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In this paper, we develop asymptotic theories for a class of latent variable models for

large-scale multi-relational networks. In particular, we establish consistency results and

asymptotic error bounds for the (penalized) maximum likelihood estimators when the size

of the network tends to infinity. The basic technique is to develop a non-asymptotic error

bound for the maximum likelihood estimators through large deviations analysis of random

fields. We also show that these estimators are nearly optimal in terms of minimax risk.

Keywords: multi-relational network, knowledge graph completion, tail probability, risk, asymptotic analysis,
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1. INTRODUCTION

A multi-relational network (MRN) describes multiple relations among a set of entities
simultaneously. Our work on MRNs is mainly motivated by its applications to knowledge bases
that are repositories of information. Examples of knowledge bases include WordNet [1], Unified
Medical Language System [2], and Google Knowledge Graph (https://developers.google.com/
knowledge-graph). They have been used as the information source in many natural language
processing tasks, such as word-sense disambiguation and machine translation [3–5]. A knowledge
base often includes knowledge on a large number of real-world objects or concepts. When a
knowledge base is characterized by MRN, the objects and concepts correspond to nodes, and
knowledge types are relations. Figure 1 provides an excerpt from an MRN in which “Earth,” “Sun,”
and “solar system” are three nodes. The knowledge about the orbiting patterns of celestial objects
forms a relation “orbit,” and the knowledge on classification of the objects forms another relation
“belong to” in the MRN.

An important task of network analysis is to recover the unobserved network based on data. In
this paper, we consider a latent variable model for MRNs. The presence of an edge from node i to
node j of relation type k is a Bernoulli random variable Yijk with success probabilityMijk. Each node
is associated with a vector, θ , called the embedding of the node. The probability Mijk is modeled
as a function f of the embeddings, θ i and θ j, and a relation-specific parameter vector wk. This is
a natural generalization of the latent space model for single-relational networks [6]. Recently, it
has been successfully applied to knowledge base analysis [7–14]. Various forms of f are proposed,
such as distance models [7], bilinear models [12–14], and neural networks [15]. Computational
algorithms are proposed to improve link prediction for knowledge bases [16, 17]. The statistical
properties of the embedding-based MRN models have not been rigorously studied. It remains
unknown whether and to what extent the underlying distribution of MRN can be recovered,
especially when there are a large number of nodes and relations.

The results in this paper fill in the void by studying the error bounds and asymptotic behaviors
of the estimators for Mijk’s for a general class of models. This is a challenging problem due to the
following facts. Traditional statistical inference of latent variable models often requires a (proper
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FIGURE 1 | An example of the MRN representation of a knowledge base.

or improper) prior distribution for θ i. In such settings, one
works with the marginalized likelihood with θ i integrated out.
For the analysis of MRN, the sample size and the latent
dimensions are often so large that the above-mentioned inference
approaches are computationally infeasible. For instance, a small-
scale MRN could have a sample size as large as a few million,
and the dimension of the embeddings is as large as several
hundred. Therefore, in practice, the prior distribution is often
dropped, and the latent variables θ i’s are considered as additional
parameters and estimated via maximizing the likelihood or
penalized likelihood functions. The parameter space is thus
substantially enlarged due to the addition of θ i’s whose dimension
is proportionate to the number of entities. As a result, in the
asymptotic analysis, we face a double-asymptotic regime of both
the sample size and the parameter dimension.

In this paper, we develop results for the (penalized) maximum
likelihood estimator of such models and show that under
regularity conditions the estimator is consistent. In particular, we
overcome the difficulty induced by the double-asymptotic regime
via non-asymptotic bounds for the error probabilities. Then, we
show that the distribution of MRN can be consistently estimated
in terms of average Kullback-Leibler (KL) divergence even when
the latent dimension increases slowly as the sample size tends
to infinity. A probability error bound is also provided together
with the upper bound for the risk (expected KL divergence). We
further study the lower bound and show the near-optimality of
the estimator in terms of minimax risk. Besides the average KL
divergence, similar results can be established for other criteria,
such as link prediction accuracy.

