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Life science data are often encoded in a non-standard way by means of alpha-numeric
sequences, graph representations, numerical vectors of variable length, or other formats.
Domain-specific or data-driven similarity measures like alignment functions have been
employed with great success. The vast majority of more complex data analysis algorithms
require fixed-length vectorial input data, asking for substantial preprocessing of life science
data. Data-driven measures are widely ignored in favor of simple encodings. These
preprocessing steps are not always easy to perform nor particularly effective, with a
potential loss of information and interpretability. We present some strategies and concepts
of how to employ data-driven similarity measures in the life science context and other
complex biological systems. In particular, we show how to use data-driven similarity
measures effectively in standard learning algorithms.
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INTRODUCTION

Life sciences comprise a broad research field with challenging questions in domains such as (bio-)
chemistry, biology, environmental research, or medicine. Not only recent technological
developments allow the generation of large, high dimensional and very complex data sets in
these fields, but also, the structure of the measured data representing an object of interest is often
challenging. The data may be compositional, such that classical vectorial functions are not easy to
apply and could also be very heterogeneous by combining different measurement sources.
Accordingly, new strategies and algorithms are needed to cope with the complexity of life
science applications. In general, it is a promising way to reflect characteristic data properties in
the employed data processing pipeline. This typically leads to increased performance in tasks such as
clustering, classification, and non-linear regression, which are commonly addressed by machine
learning methods. One possible way to achieve this is to adapt the used metric according to the
underlying data properties and application, respectively [1]. Basically, all machine learning and data
analysis algorithms employ the comparison of objects referred to as similarities or dissimilarities, or
more general as proximities. Hence, the representation of these proximities is a crucial part. These
measures enter the modeling algorithm either by means of distance measures, e.g., in the standard
k-means algorithm or by inner products as employed in the famous support vector machine
(SVM) [2]. The calculation of these proximities is typically based on a vectorial representation of
the input data. If the used machine learning approach is solely based on proximities, a vectorial
representation is in general not needed, but the pairwise proximity values are sufficient. This
approach is referred to as similarity-based learning, where the data are represented by metric
pairwise similarities only.
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We can distinguish similarities, indicating how close or similar
two items are to each other and dissimilarities in the opposite
sense. In the following, we expect that these proximities are at
least symmetric, but do not necessarily obey metric properties.
See e.g., [3] for an extended discussion.

Non-metric measures are common in many disciplines and
occasionally entail so-called non positive semi-definite (non-psd)
kernels if a similarity measure is used. This is particularly
interesting because many classical learning algorithms can be
kernelized [4], but are still expecting a psd measure. As we will
outline in this paper, we can be more flexible in the use of a
proximity measure as long as some basic assumptions are
fulfilled. In particular, it is not necessary, for many real-world
life science data, to restrict the analysis pipeline to a vectorial
Euclidean representation of the data.

In the various domains like spectroscopy, high throughput
sequencing, or medical image analysis, domain-specific measures
have been designed and effectively used. Classical sequence
alignment functions (e.g., Smith-Waterman [5]) produce non-
metric proximity values. There are many more examples and use
cases, as listed in Table 1 and detailed later on.

Multiple authors argue that the non-metric part of the data
contains valuable information and should not be removed [13,
14]. In this work, we highlight recent achievements in the field of
similarity-based learning for non-metric measures and provide
conceptual and experimental evidence on a variety of scenarios
that non-metric measures are legal and effective tools in analyzing
such data. We argue that a restriction to mathematically more
convenient, but from the data perspective unreliable, measures are
not needed anymore.

Along this line, we first provide an introduction to similarity-
based learning in non-metric spaces. Then we provide an outline
and discussion of preprocessing techniques, which can be used to
implement a non-metric similarity measure within a classical
analysis pipeline. In particular, we highlight a novel advanced
shift correction approach. Here we extend prior work published
by the authors in 15, which is substantially extended by novel
theoretical findings (Section 2.4, in particular, the eigenvalue
approximation via Gershgorin), experimental results (Section 3,
with additional experiments and datasets), and an extended
discussion. The highlights of this paper:

• We provide a broad study of life science data encoded by
proximities only.

• We reveal the limitations of former encodings used to
enable standard kernel methods.

• We derive a novel encoding concept widely preserving the
data’s desired properties while showing considerable
performance.

• We improve the efficiency of the encodings using an
approximation concept not considered so far with almost
no loss of performance in the classification process.

In the experiments, we show the effectiveness of appropriately
preprocessed non-metric measures in a variety of real-life use
cases. We conclude by a detailed discussion and provide practical
advice in applying non-metric proximity measures in the analysis
of life science data.

MATERIALS AND METHODS

Notation and Basic Concepts
Given a set of N data items (like N spectral measurements or N
sequences), their pairwise proximity (similarity or dissimilarity)
measures can be conveniently summarized in a N × N proximity
matrix. These proximities can be very generic in practical
applications, but most often come either in the form of
symmetric similarities or dissimilarities only. Focusing on one
of the respective representation forms is not a substantial
restriction. As outlined in 16, a conversion from dissimilarities
to similarities is cheap regarding to computational costs. Also, an
out of sample extension can be easily provided. In the following,
we will refer to similarity and dissimilarity type proximity
matrices as S and D, respectively. These notions enter into
models by means of proximity or score functions f (x, x′) ∈ R

where x and x′ are the compared objects (both are data items).
The objects x, x′ may exist in a d-dimensional vector space, so that
x ∈ Rd, but can also be given without an explicit vectorial
representation, e.g., as biological sequences.

As outlined in 17, the majority of analysis algorithms are
applicable only in a tight mathematical setting. In particular, it is
expected that f (x, x′) obeys a variety of properties. If f (x, x′) is a
dissimilarity measure, it is often assumed to be a metric measure.
Many algorithms become invalid or do not converge if f (x, x′)
does not fulfill metric properties.

For example, the support vector machine formulation [18] no
longer leads to a convex optimization problem [19] when the
given input data is non-metric. Prominent solvers, such as
sequential minimization (SMO), will converge to only a local
optimum [20, 21] and other kernel algorithms may not converge
at all. Accordingly, dedicated strategies for non-metric data are
very desirable.

The score function f (x, x′) could violate the metric properties
to different degrees. In general it is at least expected that f (x, x′)
obeys the symmetry property such that f (x, x′) � f (x′, x). In
general, this property is a fundamental condition, because a large
number of algorithms become meaningless for asymmetric data.
We will also make this assumption. In the considered cases, the
proximities are either already symmetric or can be symmetrized
without expecting a negative impact. While symmetry is a

TABLE 1 | List of commonly used non-metric proximity measures in various
domains.

