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The local field potential (LFP) is the low frequency part of the extracellular electrical

potential in the brain and reflects synaptic activity onto thousands of neurons around

each recording contact. Nowadays, LFPs can be measured at several hundred locations

simultaneously. The measured LFP is in general a superposition of contributions from

many underlying neural populations which makes interpretation of LFP measurements

in terms of the underlying neural activity challenging. Classical statistical analyses

of LFPs rely on matrix decomposition-based methods, such as PCA (Principal

Component Analysis) and ICA (Independent Component Analysis), which require

additional constraints on spatial and/or temporal patterns of populations. In this work,

we instead explore the multi-fold data structure of LFP recordings, e.g., multiple

trials, multi-channel time series, arrange the signals as a higher-order tensor (i.e.,

multiway array), and study how a specific tensor decomposition approach, namely

canonical polyadic (CP) decomposition, can be used to reveal the underlying neural

populations. Essential for interpretation, the CP model provides uniqueness without

imposing constraints on patterns of underlying populations. Here, we first define a

neural network model and based on its dynamics, compute LFPs. We run multiple trials

with this network, and LFPs are then analysed simultaneously using the CP model.

More specifically, we design feed-forward population rate neuron models to match

the structure of state-of-the-art, large-scale LFP simulations, but downscale them to

allow easy inspection and interpretation. We demonstrate that our feed-forward model

matches the mathematical structure assumed in the CP model, and CP successfully

reveals temporal and spatial patterns as well as variations over trials of underlying

populations when compared with the ground truth from the model. We also discuss

the use of diagnostic approaches for CP to guide the analysis when there is no ground

truth information. In comparison with classical methods, we discuss the advantages of

using tensor decompositions for analyzing LFP recordings as well as their limitations.

Keywords: tensor decompositions, neuroscience, local field potential (LFP), population rate model,

CANDECOMP/PARAFAC, independent component analysis (ICA), principal component analysis (PCA)
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1. INTRODUCTION

Most of what we know about the inner workings of the living
brain has been learned from extracellular electrical recordings,
that is, recordings of electrical potentials by sharp electrodes
placed in the extracellular space between nerve cells. The high-
frequency part of the signals, above a few hundred hertz,
measures action potentials of neurons in the vicinity of the
electrode contacts. The low-frequency part, the local field
potential (LFP), is more difficult to interpret. While it is thought
to mainly reflect processing of synaptic inputs by the neuronal
dendrites by populations of pyramidal neurons, a simple rule-of-
thumb interpretation in terms of the underlying neural activity
like we have for spikes, is lacking [1, 2].

A traditional way to record LFPs in layered structures,
such as hippocamapus or cortex is to record potentials with
a linear multielectrode with many recording contacts crossing
these laminarly organized brain structures. The resulting data
typically have a two-way (matrix) structure (channels, time), and
a standard analysis method has been to estimate the current-
source density (CSD) [3]. The CSD measures the net volume
density of electrical currents entering (sources) or leaving (sinks)
the extracellular space. Several methods are available for CSD
estimation, the standard CSD analysis assumes the neural activity
to be constant in the horizontal directions in layered cortical
or hippocampal structures [4], or other more recent methods
like the iCSD [5] or the kCSD methods [6] which make
different assumptions.

While the CSD is a more localized measure of neural activity
than the LFP, it does not directly informwhich neurons are active.
An alternative is thus to try to decompose the measured LFPs
into contributions from individual populations of neurons, for
example, using matrix decomposition techniques like principal
component analysis (PCA) [7] or independent component
analysis (ICA) [8–10]. Here, data matrices are decomposed into
outer products of pairs of vectors, and the vectors are interpreted
as LFP contributions from individual neural populations. The
decomposition of a matrix into outer products of vectors is not
unique, and the methods involve additional assumptions like
orthogonality (PCA) or statistical independence (ICA) of LFP
contributions from the various populations. These mathematical
assumptions cannot a priori be expected to be obeyed by
neuronal populations in real brains. An alternative is to impose
more physiological constraints in the decomposition [11]. An
example is laminar population analysis (LPA) [12, 13] which,
however, requires simultaneous recordings of action potentials
and further physiological assumptions.

We here consider a new approach to LFP decomposition
by considering three-way data (trial, channel, time) arranged
as third-order tensors and performing a decomposition into
outer products of triplets of vectors using an approach called
CANDECOMP/PARAFAC (CP) [14, 15]. Unlike for the case
with two-way data, this three-way decomposition is unique
under mild conditions [16], and no strong assumptions, such
as orthogonality or statistical independence on the components
are needed. The underlying assumption in the CP model is that
signals from each trial are a linear mixture of contributions
from neural populations, and temporal and spatial signatures

of neural populations stay the same across trials while each
population’s contribution to trials is scaled differently. Through
the CP model, we assume that the LFP is multi-linear, thus
linear in every argument (in our case tri-linear) since it assumes
linearity in each mode. When matrix-based approaches, such as
PCA and ICA are used on these signals from multiple trials by
flattening the third-order LFP recording tensor, that structure
cannot be maintained; therefore, additional assumptions, such as
orthogonality are needed to ensure uniqueness.