The outline of the remaining sections is as follows. In section
2, we provide the model specification and formulate the problem.
Our main results are presented in section 3. Finite sample
performance is examined in section 4 through simulated and real
data examples. Concluding remarks are included in section 5.

2. PROBLEM SETUP

2.1. Notation
Let | · | be the cardinality of a set and× be the Cartesian product.
Set {1, . . . ,N} is denoted by [N]. The sign function sgn(x) is

defined to be 1 for x ≥ 0 and 0 otherwise. The logistic function is
denoted by σ (x) = ex/(1 + ex). Let 1A be the indicator function
on event A. We use U

[
a, b
]
to denote the uniform distribution

on [a, b] and Ber(p) to denote the Bernoulli distribution with
probability p. The KL divergence between Ber(p) and Ber(q) is

written as D(p||q) = p log p
q + (1 − p) log 1−p

1−q . We use ‖ · ‖ to

denote the Euclidean norm for vectors and the Frobenius norm
for matrices.

For two real positive sequences {an} and
{
bn
}
, we write an =

O(bn) if lim supn→∞ an/bn < ∞. Similarly, we write an = �(bn)
if lim supn→∞ bn/an < ∞ and an = o(bn) if limn→∞ an/bn = 0.
We denote an . bn if lim supn→∞ an/bn ≤ 1. When {an} and{
bn
}
are negative sequences, an . bn means lim infn→∞ an/bn ≥

1. In some places, we use bn & an as an interchangeable notation
of an . bn. Finally, if limn→∞ an/bn = 1, we write an ∼ bn.

2.2. Model
Consider an MRN with N entities and K relations. Given i, j ∈
[N] and k ∈ [K], the triple λ = (i, j, k) corresponds to the edge
from entity i to entity j of relation k. Let 3 = [N] × [N] × [K]
denote the set of all edges. We assume in this paper that an edge
can be either present or absent in a network and use Yλ ∈ {0, 1}
to indicate the presence of edge λ. In some scenarios, the status
of an edge may have more than two types. Our analysis can be
generalized to accommodate these cases.

We associate each entity iwith a vector θ i of dimension dE and
each relation k with a vector wk of dimension dR. Let E ⊆ R

dE be
a compact domain where the embeddings θ1, . . . , θN live.We call
E the entity space. Similarly, we define a compact relation space
R ⊆ R

dR for the relation-specific parameters w1, . . . ,wK . Let
x = (θ1, . . . , θN ,w1, . . . ,wK) be a vector in the product space
2 = EN ×RK . The parameters associated with edge λ = (i, j, k)
is then xλ = (θ i, θ j,wk). We assume that given x, elements in
{Yλ | λ ∈ 3} are independent with each other and that the log
odds of Yλ = 1 is

log
P (Yλ = 1|x)
P (Yλ = 0|x) = φ (xλ) , for λ ∈ 3. (1)

Here φ is defined on E2 ×R, and φ (xλ) is often called the score
of edge λ.

We will use Y to represent the N × N × K tensor formed
by {Yλ | λ ∈ 3} and M(x) to represent the corresponding
probability tensor

{
P(Yλ = 1 | x) | λ ∈ 3

}
. Our model is

given by

Yλ ∼ Ber
(
Mλ

(
x
∗)) , (2)

Mλ(x) = σ (φ (xλ)) , λ ∈ 3, (3)

where x
∗ stands for the true value of x and Yλ’s are

independent. In the above model, the probability of the presence
of an edge is entirely determined by the embeddings of the
corresponding entities and the relation-specific parameters. This
imposes a low-dimensional latent structure on the probability
tensorM∗ = M(x∗).

We specify our model using a generic function φ. It includes
various existing models as special cases. Below are two examples
of φ.
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1. Distance model [7].