Measure Application field

Dynamic Time Warping (DTW) (6) Time series or spectral alignment
Inner distance (7) Shape retrieval e.g., in robotics
Compression distance (8) Generic used also for text analysis
Smith Waterman Alignment (5) Bioinformatics
Divergence measures (9) Spectroscopy and audio processing
Generalized Lp norm (10) Time series analysis
Non-metric modified Hausdorff (11) Template matching
(Domain-specific) alignment score (12) Mass spectrometry
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reasonable assumption, the triangle inequality is frequently
violated, proximities become negative, or self-dissimilarities are
not zero. Such violations can be attributed to noise as addressed in
22 or are a natural property of the proximity function f.

If noise is the source, often a simple eigenvalue correction [23]
can be used, although this can become costly for large datasets. As
we will see later on, the noise may cause eigenvalue contributions
close to zero. A simple way to eliminate these contributions is to
calculate a low-rank approximation of the matrix, which can be
realized with small computational cost [24, 25]. In particular, the
small eigenvalues could become negative, also leading to
problems in the use of classical learning algorithms. A recent
analysis of the possible sources of negative eigenvalues is provided
in 26. Such an analysis is particularly helpful in selecting the
appropriate eigenvalue correction method applied to the
proximity matrix. Non-metric proximity measures are part of
the daily work in various domains [27]. An area, frequently
applying such such non-metric proximity measures, is the field
of bioinformatics, spectroscopy, or alike, where classical sequence
alignment algorithms (e.g., Smith-Waterman - [5]) produce non-
metric proximity values. For such data, some authors argue that
the non-metric part of the data contains valuable information and
should not be removed [13]. In particular, this is the motivation
for our work. Evaluating such data with machine learning models
typically asks for discriminative models. In particular, for
classification tasks, a separating plane has to be determined in
order to separate the given data according to their classes.
However, in practice, a linear plane in the original feature
space is rarely separating two classes of such complexity. A
common generalization is to map the training vectors xi into a
higher dimensional space by the function ϕ. In this space, it is
expected that the machine learning model finds a linear
separating hyperplane with a maximal margin. The principle
behind such a so-called kernel function is explained in more
detail in Section 2.1.1. In our setting, the mapping is provided by
some data-driven similarity function, which, however, may not
lead to a psd kernel and hence has to be preprocessed (for more
details, see Section 2.1.4). As a primal representation, we will
focus on similarities because the wide majority of algorithms is
specified in the kernel space. A brief introduction is given in the
following section.1

Kernels and Kernel Functions
LetX be a collection ofN objects xi, i � 1, 2, . . . ,N , in some input
space. Further, let ϕ : X1H be a mapping of patterns fromX to
a high-dimensional or infinite-dimensional Hilbert space H
equipped with the inner product 〈·, ·〉H. The transformation ϕ
is, in general, a non-linear mapping to a high-dimensional space
H and may commonly not be given in an explicit form. Instead
of this, a kernel function k : X × X1R is given which encodes
the inner product inH. The kernel k is a positive (semi) definite
function such that k(x, x′) � 〈ϕ(x)u, ϕ(x′)〉 for any x, x′ ∈ X .

The matrix K :� ΦuΦ is anN × N kernel matrix derived from the
training data, where Φ : [ϕ(x1), . . . , ϕ(xN )] is a matrix of images
(column vectors) of the training data in H. The motivation for
such an embedding comes with the hope that the non-linear
transformation of input data into higher dimensional H allows
for using linear techniques inH. Kernelized methods process the
embedded data points in a feature space utilizing only the inner
products 〈·, ·〉H (kernel trick) [28], without the need to calculate
ϕ explicitly. The specific kernel function can be very generic, but
in general, the kernel is expected to fulfill Mercer conditions [28].
Most prominent are the linear kernel with k(x, x′) � xux′ as the
Euclidean inner product or the RBF kernel
k(x, x′) � exp(−(‖x − x′‖2/2σ2)), with σ as a free parameter.

Support Vector Machine
In this paper, we address data-driven supervised learning;
accordingly, our focus is primal on a domain-specific
representation of the data by means of a generic similarity
measure. There are many approaches for similarity-based
learning and, in particular, kernel methods [28]. We will
evaluate our data-driven encodings employing the support
vector machine (SVM) as a state of the art supervised kernel
method.

Let xi ∈ X, i ∈ {1, . . . ,N} be training points in the input space
X , with labels yi ∈ {−1, 1}, representing the class of each point.2

The input space X is often considered to be Rd but can be any
suitable space due to the kernel trick. For a given positive
penalization term C, the SVM is the minimum of the
following regularized empirical risk functional.

min
ω,ξ,b

1
2
ωuω + C∑

i�1

M

ξi (1)

subject to yi(ωuϕ(xi) + b)≥ 1 − ξi and ξi ≥ 0. Here ω is the
parameter vector of a separating hyperplane and b a bias term.
The variables ξ are so-called slack variables. The goal is to find a
hyperplane that correctly separates the data while maximizing the
sum of distances to the closest positive and negative points (the
margin). The parameter C controls the weight of the classification
errors (C � ∞ in the separable case). Details can be found in 28.

In case of a positive semi-definite kernel function without
metric violations, the underlying optimization problem is easily
solved using, e.g., the Sequential Minimal Optimization
Algorithm [20]. The objective of a SVM is to derive a model
from the training set, which predicts class labels of unclassified
feature sets in the test data. The decision function is given as:

f (x) � ∑N
i�1

yiαik(xi, x) + b,

where the αi are the optimized Lagrange parameters of the dual
formulation of Eq. 1. In case of a non-psd kernel function, the
optimization problem of a SVM is no longer convex, but only a
local optimum is obtained [19, 21]. As a result, the trained SVM
model can become inaccurate and incorrect. However, as we will

1For data given as dissimilarity matrix, the associated similarity matrix can be
obtained, in a non-destructive way, by double centering (17) of the dissimilarity
matrix. S � −JDJ/2 with J � (I − 11u/N), identity matrix I and vector of ones ?. 2In case of more than two classes we use the one vs all approach.
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see in Section 2.1.4, there are several methods to handle non-psd
kernel matrices within a classical SVM.

Representation in the Krein Space
AKrein space is an indefinite inner product space endowed with a
Hilbertian topology. Let K be a real vector space. An inner
product space with an indefinite inner product 〈·, ·〉K on K is
a bi-linear form where all f , g, h ∈ K and α ∈ R obey the following
conditions:

• Symmetry : 〈f , g〉K � 〈g, f 〉K;
• linearity : 〈αf + g, h〉K � α〈f , h〉K + 〈g, h〉K;
• 〈f , g〉K � 0 implies f � 0

An inner product is positive semi definite if ∀f ∈ K,
〈f , f 〉K ≥ 0, negative definite if ∀f ∈ K, 〈f , f 〉K < 0, otherwise it
is indefinite. A vector space K with inner product 〈·, ·〉K is called
an inner product space.