Tensor decompositions are extensions of matrix
decompositions, such as PCA to higher-order tensors (also
referred to as multi-way arrays) and have proved useful in
terms of finding underlying patterns in complex data sets in
many domains including social network analysis, chemometrics,
and signal processing [17–19]. As a result of its inherent
uniqueness properties, among the tensor decomposition
methods, the CP model has been quite popular since it can
easily be interpreted. The CP model has also been successfully
used in various neuroscience applications, e.g., the analysis
of electroencephalography (EEG) signals [20], event related
potential (ERP) estimation under the name topographic
component analysis [21, 22], and more recently, capturing
spatial, spectral, and temporal signatures of epileptic seizures
[23, 24] and dynamics of learning [25].

In this study, we use the CP model to study LFP signals with
the goal of disentangling individual neuronal populations. To
the best of our knowledge, the CP model has not been used
previously to analyze LFP recordings. In order to assess the
performance of the CP model, we first create benchmarking data
by simulatingmulti-channel LFP recordings acrossmultiple trials
based on a model of neuron populations. These simulated signals
are arranged as a third-order tensor with modes: trials, channels,
and time. Our numerical experiments demonstrate that the CP
model can successfully reveal the underlying neuron populations
by capturing their temporal and spatial signatures while more
traditional ICA-based and PCA-based approaches fail to separate
the populations. We also discuss advantages and limitations of
the CP model in the presence of noise and different models of
neuron populations.

2. METHODS

In the methods section we first describe the forward model used
to compute the model-based benchmarking data. This forward
modeling consists of two parts: (i) a population firing-rate model
simulating neural dynamics in a multi-population feed-forward
network model, and (ii) the computation of the local field
potential (LFP) stemming from these neural dynamics. Second,
we describe the tensor decomposition approach used in the
inverse modeling to reveal the individual neuronal populations.

2.1. Forward Modeling of Benchmarking
Data
2.1.1. Rate Model for Neuron Populations
A neuron is a cell that processes and transmits information. It
receives inputs called action potentials via synapses from pre-
synaptic neurons. This input will change the internal state of
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the neuron (e.g., its membrane potential), and the neuron may
itself generate action potentials that is forwarded to other post-
synaptic neurons. One option for modeling dynamics of neural
networks is to explicitly model the train of action potentials of
all neurons in the network. For large neural networks this not
only becomes numerically cumbersome, the results also become
difficult to interpret.

Firing-rate models thus offer an attractive alternative: if the
number of neurons grows, further simplifications can be used.
Given a subset of all neurons which have similar properties,
receive very similar input, and project to similar groups of
neurons, we can call them a population. Instead of taking every
action potential into account, the population activity can be
described by their instantaneous firing rate, that is, the average
number of action potentials fired in a time window across
the population. This presents a huge simplification since the
relative timing of all action potentials are neglected, but gives
a description of larger population dynamics. In many cases
the temporal evolution of the firing rate can be modeled by
means of ordinary differential equations (ODE). For an extensive
discussion of rate models, see, e.g., Ermentrout and Terman [26]
and Gerstner et al. [27]. A population rate model for I neuron
populations can be described by

τ
dr(t)

dt
= −r(t)+ F

(

Wr(t)+ µ(t)
)

(1)

where r(t) ∈ R
I
≥0 is the vector of instantaneous firing rates of

I populations (thus restricted to non-negativity), the vector τ ∈

R
I
≥0 contains the time constants for each population, W ∈ R

I×I

is the coupling matrix describing the synaptic strength between
populations, µ(t) is the instantaneous external stimulus received
by each population and F is the column-wise response function
of each population to input (both from other neuron population
as from external sources). The response function can in principle
take any form and in general adds a non-linearity to the system.
For simplicity we assume if not stated otherwise that F is the
identity function making the rate model fully linear.

The neural network is mainly characterized by the connection
matrix W. If several populations affect each other only in
a sequential way, we call these populations a feed-forward
network. If several populations drive each other in a loop, we
call those recurrent. If two neural populations are completely
independent, meaning that they do not affect each other directly
or indirectly via intermediate populations or do not share a
common input, we can regard them as separate networks. One
can further distinguish between excitatory and inhibitory neuron
populations. Excitatory populations increase firing rate of post-
synaptic populations, while inhibitory populations inhibit the
firing of post-synaptic populations. Thus, Wi,j > 0 for all j if
population i is excitatory and likewise Wi,j < 0 for i being an
inhibitory population.

By assuming initial conditions r(0) and external stimuli µ(t),
we fully define the ODE problem, which is solved using the
ode45 package from MatLab [28]. We discretize dimensionless
time between 0 and 1 in 1,000 steps and solve Equation (1) in this

range. In this paper, we use a boxcar function

µi(t) = ci

(

2(t − tstarti )− 2(t − tendi )
)

(2)

as stimulus with ci as the stimulus magnitude for each population
i and tstarti and tendi as the respective on and off-set for each
population. Solving the rate model takes few seconds on a
standard laptop and can thus be performed easily multiple times
for different values of W and stimuli µ(t) to explore the model.
Our choice of a linear model is a simplification which allows
easier analysis, but has limitations, as, for example, it allows for
(unphysical) negative firing rates.