φ
(
θ i, θ j,wk

)
= bk − ‖θ i + ak − θ j‖2, (4)

where θ i, θ j, ak ∈ R
d, bk ∈ R and wk = (ak, bk). In the

distance model, relation k from node i to node j is more
likely to exist if θ i shifted by ak is closer to θ j under the
Euclidean norm.

2. Bilinear model [9].

φ
(
θ i, θ j,wk

)
= θTi diag(wk)θ j, (5)

where θ i, θ j,wk ∈ R
d and diag(wk) is a diagonal matrix with

wk as the diagonal elements. Model (5) is a special case of the
more general model φ

(
θ i, θ j,wk

)
= θTi Wkθ j, where Wk ∈

R
d×d is a matrix parameterized by wk ∈ R

dR . Trouillon et al.
[12], Nickel et al. [13], and Liu et al. [14] explored different
ways of constructingWk.

Very often, only a small portion of the network is observed [18].
We assume that each edge in theMRN is observed independently
with probability γ and that the observation of an edge is
independent of Y . Let S ⊂ 3 be the set of observed edges.
Then the elements in S are independent draws from 3. For
convenience, we use n to represent the expected number of
observed edges, namely, n = E [|S|] = γ |3| = γN2K. Our goal
is to recover the underlying probability tensor M∗ based on the
observed edges {Yλ | λ ∈ S}.

REMARK 1. Ideally, if there exists x
∗ such that Yλ =

sgn
(
Mλ(x∗)− 1

2

)
for all λ ∈ 3, then Y can be recovered

with no error under x∗. This is, however, a rare case in practice,
especially for large-scale MRN. A relaxed assumption is that Y
can be recovered with some low dimensional x∗ and noise {ǫλ}
such that

Yλ = sgn

(
Mλ(x

∗)+ ǫλ − 1

2

)
, ǫλ

i.i.d∼ U

[
−1

2
,
1

2

]
, ∀λ ∈ 3.

(6)
By introducing the noise term, we formulate the deterministic
MRN as a random graph. The model described in (2) is an
equivalent but simpler form of (6).

2.3. Estimation
According to (2), the log-likelihood function of our model is

l
(
x;YS

)
=
∑

λ∈S
Yλ logMλ(x)+ (1− Yλ) log

(
1−Mλ(x)

)
. (7)

We omit the terms
∑

λ∈S log γ +
∑

λ/∈S log (1− γ ) in (7) since
γ is not the parameter of interest. To obtain an estimator ofM∗,
we take the following steps.

1. Obtain the maximum likelihood estimator (MLE) of x∗,

x̂ = argmax
x∈2

l
(
x;YS

)
. (8)

2. Use the plug-in estimator

M̂ = M(x̂) (9)

as an estimator ofM∗.

In (8), the estimator x̂ is a maximizer over the compact parameter
space 2 = EN ×RK . The dimension of 2 is

m = NdE + KdR,

which grows linearly in the number of entitiesN and the number
of relations K.

2.4. Evaluation Criteria
We consider the following criteria to measure the error of the
above-mentioned estimator. They will be used in both the main
results and numerical studies.

1. Average KL divergence of the predictive distribution from
the true distribution

L(M̂,M∗) = 1

|3|
∑

λ∈3

D(M∗
λ||M̂λ). (10)

2. Mean squared error of the predicted scores

MSEφ = 1

|3|
∑

λ∈3

(
φ(x̂λ)− φ(x∗λ)

)2
. (11)

3. Link prediction error

êrr = 1

|3|
∑

λ∈3

1Ŷλ 6=Y∗
λ
, (12)

where Ŷλ = sgn
(
M̂λ − 1

2

)
and Y∗

λ = sgn
(
M∗

λ − 1
2

)
.

REMARK 2. The latent attributes of entities and relations are often
not identifiable, so the MLE x̂ is not unique. For instance, in (4),
the values of φ and M(x) remain the same if we replace θ i and ak,
respectively by Ŵθ i + t and Ŵak, where t is an arbitrary vector in
R
dE and Ŵ is an orthonormal matrix. Therefore, we consider the

mean squared error of scores, which are identifiable.

