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An outer-independent double Roman dominating function (OIDRDF) of a graph G is a
function h : V(G)→ {0, 1,2,3} such that i) every vertex vwith f(v) � 0 is adjacent to at least
one vertex with label 3 or to at least two vertices with label 2, ii) every vertex v with f(v) � 1
is adjacent to at least one vertex with label greater than 1, and iii) all vertices labeled by 0 are
an independent set. The weight of an OIDRDF is the sum of its function values over all
vertices. The outer-independent double Roman domination number coidR (G) is the
minimum weight of an OIDRDF on G. It has been shown that for any tree T of order
n ≥ 3, coidR (T) ≤ 5n/4 and the problem of characterizing those trees attaining equality was
raised. In this article, we solve this problem and we give additional bounds on the outer-
independent double Roman domination number. In particular, we show that, for any
connected graphG of order nwith minimum degree at least two in which the set of vertices
with degree at least three is independent, coidR (T) ≤ 4n/3.

Keywords: outer independence double Roman domination, outer-independent double Roman dominating function,
independent set, double Roman domination, Roman domination, tree

1 INTRODUCTION

We consider only simple connected graphs G with vertex set V � V(G) and edge set E � E(G),
where n � |V | is the order ofG. The open neighborhood of a vertex v ∈ V is the setN(v) � {u|uv ∈ E},
and the degree of v is degG(v) �

∣∣∣∣N(v)∣∣∣∣. A leaf is a vertex with degree one and its neighbor is called a
stem. A strong stem is a stem adjacent to at least two leaves. The diameter of G, denoted by diam (G),
is the maximum value among distances between all pairs of vertices of G.

A set S ⊂ V is independent if no two vertices in S are adjacent. The independence number α (G) of a
graph G is the maximum cardinality among the independent sets of vertices of G. A vertex cover of a
graph G is a set of vertices such that each edge of the graph is incident to at least one vertex of the set.
A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number α0 (G) is
the minimum cardinality of a vertex cover of G.

In 2016, Beeler et al., Ref. 1, introduced the concept of double Roman domination and defined a
double Roman dominating function (DRDF) on a graph G to be a function h : V(G)→ {0, 1, 2, 3}
such that each vertex with label 0 is adjacent to a vertex labeled 3 or to at least two vertices labeled 2,
and each vertex with label 1 is adjacent to a vertex labeled 2 or 3. The weight of a DRDF f is the value
h[V(G)] � ∑u∈V(G)h(u), and the double Roman domination number cdR (G) equals the minimum
weight of a DRDF on G. Double Roman domination has been studied by several authors; see, for
example, Refs. 2–14. For more details on Roman domination and its variations, we refer the reader to
Refs. 15–18.
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For double Roman domination, one can think of any vertex
representing a location in the Roman Empire and any edge being
a road between two locations. A location is said to be protected if
at least one army is stationed in it or by sending to it two armies
from neighboring location(s) having already more than two
armies (according to the decree of Emperor Constantine the
Great). A locality without an army is certainly vulnerable, and it
will be even more vulnerable if one of its neighbors is without
army too. Hence, the best situation for a location with no army is
to be surrounded by locations where each with at least one army.
This leads us to seek an DRDF h � (V0,V1,V2,V3), where V0 is
an independent set; that is, h is an OIDRDF.

Regarding this, Abdollahzadeh Ahangar et al., Ref. 19,
introduced a new variation of double Roman domination called
outer-independent double Roman domination. An outer-
independent double Roman dominating function (OIDRD-
function) of a graph G is a DRDF h such that the set of vertices
assigned a 0 under h is independent. The outer-independent double
Roman domination number (OIDRD-number for short) coidR (G)
is the minimum weight of an OIDRD-function on G. Clearly, cdR
(G) ≤ coidR (G) holds for every graphG. Recently, Mojdeh et al., Ref.
20, proved that the decision problem associated with coidR (G) is
NP-complete even when restricted to planar graphs with maximum
degree at most four. They also characterized the families of all
connected graphs with small outer-independent double Roman
domination numbers.