2.1.2. Computation of LFP Signals
The local field potential (LFP) is the low-frequency part of
extracellular potential, and in vivo it is generated from the
superposition of the extracellular potential generated by many
neurons [1]. The LFP 8 is a three-dimensional physical scalar
field which can be continuously measured in time at any position,
thus 8(x, t). The LFP is measured by electrodes recording the
signal at one or, more typically, many discrete locations, typically
called channels. Thus, the recording becomes a vector of time
series. In this discrete case, each LFP recording can thus be
written as a matrix 8 ∈ R

nchannels×ntime steps where the rows are
the different channels and, the columns are the different discrete
time points.

In this study, we mimic a situation where the LFP is recorded
by a linear multielectrode at many positions through the depth
of cortex. In this set-up, the recorded LFP will typically contain
contributions from multiple populations of neurons with their
somas (cell bodies) positioned at different depths (see, e.g., [12]).
The multi-electrode probe records frommultiple depth locations
at the same time, and the spatial dependence x thus reduces to the
scalar depth x, which simplifies further discussion.We do not aim
to simulate any specific cortical system and instead keep things
general. Therefore, we regard our model as a toy-model, which
still incorporate key features of real LFPs. A method to efficiently
compute LFPs is the so-called kernel method [29, 30].

The kernel method consists of several steps: (I) Biophysical,
multi-compartment neuron models are used to generate a
large number of neurons which then represent a set neuron
populations. (II) All neurons in a single pre-synaptic population
i are forced to emit an action potential at the same point in
time. This mimics a δ-shaped firing rate. (III) The resulting
LFP generated by each post-synaptic population j is stored
separately for multiple locations, simulating a virtual probe with
multiple channels. This provides a kernel Hij, the expected LFP
if population i fires and projects to population j. (IV) Steps II
and III are repeated for each pre-synaptic population i, providing
a full set of kernels Hij. If W is constant, one can define the
population kernel as the sum over all post-synaptic kernels Hi =
∑

jHij. However, it is advantageous tomaintain allHi,j so that the

contribution of individual populations to the total LFP can easily
be computed.

The kernels Hi(x, t) thus depend on space x and time t, in the
discrete case they can be represented as a matrix as well with
dimensions channels and time. The LFP contribution of the ith
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population 8i(x, t) is computed by a temporal convolution of
the corresponding kernel Hi(x, t) with the respective population
firing rate ri(t):

8i(x, t) = (ri ∗ Hi) (x, t). (3)

Since the electrical potential is additive, the total LFP is given by
summation over all populations

8(x, t) =

I
∑

i=1

(ri ∗ Hi) (x, t) (4)

where ∗ denotes the convolution operation in time and ri(t) is
the firing rate of population i. In the discrete case, the result of
the convolution is thus a matrix with the dimensions channel
and time. This method has been developed as a part of the
HybridLFPy software (see [29]). The kernels used in this work
have been derived for a cat cortex model [31].

For each kernel Hi, there exists a rank-one approximation
which allows to write the kernel as the outer product of a
temporal ki and a spatial function ci:

Hi(x, t) ≈ ci(x) · k
T
i (t) (5)

where kT denotes the transposed vector. Since the projection
of the neural population to the various channel locations is
determined by their static morphology and the propagation of
the electrical signal through neurons is fast, there is little delay
at different locations. Therefore, the rank-one approximation
is very accurate (variance explained above 95% for all studied
cortical kernels, see Appendix). Due to this factorization of the
kernel into spatial and temporal parts, the resulting LFP can also
be factorized in a spatial and temporal part since the firing rate is
only convolved with the kernel in the temporal dimension:

8(x, t) ≈

I
∑

i=1

ci(x) ·
(

ri ∗ ki
)T

(t), (6)

where ∗ denotes the convolution operator. If we discretize, spatial
and temporal factors of the kernel become vectors: ci(x) → ci,
ki(t) → ki, and the kernel itself turns into amatrixHi(x, t) → Hi.
Since the population firing rate r(t) is also solved numerically, the
continuous solution turns into a vector ri(t) → ri. Thus, the LFP
(Equation 6) can be written as a matrix 8 ∈ R

M×N :

8 ≈

I
∑

i=1

ci · (ri ∗ ki)
T (7)

with M as the number of channels and N as the number of
time points. By repeating the simulation of 8 multiple (L) times,
e.g., for different connection matrices W mimicking changes of
the network over time, and stack the resulting LFPs, we get a
three-way tensor X ∈ R

L×M×N with modes: trials, channels,
and time.