3. MAIN RESULTS

We first provide results of the MLE in terms of KL divergence
between the estimated and the true model. Specifically, we
investigate the tail probability P(L(M̂,M∗) > t) and the expected
loss E[L(M̂,M∗)]. In section 3.1, we discuss upper bounds for
the two quantities. The lower bounds are provided in section
3.2. In section 3.3, we extend the results to penalized maximum
likelihood estimators (pMLE) and other loss functions. All proofs
are included in the Supplementary Materials.
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3.1. Upper Bounds
We first present an upper bound for the tail probability
P(L(M̂,M∗) > t) in Lemma 1. The result depends on the tensor
size, the number of observed edges, the functional form of φ,
and the geometry of parameter space 2. The lemma explicitly
quantifies the impact of these element on the error probability.
It is key to the subsequent analyses. Lemma 2 gives a non-
asymptotic upper bound for the expected loss (risk). We then
establish the consistency of M̂ and the asymptotic error bounds
in Theorem 1.

We will make the following assumptions throughout
this section.

ASSUMPTION 1. x
∗ ∈ 2 = EN × RK , where E and R are

Euclidean balls of radius U.

ASSUMPTION 2. The function φ is Lipschitz continuous under the
Euclidean norm,

|φ (u) − φ (v)| ≤ α‖u− v‖, ∀u, v ∈ E
2 ×R, (13)

where α is a Lipschitz constant.

Assumption 1 is imposed for technical convenience. The results
can be easily extended to general compact parameter spaces. Let
C = sup

u∈E2×R
|φ(u)|. Without loss of generality, we assume that

C ≥ 2.

LEMMA 1. Consider M̂ defined in (9) and the average KL
divergence L in (10). Under Assumptions 1 and 2, for every t > 0,
β > 0 and 0 < s < nt,

P
(
L(M̂,M∗) ≥ t

)
≤ exp

{
−nt − s

C
h

(
1

2
− s

2nt

)}

(
1+ 2

√
3αUn(1+ β)

s

)m

+ exp
{
−nβh(β)

}
, (14)

where m = NdE + KdR is the dimension of 2, n = γN2K is the
expected number of observations, and h(u) = (1+ 1

u ) log(1+u)−1.

In the proof of Lemma 1, we use Bennett’s inequality to develop
a uniform bound that does not depend on the true parameters.
It is sufficient for the current analysis. If the readers need sharper
bounds, they can read through the proof and replace the Bennett’s
bound by the usual large deviation rate function which provides
a sharp exponential bound that depends on the true parameters.
We don’t pursue this direction in this paper.

Lemma 2 below gives an upper bound of risk E[L(M̂,M∗)],
which follows from Lemma 1.

LEMMA 2. Consider M̂ defined in (9) and loss function L in (10).
Let C1 = 18C, C2 = 8

√
3αU and C3 = 2max {C1,C2}. If

Assumptions 1 and 2 hold and n
m ≥ C2 + e, then

E[L(M̂,M∗)] ≤ C3
m

n
log

n

m
+ C1

n
exp

{
−m log

n

m

}

+ 3

n
exp

{
−1

3

(
n+ C3m log

n

m

)}
. (15)

We are interested in the asymptotic behavior of the tail
probability in two scenarios: (i) t is a fixed constant and (ii) t
decays to zero as the number of entities N tends to infinity. The
following theorem gives an asymptotic upper bound for the tail
probability and the risk.