In the following, we denote the set {0, 1, 2, 3} by [3].
The authors of Ref. 19 provided an upper bound for the

OIDRD-number of trees in terms of the order and number
of stems.

Theorem 1.1. For each tree T on n ≥ 3 vertices,

coidR(T)≤ n + s(T)
2

,

where s(T) is the number of stems of T.
Since the number of stems of any tree does not exceed half the

order of the tree, the next result is immediate from Theorem 1.1.

Proposition 1.2. For every tree T on n ≥ 4 vertices, coidR
(T) ≤ 5n/4.

Moreover, it should be noted that the problem of
characterizing the trees T attaining equality in the upper
bound of Proposition 1.2 was raised in Ref. 19. This problem
will be solved in this article, and additional bounds on the
OIDRD-number will be given. In particular, we prove that, for
any connected graph G of order n with minimum degree at least
two in which the set of vertices with degree at least three is
independent, coidR (G) ≤ 4n/3.

2 TREES TOFORDER nWITH γoidR (T) = 5n/4

With the aim of characterizing the trees T of order n ≥ 3 with coidR
(T) � 5n/4, let T t be the family of trees defined as follows. LetHi be a
path P4 whose vertices are labeled in order vi1, v

i
2, v

i
3, and v

i
4. For any

integer t ≥ 1, let T t be the family of treesT obtained fromH1, . . . ,Ht

by adding t − 1 edges between the stems ofHi’s so that the resulting

graph is a tree. Beeler et al., Ref. 1, proved that, for every tree T ∈ T t ,
cdR(T) � 5|V(T)|/4 which implies that coidR(T) � 5|V(T)|/4.

Lemma 2.1. Let T ∈ T t for some integer t ≥ 1. Then, there is a
coidR (T) function f such that, for every leaf v of T, f (v) ∈ {1, 2}.

Proof. Let T be a tree of T t for some integer t ≥ 1. Then,
coidR(T) � 5|V(T)|/4. Since T is a bipartite graph, let X and Y be
the partite sets of T. Let X′ be the set of stems of T belonging to X,
and likewise let Y ′ be defined similarly. Clearly, |X| � |Y |,
|X′| � |Y ′|, and every leaf of T is either in X − X′ or Y − Y ′.
Define the function f on V(T) by assigning a 2 to all vertices of Y,
a 1 to all vertices in X − X′, and a 0 to vertices in X. Then, f is an
OIDRD-function of T of weight 5|V(T)|/4, and thus f is a coidR
(T) function with desired property. □

Theorem 2.2. Let T be a tree on n ≥ 4 vertices. Then, coidR (T) �
5n/4 if and only if T ∈ T t for some integer t ≥ 1.

Proof.We prove only the necessity. Let T be a tree of n ≥ 4 such
that coidR (T) � 5n/4. Clearly, n � 4t for some integer t ≥ 1. To
prove that T ∈ Tt , we use an induction on t. If t � 1, then T � P4,
and clearly, T ∈ T 1. Let t ≥ 2 and assume that the result is true for
any tree T with coidR (T) � 5n/4, where n � 4t′ and t′ < t. Let T be
a tree with coidR (T) � 5n/4 and n � 4t. We deduce from
coidR(T) � 5n/4≤ n + s(T)/2≤ 5n/4 that s(T) � n/2. Therefore,
T is the corona of some tree and so T has no strong stem.
Moreover, diam(T)≥ 4 because t ≥ 2. Let P � v1v2, . . . , vk be a
diametral path in T and root T at vk. Then, degT(v2) � 2, and
there is a unique leaf w adjacent to v3. Denote by Tx the subtree
induced by a vertex x and its descendants in the rooted tree T. We
claim that degT(v3) � 3. Suppose, to the contrary, that
degT(v3)≥ 4 and let v2 � w1,w2, . . . ,ws be the children of v3
with depth one. Since degT(wi) � 2 for each i, let wi′ be the leaf
adjacent to wi for i ∈ {2, . . . , s}, and consider the tree T ′ obtained
from T by removing every wi and wi′ for i≥ 2. Observe that the
subtree rooted at v3 is a path P4. Let f be a coidR(T ′)-function,
where, without loss of generality, f (v3) � 3. Then, f can be
extended to an OIDRD-function of T by assigning a 0 to
w2, . . . ,ws and a 2 to w2′, . . . ,ws′. It follows from Proposition
1.2 that