An inner product space (K, 〈·, ·〉K) is a Krein space if we have
two Hilbert spacesH+ andH− spanning K such that ∀f ∈ K we
have f � f+ + f− with f+ ∈ H+ and f− ∈ H− and ∀f , g ∈ K,
〈f , g〉K � 〈f+, g+〉H+ − 〈f−, g−〉H−.

As outlined before, indefinite kernels are typically observed by
means of domain-specific non-metric similarity functions (such
as alignment functions used in biology [29]), by specific kernel
functions - e.g., the Manhattan kernel k(x, x′) � −‖x − x′‖1,
tangent distance kernel [30] or divergence measures, plugged
into standard kernel functions [9]. A finite-dimensional Krein-
space is a so-called pseudo-Euclidean space.

Given a symmetric dissimilarity matrix with zero diagonal, an
embedding of the data in a pseudo-Euclidean vector space
determined by the eigenvector decomposition of the associated
similarity matrix S is always possible [31] - as mentioned
above, e.g., by a prior double centering. Given the
eigendecomposition of S: S � UΛUu, we can compute the
corresponding vectorial representation V in the pseudo-
Euclidean space by

V � Up+q+z
∣∣∣∣Λp+q+z 1/2

∣∣∣∣ (2)

where Λp+q+z consists of p positive, q negative non-zero
eigenvalues and z zero eigenvalues. Up+q+z consists of the
corresponding eigenvectors. The triplet (p, q, z) is also referred
to as the signature of the pseudo-Euclidean space. A detailed
presentation of similarity and dissimilarity measures and
mathematical aspects of metric and non-metric spaces is
provided in 17, 32, 33.

Indefinite Proximity Functions
Proximity functions can be very generic but are often restricted to
fulfill metric properties to simplify the mathematical modeling
and especially the parameter optimization. In 32, a large variety of
such measures was reviewed and basically most common
methods nowadays make still use of metric properties. While
this appears to be a reliable strategy, researchers in the field of e.g.,
psychology [34, 35], vision [14, 26, 36, 37] and machine learning
[13, 38] have criticized this restriction as inappropriate in

multiple cases. In fact, in 38 was shown that many real-life
problems are better addressed by proximity measures, which
are not restricted to be metric.

The triangle inequality is frequently violated, if we consider object
comparisons in daily life problems, like the comparisons of text
documents, biological sequence data, spectral data or graphs [23, 39,
40]. These data are inherently compositional and a representation as
explicit (vectorial) features leads to information loss. As an alternative,
tailored dissimilarity measures such as pairwise alignment functions,
kernels for structures, or other domain-specific similarity and
dissimilarity functions can be used as an interface to the data [41,
42]. Also for vectorial data, non-metric proximity measures are quite
common in some disciplines. An example of this type is the use of
divergence measures [9, 43, 44] which are very popular for spectral
data analysis in chemistry, geo- andmedical sciences [45–49], and are
not metric in general. Also the popular Dynamic Time Warping
(DTW) [6] algorithm provides a non-metric alignment score, which
is often used as a proximity measure between two one-dimensional
functions of different lengths. In image processing and shape retrieval,
indefinite proximities are often obtained by means of the inner
distance. This measure specifies the dissimilarity between two
objects, which are represented by their shape only. Thereby,
several seeding points are used and the shorted paths within the
shape are calculated in contrast to the Euclidean distance between the
landmarks. Further examples can be found in physics where
problems of the special relativity theory or other research topics
naturally lead to indefinite spaces [50].

A list of non-metric proximity measures is provided in Table 1
and some are exemplarily illustrated in Figures 1 and 2. Most of
these measures are very popular but often violate the symmetry or
triangle inequality condition or both. Hence many standard
proximity-based machine learning methods like kernel
methods are not easily accessible for these data.

Eigenspectrum Corrections
Although native models for indefinite learning are available (see
e.g., [27, 51, 52]), they are not frequently used. This is mainly due
to three reasons: 1) the proposed algorithms have in general,
quadratic or cubic complexity [53], 2) the obtained models are
non-sparse [54], and 3) the methods are complicated to
implement [27, 55]. Considering the wide spread of machine
learning frameworks, it would be very desirable to use the therein
implemented algorithms - like an efficient support vector
machine, instead of having the burden to implement another
algorithm, and in general another numerical solver. Therefore, we
focus on eigenspectrum corrections, which can be effectively done
in a large number of frameworks without much effort.

A natural way to address the indefiniteness problem and to
obtain a psd similarity matrix is to correct the eigenspectrum of
the original similarity matrix S. Popular strategies include
eigenvalue correction by flipping, clipping, squaring, and
shifting. The non-psd similarity matrix S is decomposed by an
eigendecomposition: S � UΛUu, where U contains the
eigenvectors of S and Λ contains the corresponding
eigenvalues λi. Now, the eigenvalues in Λ can be manipulated
to eliminate all negative parts. After the correction, the matrix can
be reconstructed, now being psd.
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Clip Eigenvalue Correction
All negative eigenvalues in Λ are set to 0 (see Figure 3B).
The spectrum clip leads to the nearest psd matrix S in terms
of the Frobenius norm [56]. Such a correction can be
achieved by an eigendecomposition of the matrix S, a

clipping operator on the eigenvalues, and the subsequent
reconstruction. This operation has a complexity of O(N3).
The complexity might be reduced by either a low-rank
approximation or the approach shown by 22 with roughly
quadratic complexity.

FIGURE 1 | Visualization of data-driven data description scenarios. In (A) for some Vibrio bacteria and in (B) for Chromosome data. Both datasets are used in the
experiments.

FIGURE 2 | Preprocessing workflow for creating the Tox-21 datasets. Chemicals represented as SMILE codes are translated to Morgan Fingerprints. The kernel is
created by using an application related pairwise similarity measure on the Morgan Fingerprints, in this case so-called Kulczynski.

FIGURE 3 | Visualization of the various preprocessing techniques for a generic eigenspectrum as obtained from a generic similarity matrix. The black line illustrates
the impact of the respective correction method on the eigenspectrum without reordering of the eigenvalues. (A) Visualization of a sample eigenspectrum with pos./neg.
eigenvalues. (B) Preprocessing of the eigenspectrum from Figure 3A using clip. (C) Preprocessing of the eigenspectrum from Figure 3A using flip. (D) Preprocessing of
the eigenspectrum from Figure 3A using shift.
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Flip Eigenvalue Correction
All negative eigenvalues in Λ are set to λi :� |λi|∀i, which at least
keeps the absolute values of the negative eigenvalues and keeps
potentially relevant information [17]. This operation can be
calculated with O(N3) or O(N2) if low-rank approaches are
used. Flip is illustrated in Figure 3C.

Square Eigenvalue Correction
All negative eigenvalues in Λ are set to λi :� λ2i ∀i which amplifies
large and very small eigenvalues. The square eigenvalue correction
can be achieved by matrix multiplication [57] with ≈ O(N2.8).