THEOREM 1. Consider M̂ defined in (9) and the loss function L in
(10). Let the number of entities N → ∞ and C,K,U, dE, dR,α,
and γ be fixed constants. If Assumptions 1 and 2 hold, we have the
following asymptotic inequalities.
When t is a fixed constant,

log P(L(M̂,M∗) ≥ t) . − t

5C
n. (16)

When t = 10Cm
n log n

m ,

log P(L(M̂,M∗) ≥ t) . −m log
n

m
. (17)

Furthermore,

E[L(M̂,M∗)] . 10C
m

n
log

n

m
. (18)

The consistency of M̂ is implied by (16) and the rate of
convergence is | log P(L(M̂,M∗) ≥ t)| = �(N2) if t is a fixed
constant. The rate decreases to �(N logN) for the choice of
t producing (17). It is also implied by (17) that L(M̂,M∗) =
O( 1N logN) with high probability. We show in the next section
that this upper bound is reasonably sharp.

The condition that K,U, dE, dR, and α are fixed constants can
be relaxed. For instance, we can let U, dE, dR, and α go to infinity
slowly at the rate O(logN) and K at the rate O(N). We can let γ

go to zero provided that m
n log n

m = o(1).

3.2. Lower Bounds
We show in Theorem 2 that the order of the minimax risk
is �(mn ), which implies the near optimality of M̂ in (9) and
the upper bound O(mn log n

m ) in Theorem 1. To begin with, we
introduce the following definition and assumption.

DEFINITION 1. For u = (θ , θ ′,w) ∈ E2 ×R, the r-neighborhood
of u is

Nr(u) =
{
(η, η′, ζ ) ∈ E

2 ×R | ‖η − θ‖ ≤ r, ‖η′ − θ ′‖ ≤ r, ‖ζ
−w‖ ≤ r}.

Similarly, for x = (θ1, . . . , θN ,w1, . . . ,wK) ∈ EN × RK , the
r-neighborhood of x is

Nr(x) =
{
(η1, . . . , ηN , ζ 1, . . . , ζK) ∈ E

N ×R
K | ‖ηi − θ i‖ ≤ r, ‖

ζ k − wk‖ ≤ r,∀i ∈ [N], k ∈ [K]
}
.

ASSUMPTION 3. There exists u0 ∈ E2 ×R and r, κ > 0 such that
Nr(u0) ⊂ E2 ×R and

∣∣σ
(
φ(u)

)
− σ

(
φ(v)

)∣∣ ≥ κ‖u− v‖, ∀u, v ∈ Nr(u0). (19)
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THEOREM 2. Let b = sup
u∈Nr(u0) σ

(
φ(u)

)
. Under Assumptions

2 and 3, if r2 ≥ (m/16−1)b(1−b)
12α2n

, then for any estimator M̂, there
exists x∗ ∈ 2 such that

P

(
L(M̂,M∗) > C̃

m/16− 1

n

)
≥ 1

2
, (20)

where C̃ = κ2b(1−b)
108α2 . Consequently, the minimax risk

min
M̂

max
M∗

E[L(M̂,M∗)] ≥ C̃
m/16− 1

2n
. (21)

3.3. Extensions
3.3.1. Reguralization
In this section, we extend our asymptotic results in Theorem
1 to regularized estimators. In practice, regularization is often
considered to prevent overfitting. We consider a regularization
similar to elastic net [19]

lρ
(
x;YS

)
= l(x;YS)− ρ1‖x‖1 − ρ2‖x‖2, (22)

where ‖ · ‖1 stands for L1 norm and ρ1, ρ2 ≥ 0 are regularization
parameters. The pMLE is

x̂ = argmaxx∈2lρ(x;YS). (23)

Note that the MLE in (8) is a special case of the pMLE above
with ρ1 = ρ2 = 0. Since x̂ is shrunk toward 0, without loss
of generality, we assume that E and R are centered at 0. We
generalize Theorem 1 to pMLE in the following theorem.

THEOREM 3. Consider the estimator M̂ given by (23) and (9) and
the loss function L in (10). Let the number of entities N → ∞ and
C,K,U, dE, dR,α, γ be absolute constants. If Assumptions 1 and 2
hold and ρ1 + ρ2 = o(logN), then asymptotic inequalities (16),
(17), and (18) in Theorem 1 hold.

