrated in Figure 5, there was
bilateral BA 10 activity for all stages of practice. For P1 in Stage
1, there was a higher bilateral BA 10 activity during the initial
treatment days with both sets of stimuli. The activity for P2
was similar in each stage; a decrease occurred only in Stage 1
(clinician model) across treatment days.

As illustrated in Figure 6, there was a consistent HbO level
in channels 1 (inferior frontal gyrus, IFG), 5 (superior frontal
gyrus, SFG), 12 (SFG), and 14 (middle frontal gyrus, MFG) for
P1 during each stage. The HbO levels during Stage 2 (no model)
were higher in channels 12 and 14, while channels 1 and 5

had lower levels. In Stage 3 (no model, 10 s delay), there were
distributed HbO levels across multiple channels in the left and
right hemispheres. For P2, there was a consistent level of HbO
measured in channels 4 (MFG), 10, and 12 in all stages. The
HbO concentration became increasingly distributed in the left
and right hemispheres across each stage of practice. Active only
during Stage 2 and Stage 3 was a cluster of channels 1–4 (IFG
andMFG). Channels 13, 14, 15, and 16 (IFG andMFG) recruited
during Stage 3, mirrored the left PFC activity pattern.

Figure 7 illustrates the differences in the pattern of PFC
activity between the participants across the training days. A
similar distribution pattern of PFC activity during the initial
days of practice for both sets of stimuli is evident for P1. The
activity localized in channels 5, 12, and 14 (bilateral SFG and right
MFG) with practice. The activity pattern for P2 remains fairly
distributed across the duration of the treatment with consistent
activity noted in channels 1, 4, and 12 (left IFG and MFG and
right SFG).
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TABLE 2 | GLM results for Grouping 2.

Grouping 2, Case 1 HbO HbR HbT

Source DF SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F

Model 14 335.0409 23.9315 35.57 < 0.0001 98.6628 7.0473 22.72 < 0.0001 99.9450 7.1389 26.63 < 0.0001

Participant 1 89.4638 89.4638 132.96 < 0.0001 12.5283 12.5283 40.38 < 0.0001 16.0724 16.0724 59.95 < 0.0001

Day 11 232.5083 21.1371 31.41 < 0.0001 86.1188 7.8290 25.24 < 0.0001 81.4310 7.4028 27.61 < 0.0001

Location 1 2.5590 2.5590 3.8 0.0512 0.0103 0.0103 0.03 0.8553 2.4277 2.4277 9.06 0.0026

Stage 1 10.5098 10.5098 15.62 < 0.0001 0.0054 0.0054 0.02 0.8949 0.0139 0.0139 0.05 0.8197

Error 4,665 3138.9328 0.6729 1447.1880 0.3102 1250.6904 0.2681

Corrected

total

4,679 3473.9737 1545.8507 1350.6354

Grouping 2, Case 2 HbO HbR HbT

Source DF SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F

Model 13 243.2028 18.7079 25.27 < 0.0001 69.0569 5.3121 17.26 < 0.0001 104.5049 8.0388 35.97 < 0.0001

Participant 1 7.3032 7.3032 9.86 0.0017 2.8725 2.8725 9.34 0.0023 0.9957 0.9957 4.46 0.0349

Day 10 181.5326 18.1533 24.52 < 0.0001 61.9178 6.1918 20.12 < 0.0001 74.1704 7.4170 33.19 < 0.0001

Location 1 4.7764 4.7764 6.45 0.0112 1.3435 1.3435 4.37 0.0368 1.0319 1.0319 4.62 0.0318

Stage 1 49.5906 49.5906 66.97 < 0.0001 2.9230 2.9230 9.50 0.0021 28.3069 28.3069 126.66 < 0.0001

Error 2,326 1722.3117 0.7405 715.7016 0.3077 519.8270 0.2235

Corrected

total

2,339 1965.5145 784.7585 624.3319

Grouping 2, Case 3 HbO HbR HbT

Source DF SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F

Model 13 270.2793 20.7907 46.6 < 0.0001 75.9453 5.8419 41.67 < 0.0001 88.4753 6.8058 41.26 < 0.0001

Day 11 172.1855 15.6532 35.08 < 0.0001 60.0004 5.4546 38.90 < 0.0001 52.3434 4.7585 28.85 < 0.0001

Location 1 0.5960 0.5960 1.34 0.2479 0.9894 0.9894 7.06 0.008 0.0496 0.0496 0.30 0.5836

Stage 1 97.4978 97.4978 218.52 < 0.0001 14.9556 14.9556 106.67 < 0.0001 36.0823 36.0823 218.75 < 0.0001

Error 2,326 1037.8166 0.4462 326.1254 0.1402 383.6599 0.1649

Corrected

total

2,339 1308.0959 402.0707 472.1352

Grouping 2, Case 4 HbO HbR HbT

Source DF SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F SS/Type

I SS

Mean

square

F-value Pr > F

Model 13 350.1448 26.9342 27.28 < 0.0001 121.3271 9.3329 22.22 < 0.0001 92.4890 7.1145 19.47 < 0.0001