2.2. CANDECOMP/PARAFAC (CP) Tensor
Model Used in Inverse Modeling
The CP model, also known as the canonical polyadic
decomposition [32], is one of the most popular tensor
decomposition approaches. Here, we use the CP model to
analyze the three-way LFP tensor with modes: trials, channels,
and time, and reveal temporal and spatial signatures of
underlying neuron populations. For a third-order tensor
(three-way array) X ∈ R

L×M×N , an R-component CP model
approximates the tensor as the sum of R rank-one third-order
tensors, as follows:

X ≈

R
∑

r=1

sr ◦ cr ◦ tr (8)

where ◦ denotes the vector outer product following the notation
in Kolda and Bader [17], S = [s1 ... sR] ∈ R

L×R,C = [c1 ... cR] ∈
R
M×R,T = [t1 ... tR] ∈ R

N×R correspond to factor matrices
in trials, channels, and time mode, respectively. Note that the
outer product of three vectors is a third-order rank-one tensor,
i.e., Z = u ◦ v ◦ w ⇐⇒ zijk = uivjwk. The CP model
is unique under mild conditions up to permutation and scaling
[16, 17]; in other words, the same rank-one components, i.e.,
sr ◦ cr ◦ tr , for r = 1, . . . ,R, are revealed by the model at the
solution but the order of rank-one components is arbitrary and
within each rank-one component, factor vectors have a scaling
ambiguity, e.g., 2sr ◦ 1/2cr ◦ tr . By normalizing columns of the
factor matrices and introducing an additional scalar, λr , for each
rank-one component, we can rewrite Equation (8) as follows:

X ≈

R
∑

r=1

λr · s̄r ◦ c̄r ◦ t̄r (9)

with s̄r , c̄r , and t̄r as unit-norm factor vectors.
The CP model is considered to be one way of extending

Singular Value Decomposition (SVD) to higher-order data sets.
As a result of its uniqueness properties, the CP model has the
benefit of revealing underlying patterns without imposing strict
and potentially unrealistic constraints, such as orthogonality or
statistical independence as in the case of matrix decomposition-
based approaches, such as PCA and ICA.When an R-component
CP model is used to analyze an LFP tensor, it extracts R
rank-one components.

Our motivation for using the CPmodel to analyze LFP tensors
is as follows: If the population rate model is fully linear (F in
Equation 1 is a linear function), then the solutions of equation
(Equation 1) are only linearly dependent of the connection
matrix W and/or the external stimulus µ(t). If trials with
variations of W and/or µ(t) are performed, the resulting firing
rates will thus only depend linearly onW and µ(t). Furthermore,
if we also assume that kernels are rank-one matrices, fulfilling
Equation (5), a tensor consisting of multiple trials of multi-
electrode LFP recordings will have an underlying CP structure
(see Equations 7 and 8).

We claim that these extracted tensor components correspond
to spatial and temporal signatures of neuron populations, i.e.,
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cr and tr correspond to spatial and temporal signatures of the
rth population (see Equation 7), due to the fact that the LFP of
each population can be written as a bi-linear form and given the
uniqueness of CP. Each component in the CP thus corresponds
to a neural population.

Given the number of components R, in order to fit a
CP model to a third-order tensor X, we solve the following
optimization problem:

min
S,C,T

∥

∥

∥

∥

∥

X−

R
∑

r=1

sr ◦ cr ◦ tr

∥

∥

∥

∥

∥

2

F

, (10)

where ‖ · ‖F denotes the Frobenius norm for tensors, i.e.,
‖X ‖2F =

∑L
l=1

∑M
m=1

∑N
n=1 x

2
lmn

. There are various algorithmic
approaches for solving this problem, such as alternating least
squares (ALS) and all-at-once optimization methods. In this
paper, we use a gradient-based all-at-once approach based on
CP-OPT [33], that solves the problem for all factor matrices,
S,C,T, simultaneously.

2.2.1. Diagnostics Tools
Determining the number of CP components (R) is a difficult
problem. For the exact case, where there is an equality in
Equation (8), R corresponds to the tensor rank and determining
the rank of a tensor is NP-hard [17, 34]. In practice, this
challenging problem has been mitigated using various diagnostic
tools, such as core consistency diagnostic [35], split-half and
residual analysis [36]. In this paper, we use the core consistency
values and model fit to determine the number of components
while modeling an LFP tensor using a CP model.
Core Consistency indicates whether an R-component CP model
is an appropriate model for the data, and is defined as
follows [35]:

Core Consistency = 100×

(

1−

∑R
i=1

∑R
j=1

∑R
k=1(gijk − tijk)

2

R

)

,

where G (of size R × R × R) is the estimated core array for a
Tucker model [37] given the factor matrices of the R-component
CP model, and T (of size R × R × R) is a super-diagonal core
array for the CP model with non-zero entries only on the super-
diagonal. Tucker is a more flexible tensor model; therefore, its
core G can be a full core array. If the R-component CP model is a
valid model, then off super-diagonal elements of Gwill be close to
zero giving high core consistency values close to 100%. Low core
consistency values indicate potentially an invalid CP model.
Model Fit is used to understand how much of the data
is explained by the model. Given a tensor X and its CP

approximation X̂ =
∑R

r=1 sr ◦ cr ◦ tr , the fit can be defined
as follows:

Fit = 100×






1−

∥

∥

∥
X− X̂

∥

∥

∥

2

F

‖X ‖2F







When the number of components extracted from the data
increases, the fit also increases. However, the increase in

FIGURE 1 | Sketch of a four-population feed-forward neural model defined via

connection matrix in Equation (11) .

additional complexity due to additional components should often
be justified by an increase in model fit. In other words, we need
to assess if we gain a significant increase in fit by extracting more
components from the data.

To find the optimal number of components R, we examine
model fit and core consistency values across different number of
components. While heuristic in nature, these diagnostics are able
to be employed effectively in this study.