3.3.2. Other Loss Functions
We present some results for the mean squared error loss MSEφ

defined in (11) and the link prediction error êrr defined in
(12). Corollaries 1 and 2 give upper and lower bounds for
MSEφ , and Corollary 3 gives an upper bound for êrr under an
additional assumption.

COROLLARY 1. Under the setting of Theorem 3 with the
loss function replaced by MSEφ , we have the following
asymptotic results.
If t is a fixed constant,

log P
(
MSEφ ≥ t

)
. −

5σ (C)
(
1− σ (C)

)
t

2C
n. (24)

If t = 20C
σ (C)(1−σ (C))

m
n log n

m ,

log P
(
MSEφ ≥ t

)
. −m log

n

m
. (25)

Furthermore,

E
[
MSEφ

]
.

20C

σ (C)
(
1− σ (C)

) m
n
log

n

m
. (26)

COROLLARY 2. Under the setting of Theorem 2 with the loss
function replaced by MSEφ , we have

P

(
MSEφ > C̃

m/16− 1

8n

)
≥ 1

2
, (27)

and

min
M̂

max
M∗

E
[
MSEφ

]
≥ C̃

m/16− 1

16n
. (28)

ASSUMPTION 4. There exists ε > 0 such that
∣∣M∗

λ − 1
2

∣∣ ≥ ε for
every λ ∈ 3.

COROLLARY 3. Under the setting of Theorem 3 with the loss
function replaced by êrr and Assumption 4 added, we have the
following asymptotic results.
If t is a fixed constant,

log P (êrr ≥ t) . −2ε2t

5C
n. (29)

If t = 5C
ε2

m
n log n

m ,

log P (êrr ≥ t) . −m log
n

m
. (30)

Furthermore,

E [êrr] .
5C

ε2

m

n
log

n

m
. (31)

3.3.3. Sparse Representations
We are interested in sparse entity embeddings and relation
parameters. Let ‖ · ‖0 be the number of non-zero elements of
a vector and τ be a pre-specified sparsity level of x (i.e., the
proportion of non-zero elements). Let mτ = mτ be the upper
bound of non-zero parameters, that is, ‖x∗‖0 ≤ mτ . Consider
the following estimator

x̂ = argmax
x∈2

l
(
x;YS

)
subject to ‖x‖0 ≤ mτ . (32)

The estimator defined above maximizes the L0-penalized
log-likelihood.

THEOREM 4. Consider M̂ defined in (32) and (9) and the loss
function L in (10). Let the number of entities N → ∞ and
τ ,C,K,U, dE, dR,α be absolute constants. Under Assumptions 1
and 2, the following asymptotic inequalities hold.

If t is a fixed constant,

log P(L(M̂,M∗) ≥ t) . − t

5C
n. (33)

If t = 10Cmτ

n log n
mτ

,

log P(L(M̂,M∗) ≥ t) . −mτ log
n

mτ

. (34)

Furthermore,

E[L(M̂,M∗)] . 10C
mτ

n
log

n

mτ

. (35)

We omit the results for other loss functions as well as the lower
bounds since they can be analogously obtained.
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4. NUMERICAL EXAMPLES

In this section, we demonstrate the finite sample performance
of M̂ through simulated and real data examples. Throughout
the numerical experiments, AdaGrad algorithm [20] is used
to compute x̂ in (8) or (23). It is a first-order optimization
method that combines stochastic gradient descent (SGD) [21]
with adaptive step sizes for finding the local optima. Since the
objective function in (8) is non-convex, a global maximizer is
not guaranteed. Our objective function usually has many global
maximizers, but, empirically, we found the algorithm works well
on MRN recovery and the recovery performance is insensitive to
the choice of the starting point of SGD. Computationally, SGD is
also more appealing to handle large-scale MRNs than those more
expensive global optimization methods.