Classical Shift Eigenvalue Correction
The shift operation was already discussed earlier by different
researchers [58] and modifies Λ such that λi :� λi −minijΛ∀i. The
classical shift eigenvalue correction can be accomplished with
linear costs if the smallest eigenvalue λmin is known. Otherwise,
some estimator for λmin is needed. A few estimators for this
purpose have been suggested: analyzing the eigenspectrum on a
subsample, making a reasonable guess, or using some low-rank
eigendecomposition. In our approach, we suggest employing a
power iteration method, for example the von Mises approach,
which is fast and accurate [59] or using the Gershgorin circle
theorem [60, 61].

A spectrum shift enhances all the self-similarities and,
therefore, the eigenvalues by the amount of λmin and does not
change the similarity between any two different data points.
However, it may also increase the intrinsic dimensionality of
the data space and amplify noise contributions, as shown in
Figure 3D. As already mentioned by 23, small eigenvalue
contributions could be linked to noise in the original data. If
now an eigencorrection step amplifies tiny eigenvalues, this can
be considered as a noise amplification.

Limitations
Multiple approaches have been suggested to correct a similarity
matrix’s eigenspectrum to obtain a psd matrix [17, 27]. Most
approaches modify the eigenspectrum in a radical way and are
also costly due to an involved cubic eigendecomposition. In
particular, the flip, square and clip operator have an apparent
strong impact. The flip operator affects all negative eigenvalues by
changing the sign and this will additionally lead to a
reorganization of the eigenvalues. The square operator is
similar to flip but additionally emphasizes large
eigencontributions while fading out eigenvalues below 1. The
clip method is useful in case of noise; it may also remove valuable
contributions. The clip operator only removes eigenvalues, but
generally keeps the majority of the eigenvalues unaffected. The
classical shift is another alternative operator changing only the
diagonal of the similarity matrix leading to a shift of the whole
eigenspectrum by the provided offset. This may also lead to
reorganizations of the eigenspectrum due to new non-zero
eigenvalue contributions. While this simple approach seems to
be very reasonable, it has the significant drawback that all (!)
eigenvalues are shifted, which also affects small or even 0
eigenvalue contributions. While 0 eigenvalues have no
contribution in the original similarity matrix, they are

artificially upraised by the classical shift operator. This may
introduce a large amount of noise in the eigenspectrum, which
could potentially lead to substantial numerical problems for
employed learning algorithms, for example, kernel machines.
If we consider the number of non-vanishing eigenvalues as a
rough estimate of the intrinsic dimension of the data, a classical
shift will increase this value. This may accelerate the curse of
dimension problem on this modified data [62].

Advanced Shift Correction
To address the aforementioned challenges, we suggest an
alternative formulation of the shift correction, subsequently
referred to as advanced shift. In particular, we would like to
keep the original eigenspectrum structure and aim for a sub-cubic
eigencorrection. As mentioned in Section 2.3 the classical shift
operator introduces noise artifacts for small eigenvalues. In the
advanced shift procedure, we will remove these artificial
contributions by a null space correction. This is particularly
effective if non-zero, but small eigenvalues are also taken into
account. Accordingly, we apply a low-rank approximation of the
similarity matrix as an additional preprocessing step. The
procedure is summarized in Algorithm 1.

The first part of the algorithm applies a low-rank
approximation on the input similarities S using a restricted
SVD or other technique [63]. If the number of samples
N ≤ 1000, then the rank parameter k � 30, otherwise k � 100.3

The shift parameter λ is calculated on the low-rank approximated
matrix, using a vonMises or power iteration [59] to determine the
respective largest negative eigenvalue of the matrix. As shift
parameter, we use the absolute value of λ for further steps.
This procedure provides an accurate estimate of the largest
negative eigenvalue, instead of making an educated guess as
frequently suggested [51]. This is particularly relevant because
the scaling of the eigenvalues can be very different between the
various datasets, which may lead to an ineffective shift (still with
negative eigenvalues left) if the guess is incorrect. The basis B of
the nullspace is calculated, again by a restricted SVD. The
nullspace matrix N is obtained by calculating a product of B.
Due to the low-rank approximation, we ensure that small
eigenvalues, which are indeed close to 0 due to noise, are
shrunk to 0 [64]. In the final step, the original S or the
respective low-rank approximated matrix Ŝ is shifted by the
largest negative eigenvalue λ that is determined by von Mises
iteration. By combining the shift with the nullspace matrixN and
the identity matrix I, the whole matrix will be affected by the shift
and not only the diagonal matrix. Finally, the doubled shift factor
2 ensures that the largest negative eigenvalue λ̂

* of the new matrix
Ŝ
*
will not become 0, but are kept as a contribution.
Complexity: The advanced shift approach shown inAlgorithm1

is comprised of various subtasks with different complexities.
The low-rank approximation can be achieved with O(N2) as well
as the nullspace approximation. The shift parameter is calculated by
von Mises iteration with O(N2). Since B is a rectangular N × k
matrix, the matrix N can be calculated with O(N2). The final

3The settings for k are taken as a rule of thumb without further fine-tuning.
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eigenvalue correction to obtain Ŝ
*
is also O(N2). In summary, the

low-rank advanced shift eigenvalue correction can be achieved
with O(N2) operations.

Efficient Approximation of the Smallest Eigenvalue
An alternative method to accelerate the estimation of the shift
parameter λ is to approximate the region in which the smallest
eigenvalue can be found. The identification of this region can be
efficiently achieved by the Gershgorin circle theorem [60, 61]. Let
S � (sij) be a square matrix (N × N) and ri � ∑

j≠ i

∣∣∣∣sij∣∣∣∣ the row sums
of this matrix. Then, within the Gershgorin circle theorem, one
may define a disc Di in the complex plane with center sii and
radius ri. In 61, it is shown why this can be employed to obtain a
valid estimate of the eigenvalues of S. With
Di � {z ∈ C : |z − sii|≤ ri}, we obtain ranges that contain the
eigenvalues of S: [sii − ri, sii + ri]. Hence one only has to
calculate N row-sums and to evaluate the main diagonal of S.
The obtained results can be used to find the minimum eigenvalue
of S.

As an example, consider the following 3 × 3 matrix for S:

S � ⎛⎜⎝−6 1 −1
1 −2 5
−1 5 10

⎞⎟⎠ (3)

The matrix is symmetric, so all eigenvalues are real. For each row
in S, there is one Gershgorin circle defined by its center and its
radius:

• D1 with the center point c1 � s11 � −6 and
r1 � |1| + | − 1| � 2

• D2 with the center point c2 � s22 � −2 and r2 � |1| + |5| � 6
• D3 with the center point c3 � s33 � 10 and r3 � |−1| + |5| � 6

This implicates, all eigenvalues of S must lie in one of the
ranges

[s11 − r1, s11 + r1] � [ − 8,−4], [s22 − r2, s22 + r2]
� [ − 8, 4], [s33 − r3, s33 + r3] � [4, 16].