Day 11 341.2457 31.0223 31.43 < 0.0001 117.9066 10.7188 25.52 < 0.0001 91.9264 8.3569 22.87 < 0.0001

Location 1 0.5921 0.5921 0.6 0.4387 0.5129 0.5129 1.22 0.2692 0.0013 0.0013 0.00 0.9516

Stage 1 8.3070 8.3070 8.41 0.0038 2.9076 2.9076 6.92 0.0086 0.5613 0.5613 1.54 0.2154

Error 2,326 2296.1557 0.9872 976.8735 0.4200 850.1106 0.3655

Corrected

total

2,339 2646.3005 1098.2006 942.5996

Grouping 2: L (optodes 3–8) and R (optodes 9–14, 16).

Spatial Varying Coefficients Model
For the spatial model, we first focus on the absolute value
of the HbO intensity observed in three regions: channels

1, 2, and 15. The resulting distance matrix utilizing the
distance as described in section Spatial Varying Coefficients
Model is:
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FIGURE 5 | The mean HbO activity for Grouping 2 by stage for each participant. The vertical line at day 13 for participant 1 indicates set 1 to the left and set 2 to the

right.

dii′ =





4 1 7
1 4 8
7 8 4



 (1)

Next, we calculate the geographical weights,wii′ , defined aswii′ =

e−dii′/d, where d is the average of distances between all possible
pairs of points i and i′ [47].

wii′ =





0.2765 0.7251 0.1054
0.7251 0.2765 0.0764
0.1054 0.0764 0.2765



 (2)

Then we calculate the Moran statistics for each participant at
each stage. Figure 8 are the graphs of the Moran statistics; a
Loess smoothing curve has been added to easily detect trends
between participants.

The degree of correlation measured by the Moran statistics
between the participants indicated that the correlation between

channels 1 and 2 vs. channel 15 was always higher for P1 (red)
in Stage 1, whereas, in Stages 2 and 3, the correlations cross. This
last remark was especially visible in Stage 2 after day 6. This shows
that there was amagnitude of PFC activity (HbO, HbR, andHbT)

represented in Stage 1 (clinician model) that lessened in Stage 2
(no model) and 3 (no model, 10 s delay) overtime.

The Pearson correlation of HbO values and differences during

each stage and channel for each participant were significant,
revealing regional variations in the level of HbO activity in the

PFC (Figure 9). The darkened main diagonal shape is evidence
of the identity autocorrelation. The plot shades close to the main

diagonal correspond to short range correlation, while the plot

shades distant from the main diagonal correspond to long range
correlations. The level of HbO activity in Stage 1 was higher for

channels 5, 14, and 16 for P1, while channels 1, 2, 12, and 15 were
higher for P2. In stage 2, the level of HbO activity for all channels
was consistently higher for P1 compared to P2. In Stage 3, the
level of HbO activity was dominant in the left hemisphere for P1;
whereas, the right hemisphere was dominant for P2.
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FIGURE 6 | The mean prefrontal cortex activity by optode during each stage of practice during training days 1–12 for each participant.

DISCUSSION

This study investigated the utility of using fNIRS to measure

the hemodynamic activity in the PFC during AOS treatment. Of

interest was the hemodynamic PFC activity in response to the
different methods for eliciting speech and the length of the delay

between productions in the treatment protocol. Differences in the
PFC activity for regions of interest associated with the schedule of
practice in each stage of the treatment protocol and the spatial

connectivity of the pattern of activity were determined using
two statistical methods. Overall, the results of the GLM model
confirm the involvement of cognitive control processes during
speech motor learning and the association of cognitive demands
and the schedule of practice while learning.

Previous studies reporting a task associated with PFC activity
guided the groupings for the comparisons. The GLM model

investigated the areas of the PFC associated with higher-order
cognitive planning tasks (BA 9 and 46) in the first grouping
and working memory tasks (BA 10) in the second grouping.
Consistent with prior research, there was a high level of bilateral
PFC activity associated with new learning [22–24]. The level
of activity in the right hemisphere decreased across treatment
days for P1, while the left hemisphere remained steady [20].
This pattern of activity is consistent with previous reports of
left hemisphere dominance with speaking tasks [18, 19] and
the dual-processing theory [22]. The speech behavior during
retention measures for P1 characterized speech productions as
consistent decrease occurrences of segmental and intersegmental
durations with fewer long durations compared to baseline
[27]. However, for P2, the PFC activity remained bilateral,
indicating the involvement of cognitive control processes
throughout the intervention period. The speech behavior during
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FIGURE 7 | The mean prefrontal cortex activity by optode for selected day ranges for each participant.

retention measures was characterized as inconsistent day to day
performance related to distortions and lengthened segmental
and intersegmental duration [27]. These findings, combined
with behavior outcomes for the retention of learning [27],
provide initial evidence of cognitive control processes associated
with speech motor learning during the rehabilitation of AOS.
Replication of these findings across more participants would
assist in the further interpretation of these findings and its
potential use as a clinical tool.