4.1. Simulated Examples
In the simulated examples, we fix K = 20, d = 20 and consider
various choices of N ranging from 100 to 10,000 to investigate
the estimation performance as N grows. The function φ we
consider is a combination of the distance model (4) and the
bilinear model (5),

φ
(
θ i, θ j,wk

)
=
(
θ i + ak − θ j

)T
diag (bk)

(
θ i + ak − θ j

)
, (36)

where θ i, θ j, ak, bk ∈ R
d and wk = (ak, bk). We independently

generate the elements of θ∗i , a
∗
k
, and b∗k from normal distributions

N(0, 1), N(0, 1), and N(0, 0.25), respectively, where N(µ, σ 2)
denotes the normal distribution with mean µ and variance
σ 2. To guarantee that the parameters are from a compact set,
the normal distributions are truncated to the interval [−20,
20]. Given the latent attributes, each Yijk is generated from
the Bernoulli distribution with success probability M∗

ijk
=

σ (φ(θ∗i , θ
∗
j ,w

∗
k
)). The observation probability γ takes value

from {0.005, 0.01, 0.02}. For each combination of γ and N,
100 independent datasets are generated. For each dataset, we
compute x̂ and M̂ in (8) and (9) with AdaGrad algorithm and
then calculate L(M̂,M∗) defined in (10) as well as the link
prediction error êrr defined in (12). The two types of losses are
averaged over the 100 datasets for each combination of N and
γ to approximate the theoretical risks E[L(M̂,M∗)] and E[êrr].
These quantities are plotted against N in log scale in Figure 2. As
the figure shows, in general, both risks decrease as N increases.
WhenN is small, n/m is not large enough to satisfy the condition
n/m ≥ C2 + e in Lemma 2 and the expected KL risk increases
at the beginning. After N gets sufficiently large, the trend agrees
with our asymptotic analysis.

4.2. Real Data Example: Knowledge Base
Completion
WordNet [1] is a large lexical knowledge base for English. It
has been used in word sense disambiguation, text classification,
question answering, and many other tasks in natural language
processing [3, 5]. The basic components of WordNet are groups
of words. Each group, called a synset, describes a distinct
concept. In WordNet, synsets are linked by conceptual-semantic
and lexical relations, such as super-subordinate relation and

antonym. We model WordNet as an MRN with the synsets as
entities and the links between synsets as relations.

Following Bordes et al. [7], we use a subset of WordNet for
analysis. The dataset contains 40,943 synsets and 18 types of
relations. A triple (i, j, k) is called valid if relation k from entity i to
entity j exists, i.e., Yijk = 1. All the other triples are called invalid
triples. Among more than 3.0×1010 possible triples inWordNet,
only 151,442 triples are valid. We assume that 141,442 valid
triples and the same proportion of invalid triples are observed.
The goal of our analysis is to recover the unobserved part of
the knowledge base. We adopt the ranking procedure, which is
commonly used in knowledge graph embedding literature, to
evaluate link predictions. Given a valid triple λ = (i, j, k), we
rank estimated scores for all the invalid triples inside 3·jk ={
(i′, j, k) | i′ ∈ [N]

}
in descending order and call the rank of

φ
(
x̂λ

)
as the head rank of λ, denoted by Hλ. Similarly, we can

define the tail rank Tλ and the relation rank Rλ by ranking
φ
(
x̂λ

)
among the estimated scores of invalid triples in 3ij· and

3i·k, respectively. For a set V of valid triples, the prediction
performance can be evaluated by rank-based criteria, mean rank
(MR), mean reciprocal rank (MRR), and hits at q (Hits@q), which
are defined as

MRE = 1

2|V|
∑

λ∈V
Hλ + Tλ,MRR = 1

|V|
∑

λ∈V
Rλ,

MRRE = 1

2|V|
∑

λ∈V

1

Hλ

+ 1

Tλ

, MRRR = 1

|V|
∑

λ∈V

1

Rλ

,

and

HitsE@q = 1

2|V|
∑

λ∈V
1{Hλ≤q} + 1{Tλ≤q},

HitsR@q = 1

|V|
∑

λ∈V
1{Rλ≤q}.