Performing the numerical computation shows that the
eigenvalues are approximately {−6.6,−3.2, 11.8}, all inside the
determined ranges. Using the Gershgorin circle approach, we see
that the minimum eigenvalue cannot be smaller than the
minimum border value, in this example −8, while the right
value is ≈ − 6.6. Figure 4 shows that all eigenvalues (green
dots) of our matrix are within at least one of the circles.

Since in a squared matrix, all centers of the circle are already
given by their diagonals and the calculation of the radius only
covers the summation of the elements in the respective row, this
variant of the ShiftParameterDetermination in Algorithm 1 has a
complexity of O(N). In the experiments, we apply the advanced
shift correction on a low-rank approximation of S.

Structure preservation
In this context, the term structure preservation refers to the
structure of the eigenspectrum with the requirement that those
eigenvalues with a contribution in the original spectrum should
keep their contribution in the new (but psd) spectrum. Those
parts of the eigenspectrum that have no need for correction to
construct a psd matrix should be kept unchanged. As illustrated
by a synthetic example above in 3a - 3d, the various correction
methods differently modify the eigenspectrum and some of them
fundamentally change the structure of the eigenspectrum. Those
modifications to the eigenvalues (and implicitly on the
contribution to the matrix) are: changing the sign of an
eigenvalue, changing its magnitude, removing the impact of an
eigenvalue, adding artificial contribution to eigenvalues that had
zero contribution in the original matrix, or changing the position
of the eigenvalue with respect to the original ranking causing a
profound reorganization of the eigenspectrum. Especially the last
one is highly relevant in learning models that make use of only a
few eigenvalues/eigenvectors such as kernel PCA or similar
methods that reduce the dimensionality or make use of only
the most meaningful eigenvalues and eigenvectors.

In order to illustrate the effects of the various correction
methods, Figure 5 shows the impact of the most relevant
correction methods on the properties of the eigenspectrum of
a real-world dataset, here the protein dataset is used (see Section
2.5 for more details about this dataset).

Here, the x-axis represents the index of the eigenvalue, while
the y-axis illustrates the contribution value (or impact) of the
eigenvalue. The left column of Figure 5 (Subfigures 5a, 5c, 5e, 5g,
5i) shows the eigenspectra without a low-rank representation, the
right column (Subfigures 5b, 5d, 5f, 5h, 5j) comprises the low-
rank version of the eigenspectrum: Figure 5A illustrates the
eigenspectrum of the original dataset without any
modification. The red rectangle (solid line) highlights the
negative parts of the eigenvalues for which their contribution
must be preserved in the data. The orange rectangle (dashed line)
represents those eigenvalues that are close to zero or zero. The
values of particularly these eigenvalues should be kept untouched

Algorithm 1 Advanced
shift eigenvalue correction.

Advanced_shift(S, k)
if approximate to low rank then
S :� LowRankApproximation(S, k)
end if
λ :� |ShiftParameterDetermination(S)|
B :� NullSpace(S)
N :� B · B′

S* :� S + 2 · λ · (I − N)
return S*
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such that their contribution is still irrelevant after the correction.
The green rectangle (dotted line) highlights the positive parts of
the eigenvalues which contribution should also be kept
unchanged in order not to manipulate the eigenspectrum too
aggressively. Figure 5B shows the low-rank representation of the
original data of 5a. Here, the major negative and major positive
eigenvalues (red/solid and green/dotted rectangle) are still
present, but many eigenvalues that have been close to zero
before, have now been set to exactly 0 (black/dashed rectangle).

Figures 5 C andD show the eigenvalues after applying the clip
operator to the eigenvalues shown in Figures 5 A and B. In both
cases, the major positive eigenvalues (green/dotted rectangle)
remain unchanged, as well as the positive values close to 0
and exactly 0. However, the negative eigenvalues close to 0
(parts of the orange/dashed rectangle) and, in particular, the
major negative eigenvalues (red/solid rectangle) are all set to
exactly 0. By using the clip operator, the contribution to the
eigenspectrum of both major negative and slightly negative
eigenvalues is completely eliminated.

In contrast to clipping, the flip corrector preserves the
contribution of the negative and slightly negative eigenvalues,
shown in Figures 5 E and F. When using the flip corrector, only
the negative sign of the eigenvalue is changed; thus, only the
diagonal of the matrix is changed and not the rest. Since the
square operator behaves almost analogously to the flip operator
and only squares the negative eigenvalues in addition to flipping
them, it was not listed separately here. Squaring the values of a
matrix drastically increases the impact of the major eigenvalues
compared to the minor eigenvalues. If an essential part of the
data’s information is located in the small eigenvalues, this part
gets a proportionally reduced contribution against the
significantly increased major eigenvalues.

The modified eigenspectra after applications of the classical
shift operator are presented in Figures 5 G and H: by increasing
all eigenvalues of the spectrum, the part with the larger negative
eigenvalues (red/solid rectangle) that had a higher impact now only

remains with zero or close to zero contribution. Furthermore, a
higher contributionwas assigned to those eigenvalues that previously
had no or nearly no effect on the eigenspectrum (orange/dashed
rectangle). As a result, the classical shift increases the number of non-
zero eigencontributions by introducing artificial noise into the data.
The same is also evident for the advanced shift without low-rank
approximation depicted in Figure 5I. Since there are many
eigenvalues close to zero but not exactly zero in this data set, all
these eigenvalues are also increased in the advanced shift, but can be
cured in the low-rank approach.

Unlike the advanced shift approach without low-rank
approximation, depicted in Figure 5I, a low-rank
representation of the data leads to a shifting of only those
eigenvalues that had relevant contributions before (red/solid
rectangle). Eigenvalues with previously slightly zero
contribution (orange/dashed rectangle), derive a contribution
of exactly zero by the approximation and are therefore not
shifted in the advanced shift method.

Considering the description of structure preservation outlined in
2.4, we observe that only the flip and the advanced shift correction
(only with low-rank approximation) widely preserve the structure
of the given eigenspectrum. For all other methods, the
eigenspectrum is substantially modified in particular
contributions are removed, amplified, or artificially introduced.
In particular, this also holds for the clip or the classical shift
corrector, which, however, are frequently recommended in the
literature. Although this section contained results exclusively for
the protein dataset, we observed similar findings for other indefinite
datasets as well. Our findings show that a more sophisticated
treatment of the similarity matrix is needed to obtain a suitable
psd matrix. This makes ourmethod more appropriate compared to
simpler approaches such as the classic shift or clip.

Materials & Experimental Setup
This section contains a series of experiments to highlight the
effectiveness of our approach in combination with a low-rank

FIGURE 4 | Visualization of Gershgorin’s circle theorem on an exemplary matrix.
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approximation. We evaluate the algorithm for a set of benchmark
data that are typically used in the context of proximity-based
learning. The data are briefly described in the following and
summarized in Table 2, with details given in the references. After

a brief overview of the datasets used for the evaluation, the
experimental setup, and the performance of the different
eigenvalue correction methods on the benchmark datasets are
presented and discussed in this section.