coidR(T)≤ coidR(T ′) + 2(s − 1)≤ 5(n − 2s + 2)
4

+ 2s − 2< 5n
4
,

which leads to a contradiction. Hence, degT(v3) � 3, and thus
Tv3 � P4. Now, let T ′′ � T − Tv3. Clearly, any coidR(T ′′)-function f
can be extended to an OIDRD-function of T by assigning a 3 to v3,
2 to v1, and a 0 to v2,w. Hence,

5n
4

� coidR(T)≤ coidR(T ′′) + 5≤
5(n − 4)

4
+ 5 � 5n

4
.

Therefore, by the induction hypothesis on T ′′, we have T ′′ ∈ T n/4−1. By
the construction of T ′′, we may assume that v4 is a vertex of an induced
path P4 � v11v

1
2v

1
3v

1
4, where degT ′′(v11) � degT ′′(v14) � 1,

degT ′′(v13) � 2, and degT ′′(v12)≥ 2. Now, if n/4 − 1 � 1, then clearly
T ∈ T 2, and we are done. Hence, we assume that n/4 − 1≥ 2.We claim
that v4 ∈ {v12 , v13}. Suppose, to the contrary, that v4 ∈ {v11 , v14}. By Lemma
2.1, there is a coidR(T ′′)-function f such that f (v4) ∈ {1, 2}. If f (v4) � 1,
then f (v5) � 2 and the function h defined on V(T) by
h(v3) � 3, h(v1) � 2, h(w) � h(v2) � h(v4) � 0, and h(x) � f (x)
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for x ∈ V(T ′′) − {v4} is an OIDRD-function of T of weight
ω(h1) + 4 � 5(n − 4)/4 + 4< 5n/4, a contradiction. If f (v4) � 2
and f (v5)≥ 1, then as above we can get a contradiction. Hence,
assume that f (v4) � 2 and f (v5) � 0. Then, v5 has a neighbor with
weight at least two and the function h′ defined on V(T) by
h′(v3) � 3, h′(v1) � 2, h′(v5) � 1, h′(v4) � h′(w) � h′(v2) � 0,
and h′(x) � f (x) for x ∈ V(T ′′) − {v4, v5} is an OIDRD-function
of T of weight ω(h′) + 4 � 5(n − 4)/4 + 4< 5n/4, a contradiction.
Thus, v4 ∈ {v12 , v13}, and thus T ∈ T t as desired. This completes
the proof. □

3 SLIGHTLY IMPROVED BOUNDS FOR
TREES

In this section, we present some sharp bounds on the OIDRD-
number. We start with some classes of trees where the upper
bound in Proposition 1.2 will be slightly improved.

Proposition 3.1. Let T be a tree of order n ≥ 3, where
n ≡ 0, 1, 2(mod4). If T contains a strong stem, then coidR(T) ≤
5n/4−1.

Proof. Let s ∈ V(T) be a strong stem of T and let L(s) �
{x1, x2, . . . , xt} be the set of leaves adjacent to s. Consider the
forest T − s and assume that it contains r ≥ 0 components each of
order at least four T1, . . . ,Tr . If r ≥ 1, then fi be a coidR(Ti)-
function for each i ∈ {1, . . . r}. Clearly, by Proposition 1.2,
coidR(Ti)≤ 5|V(Ti)|/4. Moreover, suppose that T − s has t2
components isomorphic to K2 and t3 components isomorphic
to P3. Clearly, all fi’s together can be extended to an OIDRD-
function to T by assigning a 3 to s and to all center vertices of the
components of order three, a 2 to each leaf at distance two from s
belonging to a component of order two, and a 0 to the remaining
vertices in the components of order at most three. Observe that if
r � 0, then the total weight assigned to the vertices is at most p,
and thus coidR(T)≤ n< 5n/4. Hence, we can assume that r ≥ 1.
Now, using the fact that n ≡ 0, 1, 2(mod4), we obtain