3. NUMERICAL EXPERIMENTS

As an example, we assume the simple model of four neuron
populations which are sequentially connected (see Figure 1).
Population 1 receives the same stimulus in every trial l while
the other populations only receive indirect input via projections
from other populations (µ(t) = (µ1(t), 0, 0, 0)

T). We further
assume that the network is purely excitatory (0 ≤ Wij).Wemodel
multiple trials by assuming that due to plasticity, W21, W32, and
W43 will change between trials. This mimics the situation where
a subject is exposed to the same stimulus at different times and
the neural network adapts and changes its connectivity due to
learning. This plasticity is not part of our model, but externally
enforced. We will show that the changes in weights across trials
can be recovered using the CP model and thus will allow to study
the learning process.

This network has the following sparse connectivity matrix:

W =









0 0 0 0
W21 0 0 0
0 W32 0 0
0 0 W43 0









(11)

To indicate different trials, we use superscripts, e.g., Wl is the
connection matrix for the lth trial. We define the experimental
population strength slr as the strength of the rth population in
the lth trial. For the four population feed-forward model, we thus
have the relation

sl1 ∝ const

sl2 ∝ W l
21

sl3 ∝ W l
32W

l
21

sl4 ∝ W l
43W

l
32W

l
21. (12)

Since the convolution with the temporal factor of the kernel kr
(see Equation 7) is also a linear operation and the channel factor
cr does not change between trials, we expect that whenmulti-trial
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multi-electrode LFP signals from this model are analyzed using
an R-component CPmodel, the analysis will reveal the following:

• The trial population strength matrix (s1, s2, . . . , sR)

• The channel factor matrix (c1, c2, . . . , cR)

• The temporal factor matrix (r1 ∗ k1, r2 ∗ k2, . . . , rR ∗ kR)

Note that it is only possible to recover (1) the experimental
population strength slr (see Equation 12), not the connection
matrix entries W, and (2) the time-convolved temporal
components (rr ∗kr = tr) instead of the raw time traces rr . In the
following, we will refer to the time-convolved components simply
as the time components. To perform numerical simulations, we
impose learning by a controlled change ofW. Over a set of L = 30
trials, we modulateW21 with a sinusoidal and an offset, such that
over the trials, it performs a quarter period (W l

21 ∝ sin(π/2 ·
l/L) + const). W32 increases linearly (W

l
32 ∝ α · l/L + const) and

W43 decreases linearly (W
l
43 ∝ −α · l/L + const. We arbitrary set

τ = (0.1, 0.3, 0.3, 0.2))T and stimulate with a boxcar (Equation 2)
between 0 and 0.2 (tstart = 0, tend = 0.2). Here, we simulate
multi-electrode LFP recordings across multiple trials based on a
simple population rate model, and arrange the data as an LFP
tensor with modes: trials, channels, and time. We then analyze
the LFP tensor using an R-component CP model to disentangle
R populations by estimating their spatial signatures (cr),
temporal signatures (tr) and relative contributions to trials (sr),
for r = 1, ...,R.

In order to demonstrate the performance of the CP model
in terms of analyzing LFP tensors, we have constructed the
following tensors (all in the form of 30 trials × 16 channels ×
1,000 time points):

(i) A noise-free data set using full kernels: An LFP data set
simulated by using the full kernels (Equation 4). No noise was
added to the simulation.

(ii) A noise-free simulation using rank-one approximation of
kernels: An LFP data set was simulated using the rank-one
approximation of the kernels for each population (Equation
5). Let Hi = U6VT =

∑R
r=1 σrurv

T
r be the SVD of

kernel Hi ∈ R
M×N of rank R for population i. Its rank-one

approximation is Ĥi = σ1u1v
T
1 . The rank-one approximation

of each selected kernel explains over 95% of the kernel matrix.
No noise was added to the simulation.

(iii) Noisy LFP with rank-one approximation of kernels: LFP data
set was simulated using the rank-one approximation of kernels
and then added noise as follows: Let X denote the LFP tensor
that is constructed using the rank-one kernel approximations.
The noisy LFP tensor with noise level α is given by Xα =

X + α
‖X‖F
‖N‖F

N where N is a tensor with entries randomly

drawn from the standard normal distribution.

Constructed LFP tensors are then analyzed using CP with
different number of components. We have also compared the
performance of the CP model with ICA and PCA.

3.1. Implementation Details
For fitting the CP model, cp_opt from the Tensor Toolbox
[38] using the non-linear conjugate gradient (NCG) algorithm,

as implemented in the Poblano Toolbox [39] is used. Multiple
initializations are used to fit each R-component CP model,
and the solution with the best function value is reported.
For computing core consistency values, we use the corcond
function from the Nway Toolbox [40].

For ICA, we use two different algorithms: (i) FastICA [41]
exploiting non-Gaussianity of the underlying sources, and (ii)
the ERBM (entropy-rate bound minimization) [42] algorithm
that takes into account both higher-order statistics and sample
dependence to find the underlying sources. For ICA algorithms,
again multiple initializations are used with R components and
among all the runs, we report the one that matches the true
factors best.