FIGURE 5 | Visualizations of the protein data’s eigenspectra after applying various correction methods. (A) Visualization of the original eigenspectrumwith pos. and
neg. eigenvalues of the protein dataset. (B) Low-rank representation of the original eigenspectrum from Figure 5A. (C) Visualization of the original eigenspectrum of
Figure 5A after clipping all neg. eigenvalues. (D) Visualization of the low-rank approximated eigenspectrum after clipping all neg. eigenvalues. (E) Visualization of the
original eigenspectrum of Figure 5A after flipping all neg. eigenvalues. (F) Visualization of the low-rank approximated eigenspectrum after flipping all neg.
eigenvalues. (G) Visualization of the original eigenspectrum of Figure 5A after shifting all neg. eigenvalues. (H) Visualization of the low-rank approximated eigenspectrum
after shifting all neg. eigenvalues. (I) Visualization of the original eigenspectrum of Figure 5A after advanced shift. (J) Visualization of the low-rank approximated
eigenspectrum of Figure 5B after advanced shift.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2020 | Volume 6 | Article 5530009

Münch et al. Data-Driven Machine Learning

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Datasets:
In the experiments, all datasets exhibit indefinite spectral
properties and are commonly characterized by pairwise
distances or (dis-)similarities. As mentioned above, if the data
are given as dissimilarities, a corresponding similarity matrix can
be obtained by double centering [17]: S � −JDJ/2 with
J � (I − 11u/N), with identity matrix I and vector of ones 1.
These datasets constitute typical examples of non-Euclidean data.
In particular, the focus is on proximity-based data from the life
science domain. We consider a broad spectrum of domain-
specific data: from sequence analysis, mass spectrometry,
chemical structure analysis to flow cytometry. In particular,
the later one of flow cytometry [65] could also be important
in the analysis of viral data like SARS-CoV-2 [66]. In all cases,
dedicated preprocessing steps and (dis-)similarity measures for
structures were used by the domain experts to create this data
with respect to an appropriate proximity measure. The (dis-)
similarity measures are inherently non-Euclidean and cannot be
embedded isometrically in a Euclidean vector space. The datasets
used for the experiments are described in the following and
summarized in Table 2, with details given in the references.

1. Chromosomes: The Copenhagen chromosomes data set
constitutes a benchmark from cytogenetics [67] with a signature
(2258, 1899, 43). Karyotyping is a crucial process to classify
chromosomes into standard classes and the results are routinely
used by the clinicians to diagnose cancers and genetic diseases. A
set of 4,200 human chromosomes from 21 classes (the autosomal
chromosomes) are represented by grey-valued images. These are
transferred to strings measuring the thickness of their silhouettes.
These strings are compared using edit distance with insertion/
deletion costs 4.5 [40].

2. Flowcyto This dissimilarity dataset is based on 612 FL3-A
DNA flow cytometer histograms from breast cancer tissues in 256
resolution. The initial data were acquired by M. Nap and N. van
Rodijnen of the AtriumMedical Center in Heerlen, TheNetherlands,
during 2000-2004, using tubes 3, 4,5, and 6 of a DACO Galaxy
flowcytometer. Overall, this data set consists of four datasets, each
representing the same data, but with different proximity measure
settings. Histograms are labeled in 3 classes: aneuploid (335 patients),
diploid (131), and tetraploid (146). Dissimilarities between

normalized histograms are computed using the L1 norm,
correcting for possible different calibration factors [68].

3. Prodom: the ProDom dataset with signature (1502,680,422)
consists of 2604 protein sequences with 53 labels. It contains a
comprehensive set of protein families and appeared first in the
work of [69]. The pairwise structural alignments were computed
by 69. Each sequence belongs to a group labeled by experts; here,
we use the data as provided in 68.

4. Protein: the Protein data set has sequence-alignment
similarities for 213 proteins and is used for comparing and
classifying protein sequences according to its four classes of
globins: heterogeneous globin (G), hemoglobin-A (HA),
hemoglobin-B (HB) and myoglobin (M). The signature is
(170,40,3), where class one through four contains 72, 72, 39,
and 30 points, respectively [70].

5. SwissProt: the SwissProt data set (SWISS), with a signature
(8487,2500,1), consists of 10,988 points of protein sequences in 30
classes taken as a subset from the popular SwissProt database of
protein sequences [71]. The considered subset of the SwissProt
database refers to the release 37. A typical protein sequence
consists of a string of amino acids, and the length of the full
sequences varies between 30 to more than 1000 amino acids
depending on the sequence. The ten most common classes such
as Globin, Cytochrome b, Protein kinase st, etc. provided by the
Prosite labeling [72] were taken, leading to 5,791 sequences. Due to
this choice, an associated classification problem maps the sequences
to their corresponding Prosite labels. These sequences are compared
using Smith-Waterman, which computes a local alignment of
sequences [5]. This database is the standard source for identifying
and analyzing protein sequences such that an automated
classification and processing technique would be very desirable.

6. Tox-21: The initial intention of the Tox-21 challenges is to
predict whether certain chemical compounds have the potential
to disrupt processes in the human body that may lead to adverse
health effects, i. e. are toxic to humans [73]. This version of the
dataset contains 14484 molecules encoded as Simplified
Molecular Input Line Entry Specification (SMILE) codes.
SMILE codes are ASCII-strings to encode complex chemical
structures. For example, Lauryldiethanolamine has the
molecular formula of C16H35NO2 and is encoded as
CCCCCCCCCCCCN(CCO)CCO. Each smile code is described
as a morgan fingerprint [74, 75] and encoded as a bit-vector with
a length of 2048 via the RDKit4 framework. The molecules are
compared to each other using the non-psd binary similarity
metrics AllBit, Kulczynski, McConnaughey, and Asymmetric
provided by the RDKIT. The similarity matrix is constructed
based on these pairwise similarities. According to the applied
similarity metrics, the resulting matrices are varying in their
signatures: AllBit (2049, 0, 12435), Asymmetric (1888, 3407,
9189), Kulczynski (2048, 2048, 10388), McConnaughey (2048,
2048,10388). The task of the dataset is binary classification, which
is either toxic or non-toxic for every givenmolecule and should be
predicted by a machine learning algorithm. Note that also graph-
based representations for smile data are possible [76].

TABLE 2 | Overview of the different datasets. Details are given in the textual
description.