coidR(T)≤ 3 + 2t2 + 3t3 +∑r
i�1

5|V(Ti)|
4

� 3 + 2t2 + 3t3 + 5(n − 3t3 − 2t2 − 1 − t)
4

≤ 5n/4 − 1,

as desired. □
A closer look at the proof of Proposition 3.1 shows that it can

be used to obtain the next two results too.
Proposition 3.2.Let T be a tree of order n≥ 3,where n ≡ 3 (mod4).

If T contains one strong stem s such that T − s contains a component
isomorphic to P2 or P3, then coidR (T) ≤ 5n/4−1.

Proposition 3.3. Let T be a tree of order n≥ 3, where
n ≡ 3(mod4). If T contains a strong stem having at least three
leaves, then coidR (T) ≤ 5n/4−1.

Proposition 3.4. Let T be a tree of order n ≥ 3, where
n ≡ 3(mod4). If T contains more than one strong stem, then
coidR (T) ≤ 5n/4−1.

Proof. Let s1 and s2 be two strong stems of T and let
L(si) � {xi1, xi2, . . . , xiti } be the set of leaves adjacent to si for

i ∈ {1, 2}. Clearly, diam(T)≥ 3. If each component of T −
{s1, s2} is of order at most three, then assigning a 3 to s1, s2
and to the center vertex of each component of order three,
a 2 to each leaf at distance two from si that belongs to a
component of order two in T − {s1, s2}, and a 0 to the
remaining vertices provides an OIDRD-function of T of
weight at most p. Therefore, coidR(T)≤ n≤ 5n/4 − 1. Hence,
we may assume that T − s contains at least one component
of order at least four. Let T1, . . . ,Tr (r ≥ 1) be such
components of T − {s1, s2} of order at least four. Let fi be
a coidR (Ti) function for each i. In addition, let T − {s1, s2}
have t2 components isomorphic to K2 and t3 components
isomorphic to P3. Then, all fi’s together can be extended to
an OIDRD-function of T by assigning a 3 to s1, s2 and to the
center vertex of each component of order three, a 2 to each
leaf at distance two from s that belongs to a component of
order two in T − {s1, s2}, a 3 to the center of all components
of order three, fi(x) for each x ∈ V(Ti) and i ∈ {1, . . . , r}, and
a 0 to the remaining vertices in the components of order at
most three. Using the fact that n ≡ 3(mod4), we obtain

coidR(T)≤ 6 + 2t2 + 3t3 +∑r
i�1

5|V(Ti)|
4

� 6 + 2t2 + 3t3 + 5(n − 3t3 − 2t2 − 2 − t1 − t2)
4

≤ 5n/4 − 1,

as desired. □

4 GRAPHS WITH MINIMUM DEGREE TWO

We begin by recalling the question, posed in Ref. 19, on
whether the 5n/4 upper bound on the OIDRD-number for
trees remains valid for arbitrary graphs. In this section, we
restrict our attention to graphs with minimum degree at least
two such that the set of vertices of degree at least three is
independent set, where we shall show that the OIDRD-
number is bounded above by 4n/3. We will use the
following result established in Ref. 19.

Proposition 4.1. Forn≥ 3, coidR(Cn) �{ n if n ≡ 0(mod2)
n + 1 otherwise.

Proposition 4.2. For n ≥ 3, the path Pn has an OIDRD-function
f that assigns positive weight to the end-vertices of Pn
and ω(f ) � n + 1≤ 4n/3.