The subscripts E and R represent the criteria for predicting
entities and relations, respectively. Models with higher MRRs,
Hits@q’s or lower MRs are more preferable. In addition, MRR
is more robust to outliers than MR.

The three models described in (4), (5), and (36) are considered
in our data analysis and we refer to them as Model 1, 2, and 3,
respectively. For each model, the latent dimension d takes value
from {50, 100, 150, 200, 250}. Due to the high dimensionality of
the parameter space, L2 penalized MLE is used to obtain the
estimated latent attributes x̂, with tuning parameters ρ1 = 0
and ρ2 chosen from {0, 10−2, 10−3, 10−4, 10−5} in (22). Since
information criteria based dimension and tuning parameter
selection is computationally intensive for dataset of this scale,
we set aside 5,000 of the unobserved valid triples as a validation
set and select the d and ρ2 that produce the smallest MRRE on
this validation set. The model with the selected d and ρ2 is then
evaluated on the test set consisting of the rest 5,000 unobserved
valid triples.
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FIGURE 2 | Average Kullback-Leibler divergence (left) and average link prediction error (right) of M̂ for different choices of N and γ .

TABLE 1 | Results for WordNet data analysis.

Method (d, ρ2) MRE MRRE HitsE@10 MRR MRRR HitsR@1

Model 1 (100, 10−5) 385 0.64 0.888 1.41 0.896 0.817

Model 2 (250, 10−4) 769 0.94 0.945 1.31 0.968 0.959

Model 3 (200, 10−4) 499 0.94 0.947 1.13 0.978 0.967

CP – – 0.075 0.125 – – –

RESCAL – – 0.890 0.928 – – –

The results for CP and RESCAL are extracted from Trouillon et al. [12] and Nickel et al. [13].

The computed evaluation criteria on the test set are listed
in Table 1. The table also includes the selected d and ρ2 for
each of the three score models. Models 2 and 3 generate similar
performance. The MRRs for the two models are very close to 1,
and the Hits@q’s are higher than 90%, suggesting that the two
models can identify the valid triples very well. Although Model 1
is inferior to the other twomodels in terms of most of the criteria,
it outperforms them in MRE. The results imply that Model 2 and
Model 3 could perform extremely bad for a few triples.

In addition to Models 1–3, we also display the performance
of the Canonical Polyadic (CP) decomposition [22] and a
tensor factorization approach, RESCAL [23]. Their MRRE and
HitsE@10 results on the WordNet dataset are extracted from
Trouillon et al. [12] and Nickel et al. [13], respectively. Both
methods, especially CP, are outperformed by Model 3.

5. CONCLUDING REMARKS

In this article, we focused on the recovery of large-scale MRNs
with a small portion of observations. We studied a generalized
latent space model where entities and relations are associated
with latent attribute vectors and conducted statistical analysis on
the error of recovery. MLEs and pMLEs over a compact space
are considered to estimate the latent attributes and the edge
probabilities. We established non-asymptotic upper bounds for
estimation error in terms of tail probability and risk, based on
which we then studied the asymptotic properties when the size

of MRN and latent dimension go to infinity simultaneously. A
matching lower bound up to a log factor is also provided.

We kept φ generic for theoretical development. The choice of
φ is usually problem-specific in practice. How to develop a data-
driven method for selecting an appropriate φ is an interesting
problem to investigate in future works.

Besides the latent space models, sparsity [24] or clustering
assumptions [25] have been used to impose low-dimensional
structures in single-relational networks. An MRN can be seen
as a combination of several heterogeneous single-relational
networks. The distribution of edges may vary dramatically across
relations. Therefore, it is challenging to impose appropriate
sparsity or cluster structures on MRNs. More empirical and
theoretical studies are needed to quantify the impact of
heterogeneous relations and to incorporate the information for
recovering MRNs.
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