Dataset #samples #classes signature

Chromosomes 4, 200 21 (2258, 1899, 43)
Flowcyto-1 612 3 (538, 73, 1)
Flowcyto-2 612 3 (26, 73, 582)
Flowcyto-3 612 3 (541, 70, 1)
Flowcyto-4 612 3 (26, 73, 582)
Prodom 2604 53 (1502, 680, 422)
Protein 213 4 (170, 40, 3)
SwissProt 10, 988 30 (8487, 2500, 1)
Tox-21: AllBit similarity 14484 2 (2049, 0, 12435)
Tox-21: Assymetric similarity 14484 2 (1888, 3407, 9189)
Tox-21: Kulczynski similarity 14484 2 (2048, 2048, 10388)
Tox-21: McConnaughey similarity 14484 2 (2048, 2048, 10388)
Vibrio 1100 49 (851, 248, 1)

4https://www.rdkit.org/
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7. Vibrio: Bacteria of the genus Vibrio are Gram-negative,
primarily facultative anaerobes, forming motile rods. Contact
with contaminated water and consumption of raw seafood are
the primary infection factors for Vibrio-associated diseases.
Vibrio parahaemolyticus, for instance, is one of the leading
causes of foodborne gastroenteritis worldwide. The Vibrio data
set consists of 1,100 samples of Vibrio bacteria populations
characterized by mass spectra. The spectra encounter
approximately 42,000 mass positions. The full data set consists of
49 classes of vibrio-sub-species. The mass spectra are preprocessed
with a standard workflow using the BioTyper software [12]. As
usual, mass spectra display strong functional characteristics due to
the dependency of subsequent masses, such that problem-adapted
similarities such as described in 12, 77 are beneficial. In our case,
similarities are calculated using a specific similarity measure as
provided by the BioTyper software [12] with a signature (851,248,1).

RESULTS

In this section, we evaluate our strategy of data-driven proximity-
based analysis and highlight the performance of the proposed
advanced shift correction on the previously mentioned datasets
against other eigenvalue correction methods using a standard
SVM classifier. For this purpose, the correction approaches
ensure that the input similarity, herein used as a kernel
matrix, is psd. This is particularly important for kernel
methods to keep expected convergence properties. During the
experiments, we measured the algorithm’s mean accuracy and its
standard deviation in a ten-fold cross-validation. Additionally, we
captured the complexity of the model based on the number of
necessary support vectors for the SVM. Therefore, we track the
percentage of training data points, the SVM model needs as
support vectors to indicate the model’s complexity.

In each experiment, the parameter C has been selected for each
correction method by a grid search on independent data not used
during the tests. For better comparability of the considered methods,
the results presented here refer exclusively to the use of the low-rank
approximated matrices in the SVM. Only when employing the
original data for the SVM, no low-rank approximation was
implemented to ensure that small negative eigenvalues were not
inadvertently removed if they were of low-rank. Please note, that a
low-rank approximation only, does not lead to a psd matrix.
Accordingly, convergence problems and uncontrolled information
loss, bymeans of discrimination power, may still occur. Furthermore,
both proposed methods for the determination of the shift parameter
proposed in section 2.4 were tested on the low-rank approximated
datasets against the other eigenvalue correction methods. The results
for the classification performance for the advanced shift methods
against the other correction methods are shown in Table 3. In
column Adv. Shift, we show the classification performance for the
advanced shift with the exact determination of the smallest
eigenvalue, whereas column Adv.-GS contains the classification
performance of the advanced shift, which applied the Gershgorin
theorem to approximate the smallest eigenvalue. For the Prodom
data, it is known from 27 that the SVM has convergence problems
(not converged - subsequently n.c.) on the indefinite input matrix.

In general, the accuracies of the various correction methods are
quite similar and rarely differ significantly. As expected, a correction
step is needed and the plain use of uncorrected data is suboptimal,
often with a clear drop in the performance ormay fail. Also, the use of
the classical shift operator can not be recommended due to
suboptimal results in various cases. In summary, the presented
Advanced Shift with the exact determination of the shift
parameter performed best, followed by the flip corrector. The
results in Table 3 also show that the accuracy of the Gershgorin
shift variant is not substantially lower compared to the othermethods.

In most cases, the Gershgorin advanced shift performs as well as
the clip and the square correction method. Compared to the classic
shift, our Gershgorin advanced shift consistently results in much
better accuracies. The reason for this is the appropriate preservation
of the structure of the eigenspectrum, as shown in Section 2.4. It
becomes evident that not only the dominating eigenvalues have to be
kept, but the preservation of the entire structure of the
eigenspectrum is important to obtain reliable results in general.
As the application of the low-rank approximation to similarity
matrices leads to a large number of truly zero eigenvalues, both
variants of the advanced shift corrections become more effective.
Both proposed approaches benefit from eigenspectra with many
close to zero eigenvalues, which occurs in many practical data,
especially in complex domains like life sciences. Surprisingly, the
classical shift operator is still occasionally preferred in the literature
[51, 58, 78], despite its reoccurring limitations. The herein proposed
advanced shift outperforms the classical shift in almost every
experimental setup. In fact, many datasets have an intrinsic low-
rank nature, which we employ in our approach but which is not
considered in the classical eigenvalue shift. In any case, the classical
shift increases the intrinsic dimensionality, also if many eigenvalues
have already been of zero contribution in the original matrix. This
leads to substantial performance loss in the classification models, as
seen in the results. Considering the results of Table 3, the advanced
shift correction is preferable in most scenarios.

Additionally to the accuracy of the different correction methods,
the number of support vectors of each SVM model was gathered.
Table 4 shows the complexity of the generated SVMmodels in terms
of their required support vectors. Thus, the number of support
vectors is set in relation to the number of all the available training
data points required to build a solid decision boundary. The higher
this percentage, the more data points were needed to create the
separation plane, leading to a more complex model. As explained in
79 or 80, the run time complexity can become considerably higher
with an increasing number of support vectors.

Compared to the original SVM without the low-rank
approximation, it becomes evident that our approach generally
requires fewer and occasionally significantly fewer support
vectors and is therefore considerably less complex.
Furthermore, in comparison to the classic shift corrector, the
advanced shift is significantly superior in both accuracy and
required support vectors. However, compared to clip, flip, and
square, things are slightly different: Table 4 shows, the advanced
shift can keep up with the clipping and flipping but has a higher
percentage of support vectors compared to the square correction
method. Considering the slightly better accuracy and the lower
computational cost from Section 2.2 than clip and flip, the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2020 | Volume 6 | Article 55300011

Münch et al. Data-Driven Machine Learning

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


advanced shift is preferable to clip and flip eigenvalue correction
and competitive to the square correction.

In summary, as pointed out also in previous work, there is no
simple solution for handling non-psd matrices or the correction
of eigenvalues. The results make evident that the proposed
variants of the advanced shift correction are especially useful if
the negative eigenvalues are meaningful and a low-rank
approximation of the similarity matrix preserves the relevant
eigenvalues. The analysis also shows that domain-specific
measures by means of a data-driven analysis are effectively
possible and keep relevant information. The presented
strategies allow the use of standard machine learning
approaches, like kernel methods without much hassle.