Proof. Let Pn � v1v2 . . . vn and define the function f on V(Pn)
as follows. If n ≡ 1(mod2), then f (v2i+1) � 2 for 0≤ i≤ n − 1/2
and f (x) � 0 otherwise, and if n ≡ 0(mod2), then f (vn) � 1,
f (v2i+1) � 2 for 0≤ i≤ n − 2/2 and f (x) � 0 otherwise. Clearly,
ω(f )≤ 4n/3 and f is an OIDRD-function of Pn assigning positive
weight to the end-vertices of Pn. □

For integers r ≥ 3 and s ≥ 1, let Cr,s be the graph obtained from
a cycle Cr � (u1u2 . . . ur) and a path Ps � v1v2 . . . vs by adding the
edge u1v1. Applying Propositions 4.1 and 4.2, we derive the next
result.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5591323

Rao et al. Outer-Independent Double Roman Domination

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Proposition 4.3. For integers r ≥ 3 and s ≥ 1, the graph Cr,s has
an OIDRD-function f that assigns a positive weight to vs and ω(f) ≤
4(r+s)/3.

Proof. Assume first that r + s ∈ {4, 5}. If r + s � 4, then
assigning a 1 to v1, a 2 to u1, u2, and a 0 to u3 provides an
OIDRD-function of C3,1 satisfying the conditions. If r � 4 and
s � 1, then assigning a 1 to v1, a 2 to u1, u3, and a 0 to u2 and u4
provides an OIDRD-function of C4,1 with the desired properties.
If r � 3 and s � 2, then assigning a 2 to u1, u3, v2 and a 0 to u2 and
v1 provides as above an OIDRD-function of C3,2 with the desired
properties. Hence, assume that r + s≥ 6, and let f be a coidR (Cr)
function such that f (u1)≥ 2. If s � 1, then the function g defined
on V(Cr,s) by g(v1) � 1 and g(x) � f (x) otherwise is an OIDRD-
function of Cr,s with desired properties. If s � 2, then the function
g defined on V(Cr,s) by g(v1) � 0, g(v2) � 2, and g(x) � f (x)
otherwise is an OIDRD-function of Cr,s with the desired
properties. Henceforth, we can assume that s≥ 3.

Let g be an OIDRD-function of the path v1v2 . . . vs of weight
s + 1 assigning positive weights to v1, vs (Proposition 4.2). Define
h on Cr,s by h(ui) � f (ui) for each i and h(vj) � g(vj) for each j.
Clearly, h is an OIDRD-function of Cr,s and we deduce from
Proposition 4.1 that coidR(Cr,s)≤ r + s + 2≤ 4(r + s)/3.□

Let F be the family of all simple graphs obtained from some
connected multigraph H without loops with δ(H)≥ 3 by
subdividing each edge of H at least once and at most five times.
Clearly, any graph in F has order at least 5. The next result shows
that every graph G in F of order n satisfies coidR(G)≤ 4n/3.

Proposition 4.4. For any graph G ∈ F of order n, there exists an
OIDRD-function f of G such thatω(f )≤ 4n/3 and f (x)≥ 2 for each
vertex x of degree at least three.

Proof. LetG ∈ F be a graph of order n.We use an induction on n.
Ifn� 5, thenG � K2,3 and the function f that assigns a 2 to the vertices
of degree 3 and a 0 to the remaining vertices satisfies the conditions as
desired. Let n≥ 6 and assume that the result holds for all graphs inF
of order n′, where 5≤ n′ < n. Let G ∈ F be a graph of order n≥ 6.
Suppose that A � {x ∈ V(G)∣∣∣∣degG(x)≥ 3} and let B � V(G) − A.
In the sequel, we will call an induced path P of G an A-ear path if
V(P) ⊂ B and P is connected to A by either its unique vertex (when
|V(P)| � 1) or its two end-vertices (when |V(P)|≥ 2). For each
i ∈ {1, 2, 3, 4, 5}, let Qi be the set of all A-ear paths P of G of order i
and let Q � ∪​ 5i�1Qi. Clearly, B � ∪​

P∈QV(P). Moreover, for each
A-ear path P, let XP � {u ∈ A|u is adjacent to a vertex of P}. Hence,
A � ∪​

P∈QXP . Furthermore, since G ∈ F , we have |XP| � 2 for each
P ∈ Q, and therefore, |A|≥ 2.