3.2. Performance Evaluation
In order to assess the performance of the CP model, we quantify
the similarity between CP factors and true signatures of neuron
populations in trials, channels, and timemodes.We use the Factor
Match Score (FMS) as the similarity measure defined as follows
[33, 43]:

FMS =
1

R

R
∑

r=1

|s⊤r ŝr|

‖sr‖‖ŝr‖
×

|c⊤r ĉr|

‖cr‖‖ĉr‖
×

|t⊤r t̂r|

‖tr‖‖t̂r‖
, (13)

where ŝr , ĉr , t̂r for r = 1, ...,R denote the estimated components
by the CP model while sr , cr , tr for r = 1, ...,R denote
the true components, i.e., simulated trials, channels, and time
mode factors.

3.3. Results
Using numerical experiments, we demonstrate that the CPmodel
can successfully extract components revealing each population.
The model succeeds in revealing the populations from the noise-
free tensor constructed using full kernels and also from the noise-
free tensor constructed using rank-one approximation of kernels.
In the presence of noise, each population can still be unraveled
while their signatures are distorted by the noise. For the first
type of tensor constructed using full kernels, the 4-component
CP model can successfully capture the true factors as shown in
Figure 2. Note that even though the tensor is constructed with
full kernels, the true components in channels and timemodes are
assumed to be the leading singular vectors of each kernel matrix
under the assumption that kernels have a rank-one structure
with noise. Under this assumption, when true components
and CP components are compared quantitatively, the FMS is
0.9965 indicating the accurate recovery of true patterns using
the CP model. Here, the optimal number of components is
equivalent to the number of populations that contribute to the
data; therefore R = 4. We have also analyzed the data using
CP with different number of components. Figure 3 shows how
core consistency and model fit change with R. Since we expect
high core consistency values for valid CP models, we increase the
number of components until we see a drop in core consistency.
Both R = 4 and R = 5 potentially look valid models; however,
the model fit is already 100% for R = 4 and becomes flat after
R = 4 indicating that the 4-component CP model is the right
choice. Thus, we are able to identify the correct number of neural

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 September 2020 | Volume 6 | Article 41

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Geddes et al. LFP Tensor Analysis

FIGURE 2 | True (simulated) components (blue solid line) vs. the factor vectors extracted by a 4-component CP model (red dashed) in trials, channels, and time

modes from a tensor constructed via full kernels (left column) and rank one approximated kernels (right column). Note also that what is extracted by the CP model is t̂r
which is then compared with rr*kr from the benchmarking data.

populations based on the diagnostic tools used for determining
the number of CP components.

In the second case, where a tensor is constructed via the
best rank-one approximation of each kernel, the 4-component
CP model can again unravel the four populations and their
corresponding signatures in trials, channels, and time modes as
shown in Figure 2. Core consistency and model fit values shown
in Figure 3 for different number of components and, in this case,
indicate that R = 4 is the true number of components since the
core consistency significantly drops after R = 4. Again, the true
number of components could be identified using diagnostic tools.

When noise is added to the tensor constructed using rank-one
approximated kernels, the CP model (with R = 4 components)
can still reveal the true signatures of the populations; however,
as we increase the noise level, we observe that factors become
distorted as shown in Figure 4. Table 1 shows that FMS values
are still high for different levels of noise, and the model
fit decreases as a result of the noise, as expected. Core

consistency values, however, are much lower and therefore
indicate noisy components.

3.4. Comparisons With ICA and PCA
Since ICA and PCA are more traditional approaches to
analyze multi-channel electro-physiology data, we compare the
performance of CP with both in terms of how well they recover
the true temporal components. For ICA and PCA, we unfold
the third-order LFP tensor in the time mode and arrange the
data as a trials-channels by time matrix. In our comparisons,
we use two different ICA algorithms: The FastICA algorithm
[44] and the ERBM algorithm [42]. We study the noise-free
case, analyze the LFP tensor using the correct number of
underlying populations with CP, ICA (R = 4), and PCA,
and compare the estimated sources in the time dimension in
Figure 5. FastICA only finds two independent components, even
if the correct larger number is given. The two reconstructed
components do not mimic the actual firing rate components.
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FIGURE 3 | Core consistency and model fit for CP models with R = 1, 2, . . . , 8 components for tensors constructed with full kernels and the rank-one approximations

of kernels.

FIGURE 4 | Factor vectors in each mode of a 4-component CP model of tensors with different noise levels (α).

The ERBM algorithm was able to reconstruct two components
which are similar to the ground truth, but the other two
components do not match the ground truth. The unfolded noise-
free tensor is of rank four, and when all four components
were taken into account, PCA was able to recover the first
component to some extent, but failed in the other components.
The CP model, on the other hand, was able to recover all

four components with high accuracy. This is a clear example
that illustrates the advantage of using CP over classical matrix
methods. Furthermore, the CP model also allows to estimate
the components in trials and channels modes, whereas matrix-
based methods like ICA or PCA require an unfolding of
the tensor, therefore, failing to estimate components in all
modes simultaneously.
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3.4.1. Further Interpretation
We have shown that CP is able to blindly recover the location
of each population (cr), but can only recover the population
firing rate convolved with the temporal part of the corresponding
kernel (rr ∗ kr). There is no method available which blindly
can deconvolve the kernel and firing rate. The potential kernel
kr can be constrained by values found in experimental studies.
Performing standard deconvolution algorithms [45] can then
be used to further estimate the actual population firing rate.
Another limitation of the blind CP approach is that it can only
recover the trial population strength sr , but not the underlying
connectivity matrix W due to the relation in Equation (12). If
one assumes a feed-forward network, a relation as described in

TABLE 1 | FMS, core consistency, and model fit for 4-component CP models of

noisy LFP tensors.