The three stages in the MLG treatment protocol differ in
the speech elicitation methods and length of time between each
production. The verbal model used in Stage 1 is a common

prompt for eliciting speech in persons with AOS. Novel to
the MLG treatment protocol is eliciting speech with a written
prompt only in Stage 2 and Stage 3. The rationale for using this
method is the low reliance on external prompts and proximity to
independent productions. The GLM, along with the mapping of
the functional connectivity interpreted under a spatial-temporal
correlation measure using the Spatial Varying Model, presents
the activity at the channel level. The regions active during Stage 1
were active during all speech tasks, similar to the activity reported
during standard speech production [48]. The pattern of activity,
during Stage 2, for P2, and both participants in Stage 3, was
similar to the activity pattern in the first six treatment days. The
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FIGURE 8 | Moran statistic for Grouping 1 for HbO, HbR, and HbT by stage for days 1–12.

decreased magnitude of activity in the IFG after treatment day 6
for P1, paired with the behavior retention outcome characterizing
no lengthened segmental or intersegmental speech characteristics
[27], provides evidence for the association between speech motor
learning and cognitive control processes during the rehabilitation

of AOS. Further, the dominant activity for P1 during Stage 2
in left hemisphere activity during Stage 3 compared to P2 are
of great interest in understanding the implications the structure
of practice has on the cognitive demands during rehabilitation.
The model distinguishes a shift in the magnitude of activity in
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FIGURE 9 | Pearson correlations for HbO: rows are stage 1, stage 2, and stage 3; columns are Participant 1, Participant 2, and Difference (P1–P2).

the left and right IFG and differentiates the regional variation of
PFC activity associated with the structure of practice and speech
motor learning in these two participants.

The delay between productions and the augmented schedule
of feedback in the MLG protocol elicits metacognitive skills
for self-reflection, comparing the internal representation of
the intended outcome while maintaining the desired outcome

representation. The extended length of the delay in Stage 3
compared to Stage 1 and 2, is associated with high bilateral
activity in both participants. This neurophysiological evidence
explains that the extended delay increases the complexity and
cognitive function during the task [49, 50]. The behavior
retention outcomes paired with the pattern of neural activity
during the training are evidence of the potential use for fNIRS as
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a tool to guide clinical decisions during rehabilitation in persons
with AOS and aphasia.

While this study provides evidence that the length of time
between productions engages cognitive functions for learning,
without specific characteristics of the speech production during
the practice activity, interpretation for clinical application is
limited. The lesion size and location for the participants were
unavailable and would have contributed information regarding
the neural reorganization. One cannot avoid the possibility of
individual anatomical differences, or those associated with aging,
and consistent placement using anatomical markers [42, 51].
The objective of this study was to examine the utility of using
fNIRS and proof of concept for a structural equation to identify
individual differences in brain connectivity associated with AOS
outcomes during rehabilitation. Probabilistic interpretations in
a Spatio-temporal context illustrate common regions of activity
associated with the presumed function in healthy subjects for
cognitive control processes.

The outcomes of this study provide pilot data to support
further investigation of the use of functional imaging to advance
clinical practices. The difference in the neural activity of the
two participants in this study in response to different aspects of
the practice schedule warrants further investigation. The pairing
of behavioral and neural functioning data has the potential to
advance translational clinical research. While the study is limited
in its generalization to the patient population, the evidence
presented supports future rigorous investigation of the statistical

methods. The trend in neuroimaging research is the use of
multimodal imaging techniques. The reality is that studies of
this capacity are limited to large scale research institutions.
The ability to use statistical methods in lieu of multimodal
imaging techniques has the potential to extend contributions
to the body of literature at a broader scale from all clinical
research institutions.
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APPENDIX

Stimuli Trained for P1 and P2
P1: Set 1

In October, we spend Halloween with my four grandchildren
My favorite TV shows are Xxxx and Xxx X.
X, X, and I enjoyed golfing last weekend at Xx X.
Would you like to go to X Xx for dinner tonight?
I enjoy playing the lottery on Mondays and Thursdays every
week.
P2: Set 1

I would like sweet tea please.
I live with my son Xx.
I watched some golf yesterday.
Xx and I went fishing last weekend.
Golfing is my favorite sport.
P1: Set 2

In December, we go to New Jersey to visit X and his family.
Swimming freestyle and backstroke are my favorite exercises.
Last weekend, we went to Mass at X. X’s in Xxx X.
Would you like to go to Xx X amusement park later?
On Fridays, I enjoy swimming at the Xx Beaches.

X

used to replace any identifying information.
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