First, let Q3∪​ Q5≠∅. Suppose P � x1 ...x2k+1 ∈Q2k+1 (k ∈ {1,2})
and letXP � {a1,a2}, where a1x1,a2x2k+1 ∈E(G). LetG′ be the graph
obtained from G by first removing all vertices of the path P except
xk+1 and then adding edges a1xk+1 and a2xk+1. Clearly, G′ ∈F of
order less than n. By the induction hypothesis on G′, there exists an
OIDRD-function f � (V0,V1,V2,V3) of G′ such that
a1,a2 ∈V2∪ ​ V3 and ω(f )≤4(n−2k)/3. It follows that
f (xk+1) � 0. Now, if k � 1, then the function g defined on V(G)
by g(x2) � 2, g(x1) � g(x3) � 0, and g(x) � f (x) otherwise is an
OIDRD-function of G such that g(x)≥2 for each x ∈A and

ω(g) � ω(f ) + 2≤
4(n − 2)

3
+ 2< 4n

3
.

If k � 2, then the function g defined onV(G) by g(x2) � g(x4) � 2,
g(x1) � g(x3) � g(x5) � 0, and g(x) � f (x) otherwise is an
OIDRD-function of G such that g(x)≥ 2 for each x ∈ A and

ω(g) � ω(f ) + 4≤
4(n − 4)

3
+ 4< 4n

3
.

From now on, we can assume that Q3∪​ Q5 � ∅.
Next, assume thatQ4 ≠∅ and let P � x1x2x3x4 ∈ Q4 with XP �

{u, a} and ux1, ax4 ∈ E(G). Let G′ be the graph obtained from G
by deleting x1, x2, x3 and adding the edge ux4. Clearly,G′ ∈ F and
thus by the induction hypothesis, there exists an OIDRD-
function f of G′ such that f (x)≥ 2 for each vertex x ∈ A and
ω(f )≤ 4(n − 3)/3. Then, the function g defined on V(G) by
g(x2) � g(x3) � 2, g(x1) � 0, and g(x) � f (x) otherwise is an
OIDRD-function of G such that g(x)≥ 2 for each x ∈ A and
ω(g) � ω(f ) + 4≤ 4(n − 3)/3 + 4 � 4n/3.

Considering the above situations, we may assume that
Q � Q1 ∪ ​ Q2. Note that n � |A| +m1 + 2m2 and m1 +m2 ≥ 3,
where mi � ∣∣∣Qi

∣∣∣ for i ∈ {1, 2}.
Assume first that |A| � 2 and let A � {u, v}. If Q2 ≠∅, then let

Q2 � {wj
1w

j
2

∣∣∣∣∣1≤ j≤m2}, where uwj
1 ∈ E(G) for each j. Moreover, if

Q1 ≠∅, then let Q1 � {zl1
∣∣∣∣1≤ l ≤m1}. Define the function g on V(G)

by g(u) � 3, g(v) � 2, g(wj
2) � 1 for each j and g(t) � 0 otherwise.

Then, g is an OIDRD-function of G such that g(x)≥ 2 for each x ∈ A
and we have ω(g)≤ 5 +m2 ≤ 4(2 + 2m2 +m1)/3 � 4n/3.

Henceforth, we can assume that |A|≥ 3. We consider the
following cases.

Case 1. Q2 � ∅.
Then,Q � Q1 andG is obtained from a loopless multigraphG′

by subdividing each edge of G′ once. Since each vertex of G′ has

degree at least three, we have 2|E(G′)|≥ 3n(G′) and so

n(G) � |V(G′)| + |E(G′)|≥ 5n(G′)/2. Define f on V(G) by f (x) �
2 for x ∈ V(G′) and f (x) � 0 otherwise. Clearly, f is an OIDR-
function of G such that f (x)≥ 2 for each x ∈ A and ω(f ) �
2n(G′)≤ 4n/3.

Case 2. Q2 ≠∅.
Let u ∈ V(G) be a vertex with the most neighbors inA-ear paths

of Q2. We consider the following subcases.
Subcase 2.1. u is adjacent to at least two A-ear paths of Q2.