Noise level (α) FMS Core consistency (%) Model fit (%)

0.100 0.9997 38 99

0.225 0.9985 32 95

0.330 0.9967 21 90

Equation (12) can be assumed, but the order of components is
arbitrary by CP. Inspection of the firing rate components (see
for example Figure 4) can reveal a causal connection (purple →
blue → red → yellow) and identify the order of components.
Then, the elements ofW can be recovered by the simple iteration
W l

r+1,r = slr+1/slr. Also, if two neuron populations have identical
synaptic projection patterns, their LFP kernels will be also
identical, making it impossible to distinguish them. Therefore,
clearly identifying the spatial location of population LFPs relies
on the assumption that their projection patterns are different.

3.5. Application to a Non-linear Model
As stated in section 2.2, the assumption that a tensor consisting
of multiple trials of multi-electrode LFP recordings will have
an underlying CP structure relies on the assumption that F

(Equation 1) is linear. However, in general F will be non-
linear. To study the effects of introducing non-linearity, we use
a hyperbolic tangent function as suggested by beim Graben and
Kurths [46] instead of the identity function. To study the gradual
increase of non-linearity, our function is set to be in the form of

F(x) =
1

β
tanh

(

β(x− a)
)

+ b

FIGURE 5 | Comparing CP, FastICA, ERBM, and PCA estimates of temporal components. Data was generated without additional noise and the correct number of

components was provided to the algorithms.
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FIGURE 6 | Normalized convolved firing rates from all trials with

F(x) = 1
β
tanh

(

β(x − a)
)

+ b and β = 0.001 (left) and β = 5 (right).

with a = 0.5 so that the inflection is within the range of inputs,
and b = − 1

β
tanh(−β · a) to ensure that F(0) = 0. In this

form, the parameter β can be thought to represent the strength
of the non-linearity of the system. For small values of β , F is
approximately the identity function. As the value of β increases
F becomes more non-linear. Effects of the parameter β on the
convolved firing rates can be seen in Figure 6. Results of CP
decomposition of the LFP tensor generated with increasing non-
linearity (β) can be seen in Figure 7 with associated factor match
scores. Factor match scores are computed assuming that the
mean of the firing rates of each population across trials is the
ground truth. We observe FMS of 0.9995, 0.9964, and 0.7497 for
β = 0.001, 1, and 5, respectively. Note that with a weak non-
linearity, CP is able to recover components that are close to the
mean of the trials, thus the non-linearity can be regarded as a
small perturbation. In this case CP is stable and can produce
reasonable results. If the non-linearity becomes too strong, CP
will, as expected, eventually fail, as shown in Figure 7. Thus, CP
will provide a linear approximation of the data.

Also note that CP without non-negativity constraints reveal
temporal components with negative values. In the Appendix
(Figure A3), we also show the temporal factors obtained using
a CP model with non-negativity constraints in the time and trial
mode, for the different strength of non-linearity. We observe that
for small non-linearities, where CP gives reasonable (and already
non-negative) components, non-negativity constraint has almost
no effect. In cases of strong non-linearity where CP fails, the
constraint results in very different results.

4. DISCUSSION

4.1. Summary of Findings
In this paper we have applied the CP tensor decomposition
approach to disentangle different neural populations in LFP

FIGURE 7 | The mean ± 3 standard deviations of each population’s

convolved firing rate across trials (blue) with area between the two curves

shaded in green and CP reconstruction plotted as dashed red lines for

increasing amounts of non-linearity. Larger green regions represent larger

shape changes in the normalized firing rates.

recordings from multiple trials. The idea behind the CP model
is that signals from each trial are a mixture of signals from several
neural populations with specific temporal and spatial patterns.
While these population-specific patterns stay the same across
trials, contributions of the populations are scaled differently
from one trial to another. By jointly analyzing signals from
multiple trials, the CP model can uniquely reveal the underlying
neural populations and capture population-specific temporal
and spatial signatures without imposing ad hoc constraints on
those patterns like what is required for using PCA and ICA.
Physiologically, we have made several assumptions. We first
assume that if a neural population receives the same input but
with different magnitude in multiple trials, than its firing will
also be the same, but with a different magnitude proportional
to the input magnitude, thus we assume linear response of the
population. Second, we assume that the location, and thus the
recording channels a certain population projects to, is constant
over time and also does not change between trials. Last, we
assume that our input dominates the network activity and
background processes ongoing in the network can be regarded
as noise.