DISCUSSION

In this paper, we addressed the topic of data-driven supervised
learning by general proximity measures. In particular, we

presented an alternative formulation of the classical eigenvalue
shift, preserving the structure of the eigenspectrum of the data,
such that the inherent data properties are kept. For this advanced
shift method, we also presented a novel strategy that
approximates the shift parameter based on the Gershgorin
circles theorem.

Furthermore, we pointed to the limitations of the classical shift
induced by the shift of all eigenvalues, including those with small
or zero eigenvalue contributions. Surprisingly, the classical shift
eigenvalue correction is nevertheless frequently recommended in
the literature, pointing out that only a suitable offset needs to be
applied to shift the matrix to psd. However, it is rarely mentioned
that this shift affects the entire eigenspectrum and thus increases
the contribution of eigenvalues that had no contribution in the
original matrix.

As a result of our approach, the eigenvalues that had vanishing
contribution before the shift remain irrelevant after the shift.
Those eigenvalues with a high contribution keep their relevance,
leading to the preservation of the eigenspectrum but with a
positive (semi-)definite matrix. In combination with the low-
rank approximation, our approach was, in general, better
compared to the classical methods. Moreover, also the
approximated version of the advanced shift via Gershgorin
circles theorem performed as well as the classical methods.

We analyzed the effectiveness of data-driven learning on a
broad spectrum of classification problems from the life science
domain. The use of domain-specific proximity measures
originally caused a number of challenges for practitioners, but
with the recent work on indefinite learning, substantial
improvements are available. In fact, our experiments with
eigenvalue correction methods, especially the advanced shift
approach, which keeps the eigenspectrum intact, have shown
promising results on many real-life problems. In this way,
domain-specific non-standard proximity measures allow the
effective analysis of life science data in a data-driven way.

Future work on this subject will include the reduction of the
computational costs using advanced matrix approximation and
decomposition techniques in the different sub-steps. Another
field of interest is a possible adoption of the advanced shift to
unsupervised scenarios.

TABLE 3 | Prediction accuracy (mean ± standard-deviation) for the various data sets and methods in comparison to the advanced shift method. Column Adv. Shift shows
the performance of the advanced shift method and column Adv.-GS provides the performance of the advanced shift using the Gershgorin approach to estimate the
minimum eigenvalue.

Dataset Adv.-GS Adv. Shift Original Shift Clip Flip Square

Chromosomes 96.90 ± 0.61 97.02 ± 0.86 96.83 ± 0.83 71.38 ± 9.34 97.00 ± 0.69 97.05 ± 1.02 96.45 ± 0.91
Flowcyto-1 69.62 ± 5.28 69.28 ± 5.10 63.74 ± 6.50 66.02 ± 5.45 69.93 ± 6.31 70.26 ± 5.41 70.58 ± 6.09
Flowcyto-2 70.59 ± 4.62 72.4 ± 5.85 62.09 ± 5.36 65.69 ± 6.44 71.39 ± 4.96 70.42 ± 3.84 71.08 ± 2.86
Flowcyto-3 71.25 ± 5.75 70.26 ± 3.58 62.09 ± 0.44 64.55 ± 5.61 70.74 ± 5.70 71.10 ± 4.67 70.75 ± 3.03
Flowcyto-4 70.10 ± 4.68 70.43 ± 6.12 59.88 ± 0.58 63.54 ± 6.97 71.10 ± 4.92 70.25 ± 5.31 68.29 ± 5.68
Prodom 99.77 ± 0.19 99.85 ± 0.25 n.c. 99.77 ± 0.26 99.77 ± 0.31 99.77 ± 0.25 99.65 ± 0.47
Protein 98.12 ± 2.31 99.07 ± 2.12 60.40 ± 1.13 58.23 ± 9.91 98.10 ± 3.16 99.02 ± 1.86 98.59 ± 2.15
SwissProt 97.55 ± 0.36 97.50 ± 0.31 96.46 ± 0.63 96.52 ± 0.37 96.47 ± 0.84 96.53 ± 0.60 97.42 ± 0.39
Tox-21: - AllBit - 97.22 ± 0.31 97.36 ± 0.49 97.37 ± 0.47 97.38 ± 0.44 97.33 ± 0.52 97.38 ± 0.30 97.35 ± 0.38
Tox-21: - Asymmetric - 97.33 ± 0.43 97.46 ± 0.44 90.40 ± 2.01 95.28 ± 0.64 96.96 ± 0.46 97.33 ± 0.35 97.18 ± 0.48
Tox-21: - Kulczynski - 97.34 ± 0.56 97.36 ± 0.39 92.81 ± 2.16 95.28 ± 0.54 97.20 ± 0.26 97.29 ± 0.37 97.30 ± 0.31
Tox-21: - McConnaughey- 97.31 ± 0.44 97.34 ± 0.41 92.08 ± 2.02 94.97 ± 0.56 97.15 ± 0.50 97.33 ± 0.32 97.15 ± 0.54
Vibrio 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

TABLE 4 | Average percentage of data points that are needed by the SVMmodels
for building a well-fitting decision hyperplane.

Dataset Adv.-
GS

Adv.
Shift

Original Shift Clip Flip Square

Chromosomes 45.4% 39.7% 43.9% 99.8% 30.3% 30.6% 24.0%
Flowcyto-1 59.4% 60.6% 63.8% 99.7% 63.6% 63.6% 62.9%
Flowcyto-2 59.6% 59.1% 69.5% 96.7% 57.6% 58.3% 57.7%
Flowcyto-3 58.6% 59.3% 65.1% 99.3% 57.8% 58.5% 59.4%
Flowcyto-4 61.2% 59.9% 65.5% 99.5% 59.3% 59.2% 62.7%
Prodom 46.6% 18.7% n.c. 18.7% 18.7% 18.8% 12.9%
Protein 38.6% 39.6% 80.3% 99.8% 22.9% 23.6% 14.7%
SwissProt 14.1% 13.9% 48.9% 13.9% 13.9% 13.9% 12.2%
Tox-21: AllBit 5.5% 5.5% 5.8% 7.4% 6.5% 7.2% 4.6%
Tox-21:
Assymetric

4.7% 5.4% 7.3% 10.0% 7.6% 7.1% 4.6%

Tox-21:
Kulczynski

5.3% 5.9% 8.0% 10.0% 7.2% 7.1% 5.3%

Tox-21:
McConnaughey

5.1% 5.6% 8.4% 8.3% 7.6% 7.5% 4.2%

Vibrio 99.9% 99.6% 100.0% 99.5% 99.6% 99.6% 92.0%
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Finally, it remains to be said that the analysis of life science
data offers tremendous potential for understanding complex
processes in domains such as (bio)chemistry, biology,
environmental research, or medicine. Many challenges have
already been tackled and solved, but there are still many open
issues in these areas where the analysis of complex data can be a
key component in understanding these processes.
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