Let P1 � x1x2, P2 � y1y2 ∈ Q2 be two A-ear paths such that
ux1, uy1 ∈ E(G). Assume that {ax2, by2}4E(G), where
a, b ∈ A − {u}. Suppose that a≠ b, and let G′ be the graph
obtained from G by removing first u, x1, x2 and then adding the
edge y1a and joining by an edge every vertex x in N(u) − {x1, y1} to
either a or b provided a or b is not adjacent to the end-vertex of the
A-ear path containing x. Clearly, G′ ∈ F , and by the induction
hypothesis, there exists an OIDRD-function f � (V0,V1,V2,V3) of
G′ such that A − {u}4V2 ∪​ V3 and ω(f )≤ 4(n − 3)/3. Define the
function g on V(G) by g(u) � 3, g(x2) � 1, g(x1) � 0, and g(x) �
f (x) otherwise. Then, g is an OIDR-function of G such that g(x)≥ 2
for each x ∈ A and ω(g) � ω(f ) + 4≤ 4(n − 3)/3 + 4 � 4n/3.

Suppose now that a � b and let w ∈ A − {u, a}. Let G′ be the
graph obtained from G by removing first u, x1, x2 and then adding
the edge y1w and joining every vertex x inN(u) − {x1, y1} to either
a orw provided a orw is not adjacent to the end-vertex of theA-ear
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path containing x. Clearly, G′ ∈ F , and thus by the induction
hypothesis, there exists an OIDRD-function f � (V0,V1,V2,V3)
ofG′ such thatA − {u}4V2 ∪​ V3 and ω(f )≤ 4(n − 3)/3. Now, the
function g defined above satisfies the desired conditions.

Subcase 2.2. All neighbors of u but one belong to A-ear paths
of Q1.

By the choice of u, we may assume that each vertex in A is

adjacent to at most one A-ear path in Q2. In that case, G is

obtained from a multigraph H without loops with δ(H)≥ 3 by
subdividing any edge of H at least once and at most twice so

that the set of edges of H subdivided twice is independent (in

H). Hence, let u1v1, . . . , ukvk be the edges of H subdivided twice

and let A′′ be the set of all vertices in H for which all edges that

are incident are subdivided once. Therefore, we have |V(H)| �
2k + |A′′| and

∣∣∣∣∣∣∣∣∣∣E(H)
∣∣∣∣∣∣∣∣∣∣ �

1
2 ∑
v∈V(H)

degH(v)≥ 3
2

∣∣∣∣∣∣∣∣∣∣V(H)
∣∣∣∣∣∣∣∣∣∣ � 3k + 3

2

∣∣∣∣∣∣∣∣∣∣A′′

∣∣∣∣∣∣∣∣∣∣
(because δ(H)≥ 3, k edges of H are subdivided twice and

the remaining edges are subdivided once). Hence, the order

of G is

n �
∣∣∣∣∣∣∣V(H)

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣E(H)

∣∣∣∣∣∣∣ + k≥ 6k + 5
2

∣∣∣∣∣∣∣A′′
∣∣∣∣∣∣∣.

Assume that, for each i, the edge uivi in H once subdivided twice
produces the path uiwizivi in G. One can easily see that the
function g defined on V(G) by g(x) � 2 for x ∈ V(H), g(wi) �
g(zi) � 1 for each 1≤ i≤ k and g(x) � ∅ otherwise is an OIDRD-
function of G such that g(x)≥ 2 for each x ∈ A and

ω(g) � 2|V(H)| + 2k � 6k + 2|A′′|< 4(6k +
5
2

∣∣∣∣∣∣∣A′′
∣∣∣∣∣∣∣)

3
≤
4n
3
.

This completes the proof. □
Theorem 4.5. If G is a connected n-vertex graph with δ(G)≥ 2

such that the set of vertices with degree at least three is
independent, then

coidR(G)≤
4n
3
.

This bound is sharp for C3.