We used a linear feed-forward firing-rate toy model with
four populations in this study. The LFP was computed by
means of a kernel method, which allowed simple and fast
generation of LFP given the population activity of neurons
in the model. By repeating the model with different synaptic
weights and the same stimulus, we generated a multi-trial,
multi-channel time series tensor of LFP recordings. For this
toy-model, we found that CP works very well and is able
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to recover the temporal, spatial and trials modes of the
model as shown in Figure 2. This decomposition is unique,
which allows interpretation of those components as the neural
populations. We also found that the method is robust against
noise. Even if the noise is reflected in the components, the
components still cover the main feature of the model as shown
in Figure 4. We were able to uncover the true number of
components using the core consistency diagnostic (see Figure 3).
For applications with experimental recordings where the number
of components is not known, the core consistency diagnostic
is often an effective way to estimate the correct number
of components.

4.2. Comparison With Classical Matrix
Factorization Methods
Different ICA methods and PCA were not able to fully recover
the true components corresponding to individual populations.
ICA relies on the strong assumption of statistical independence
of components, even if that is relaxed in the ERBM approach.
In a biological network, this assumption is unlikely to be
met since it is expected to process and integrate information,
thus correlated patterns are expected. We suspect that ICA
methods failed because of highly correlated component vectors
in the time mode. PCA tried to minimize the correlation
between components, which is unlikely to be met in a neural
network. On the other hand, CP does not rely on the
assumption of independence and is, therefore, able to recover
the components successfully. Also, ICA and PCA methods
work on signals arranged as matrices, which requires unfolding
the tensor. Unfolding destroys the multi-linear structure the
CP model benefits from, and ICA/PCA cannot make use of
that structure.

4.3. Extensions of CP Model for Different
Models of Neuronal Populations Activity
In our toy feed-forward model, the data had a low-rank CP
structure and a CP decomposition was able to fully recover it. We
also studied the result of introducing non-linear neural response
and showed that, for a small amount of non-linearity, CP is
able to identify populations. However, for larger non-linearities
we see the failure of the CP method as the data violates the
CP assumptions to a larger extent. In a more realistic model,
we can introduce recurrent connections, multiple simultaneous
inputs and non-linear response of neural populations. In such
cases, in particular for the second case, using a CP model would
lead to uniqueness issues due to linearly dependent components.
For instance, this can occur when two different stimuli are
injected in the network, thus each stimulus in each neural
population would correspond to a single component, but all
components related to the same neural population would have
the same channel factor. Generalizations of the CP model, e.g.,
the Tucker model [17], are flexible enough to cover this. While
not unique by construction, additional constraints, such as non-
negativity, sparsity or the structure of the Tucker core can allow
for uniqueness.

When CP is applied to experimental LFP recordings
like in Verleger et al. [22], it is unlikely that a low-rank
approximation will fully explain the recording due to
multiple external sources, contributions from other brain
regions, noise effects and non-linearity of the system.
However, even if CP is not capable to model the entire
data using a low-rank approximation, CP will still pick
up low-rank parts, such as a feed-forward structure and
thus make it possible to understand sub-structures of
the network.

4.4. Measurements Other Than LFP Signal
Other multi-electrode recordings like EEG, electrocorticography
(ECoG) or magnetoencephalography (MEG) are very
similar to LFP in the sense that they also consist of
contributions of multiple sources. Due to the linearity of
electromagnetism, these contributions are also additive.
Recent work [47] allows to simulate not only LFP but also
other electrophysiological signals in the same framework.
Thus, the kernel method can also be applied to these other
observables. If the kernels have a good rank-one approximation,
this work would also apply to EEG, ECoG, or MEG. Since
all those observables are linked by the same underlying
population activity, it is also possible to combine several
observables in a fusion framework jointly analyzing multiple
tensors [48].
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APPENDIX

Kernels for LFP Approximation
The kernels used in this work were computed as described in
Hagen et al. [29] for a cat cortex model [31]. We selected a
random sequence of only excititory kernels where we made sure
that the first kernel projects from talamic input. We used the
following kernels: thalamus → layer 4, layer 4 → layer 6, layer
6 → layer 5, and layer 5 → layer 2/3. Kernels were computed
with ±20ms around the δ input. Due to causality, no response is
expected before the pulse. Figure A1 shows the selected kernels
as well as their rank one approximation. As it can be seen, a rank
one approximation approximates the original kernel well.

This is shown more systematically in Figure A2. This
plot shows the variance explained for all kernels that have

been computed for the cat cortex model [31], that is
all combinations from the four layers, both excititory and
inhibitory [(4 + 4)2 kernels] as well as talamic connections
to this layers (8). More than 90% of those kernels can be
approximated with more than 90% variance explained by a rank
1 approximation.

Non-linear Case: Analysis Using CP With
Non-negativity Constraints
Figure A3 demonstrates the temporal components captured by
the CP model with non-negativity constraints. Here, LFP tensors
are generated using different strength of non-linearity (β), and
analyzed using CP models with non-negativity constraints in the
time and trialmode.

FIGURE A1 | Comparison of the full kernels (left side) and their rank 1 approximation (right side). Plots have equal scale.
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FIGURE A2 | The plot shows the variance explained by a rank 1 approximation for all kernels that have been computed form the cat cortex model [31].

FIGURE A3 | Same as Figure 7, but with bounded CP to positive values in the firing rate and trial components. Note that for small non-linearities, the temporal

components are almost identical for constrained and unconstrained CP, while for strong non-linearities, where CP fails, the components are very different.
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