Proof. We use an induction on the order n. Clearly, n≥ 3 since
δ(G)≥ 2. If n ∈ {3, 4}, then G ∈ {C3,C4} and the result is true by
Proposition 4.1, establishing the base cases. Let n≥ 5, and assume
that the result holds for all graphs G′ of order less than n with
minimum degree at least two such that the set of vertices with
degree at least three is independent. Let G be a graph of order n
such that δ(G)≥ 2 and the set of vertices with degree at least three
is independent. If Δ(G) � 2, then G � Cn and the result follows
from Proposition 4.1. Hence, we assume that Δ(G)≥ 3, and let
A � [v ∈ V(G)∣∣∣∣degG(v)≥ 3] and B � V(G) − A. Consider the
A-ear paths and keep the same notations as defined in the
proof of Proposition 4.4. Note that A � ∪ ​

P∈QXP,
V(G) � A∪​ ∪ ​

P∈QV(P), and 1≤ |XP|≤ 2 for each P ∈ Q.
Assume first that there exists an A-ear path P such that

δ[G − V(P)] � 1. Since G is simple, this means that |V(P)|≥ 2

and some vertex of G of degree three is adjacent to the end-
vertices of P. Thus, |XP| � 1. In that case, let XP � {a} and
NG(a) − V(P) � {b}. Clearly, b ∈ B (since A is independent),
and thus there is a unique A-ear path P′ in which b is an end-
vertex of P′. Let c be the other end-vertex of P′ (possibly b � c).
Let G′ be the graph resulting from the deletion of vertex a and all
vertices of P and P′. Then, δ(G′)≥ 2 and by the induction
hypothesis, coidR(G′) ≤ 4|V(G′)|/3. On the other hand, since
G′′ � G[V(P) ∪​ V(P′) ∪​ (a)] is isomorphic to C|V(P)|+1,|V(P′)|,
by Proposition 4.3, G′′ has an OIDRD-function g such that
ω(g) ≤ 4n(G′′)/3 and g(c) ≥ 1. Now, for any coidR(G′)
function, the function h defined on V(G) by h(x) � f (x) for
all x ∈ V(G′) and h(x) � g(x) for all x ∈ V(G′′) is an OIDRD-
function of G. Therefore,

coidR(G)≤ coidR(G′) + coidR(G′′)
≤
4|V(G′)|

3
+ 4|V(P)∪​ V(P′)∪​ {a}|

3
� 4n

3
.

Next, we can assume that δ[G − V(P)]≥ 2 for each A-ear
path P ∈ Q. It follows that |XP| � 2 for each A-ear path P ∈ Q.
Assume that Q − (Q1 ∪​ Q2 ∪​ Q3 ∪​ Q4 ∪​ Q5)≠∅, and let
P ∈ Q − (Q1 ∪ ​ Q2∪ ​ Q3 ∪ ​ Q4 ∪ ​ Q5). Note that, by Proposition
4.2, P has an OIDRD-function g such that ω(g)≤ 4|V(P)|/3 and
g assigns positive weight to the end-vertices of the path P. Now, letG′

be the graph obtained from G by removing all vertices of P. By the
induction hypothesis on G′, we have coidR(G′)≤ 4|V(G′)|/3.
Clearly, for every coidR(G′)-function f, the function h defined
on V(G) by h(x) � f (x) for all x ∈ V(G′) and h(x) � g(x)
for all x ∈ V(P) is an OIDRD-function of G, and thus
coidR(G)≤ coidR(G′) + coidR(P)≤ 4n/3. For the remaining part of
the proof, we can assume that Q � Q1 ∪​ Q2 ∪​ Q3 ∪​ Q4 ∪ ​ Q5.
Therefore, G ∈ F , and thus the result follows from
Proposition 4.4. □

5 CONCLUSION

In this article, we continued the study of outer-independent
double Roman domination number and we characterized
the trees T of order n≥ 3, for which coidR(T)≤ 5n/4,
answering a problem posed by Abdollahzadeh Ahangar
et al., Ref. 19. Moreover, we showed that, for any
connected graph G of order n with minimum degree at
least two in which the set of vertices with degree at least
three is independent, coidR(G)≤ 4n/3. Finding a sharp upper
bound for the outer-independent double Roman domination
number of connected graph G of order n with minimum
degree remains open.
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