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Cell polarity is a fundamental process in many different cell types. The yeast cell
Saccharomyces cerevisiae provides an exemplary model system to study the
underlying mechanisms. By combining biological experiments and mathematical
simulations, previous studies suggested that the clustering of the most important
polarity regulator Cdc42 relies on multiple parallel acting mechanisms, including a
transport-driven feedback. Up to now, many models explain symmetry breaking by a
Turing-type mechanism which results from different diffusion rates between the plasma
membrane and the cytosol. But active transport processes, like vesicle transport, can have
significant influence on the polarization. To simulate vesicular-mediated transport,
stochastic equations were commonly used. The novelty in this paper is a continuous
formulation for modeling active transport, like actin-mediated vesicle transport. Another
important novelty is the actin part which is simulated by an inhomogeneous diffusion
controlled by a capacity function which in turn depends on the active membrane bound form.
The article is based on the PhD thesis of N. Emken, where it is used to model budding yeast
using a reaction–diffusion–advection system. Model reduction and nondimensionalization
make it possible to study this model in terms of distinct cell types. Similar to the approach
of Rätz and Röger, we present a linear stability analysis and derive conditions for a
transport-mediated instability. We complement our theoretical analysis by numerical
simulations that confirm our findings. Using a locally mass conservative control volume
finite element method, we present simulations in 2D and 3D, and compare the results to
previous ones from the literature.

Keywords: polarization models, spatial simulation, spatial inhomogeneities, Cdc42, yeast, surface PDEs, advection
diffucions reaction systems, pattern formation

1 INTRODUCTION

The development and maintenance of cell polarity is essential for many biological processes like
cell growth, cell morphogenesis, cell migration, cell differentiation, proliferation, and signal
transmission. Also known as symmetry breaking, it describes the process by which cells generate
an internal, functional, structural, and molecular axis. This asymmetric arrangement often arises due
to intrinsic or extrinsic cues which are amplified by transport processes or pathways of diffusing and
interacting molecules. The budding yeast (Saccharomyces cerevisiae) is an exemplary model system
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to study the underlying mechanisms of cell polarization. Whereas
in these cells, the small family GTPase Cdc42 is a key regulator of
cell polarity, GTPases in general are exemplary for a complex
system with symmetry breaking in many eukaryotic cells [8,
13, 28].

GTPase molecules are able to change between three forms: an
active (GTP-bound) membrane-bound state, an inactive (GDP-
bound) membrane-bound state, and an inactive (GDI-bound)
cytosolic state. The regulation of this cycle is controlled by certain
exchange factors, GEFs (GTPase-activating proteins), GAPs
(guanine nucleotide exchange factors), and GDIs (GTPase
dissociation inhibitors), leading to shuttling between the
cytosol and the plasma membrane [8, 16, 29]. Thus, the
GTPase cycle is characterized by a coupled bulk (cytosol) and
surface (plasma membrane) reaction–diffusion system.

Since coupled bulk-surface reaction–diffusion systems
naturally arise in many biological processes, a huge number of
studies concerning such systems, like, for example, Refs. 18, 21,
and 23, has recently been published. All these models were always
based on reaction–diffusion equations posed on the bulk and
surface coupled by Robin-type boundary conditions which
generate symmetry breaking by Turing-type instabilities. But
many cells exhibit a transport machinery characterized by
actin filaments or microtubules (see, e.g., Refs. 9, 19, 24, and
31), which further influence spatial patterns. For example, the
budding yeast generates polarity by the coupling of
reaction–diffusion to transport systems. Actin cables which are
aligned along the plasma membrane transport vesicles containing
key proteins required for cell polarization from the interior of the
cell to the polarized site (exocytosis) [32]. Simultaneously,
molecules are internalized from the plasma membrane to the
interior of the cell (endocytosis). To simulate vesicular mediated
transport, stochastic equations were commonly used, see e.g.
[14, 17]. It is observed that transport-mediated recycling of
molecules plays a key role in polarity establishment and
maintenance as well [33]. For that reason, here, we consider
a coupled bulk-surface reaction–diffusion–advection system to
investigate the contribution of transport to cell polarity. Following
the approach proposed in Ref. 23, we perform a linear stability
analysis and derive conditions for a transport-mediated instability,
which are confirmed numerically.

Contribution of This Paper
Our main contribution is a continuous model for vesicle
transport based on active transport, together with an analysis
of its contribution to symmetry breaking. Previous models of
actin-mediated polarization were solely based on stochastic
simulations [9]. Our continuous PDE model allows for a
better characterization of the conditions for polarization.

In Section 2, we introduce themodel in its nondimensional form.
For details on the model reduction and nondimensionalization,
we refer to the Supplementary Material. In Section 3, we
analyze in detail under which conditions the model can
induce pattern formation and complement these results by
numerical experiments in Section 4. The stability results
confirm that actin-mediated Cdc42 recruitment can increase
the robustness of the system. And, we show the ability of

the system to polarize via two independent pathways, as it was
observed in experiments for budding yeast cells [27, 33].

We further investigate numerically the interplay of active
transport and geometrical features like organelles, where our
experiments indicate that the presence an actin-mediated
pathway accelerates polarization and can even induce different
patterns.

We conclude with a discussion on the biological implications
of our numerical findings.

2 MODEL DESCRIPTION

We consider a generic reaction–diffusion–transport system
that is based on a complex model for cell polarization
proposed in [6]. This model was motivated by the influence
of vesicle transport along actin cables on the cell polarization,
as described in Refs. 9 and 33 (see Supplementary Material for
model reduction and nondimensionalization). This system
differentiates among one active membrane-bound, one
inactive membrane-bound, and a cytosolic state. This model
includes the distribution of actin cables on the membrane as an
additional component. Its dynamics are described by an
inhomogeneous diffusion proportional to the membrane-
bound component modeling the described transport-
mediated feedback loop.

In the following, we consider a stationary bulk domain Ω and
its compact hypersurface Γ :� zΩ. We denote by n→ the outer
normal on the smooth, closed surface Γ, by ∇Γ the tangential
gradient on Γ and the Laplace–Beltrami operator ΔΓ.

Let u, v : Γ × I→R be smooth functions denoting the
chemical concentrations or species that react and diffuse on
Γ in a fixed time interval I :� [0,T] ⊂ R. For substances that
diffuse or move by advection in the volume Ω ⊂ Rn, we
consider smooth functions U ,V : Ω × I→R. To proceed, we
denote by w : Γ × I→R, a smooth function representing a
transport control factor, in our case, the density of actin
cable ends on the surface Γ. Furthermore, c(u)> 0 describes
a capacity function controlling w and hence impacts actin
cable assembly. This model follows the observation that actin
is essential for cell polarization [1], and vesicle transport (in
yeast cells) happens along actin cables. We further include
the fact that actin has a reduced dissociation rate, where Cdc42
concentration is high [33], which leads to a u-dependent actin
density in the membrane. We model this by an inhomogeneous
diffusion and the nonlinear capacity function c(u). Where c
is large, the likelihood for actin to bind is high, whereas a
small c increases the probability that the actin cable moves
away. Further details can be found in the Supplementary
Material.

This leads to the following nondimensional coupled reaction–
diffusion–advection system

ztu � ΔΓu + c(f (u, v) + h(u,w,U)) on Γ × I, (1a)

ztv � dvΔΓv + c( − f (u, v) + g(u, v,V)) on Γ × I, (1b)

ztw � dwΔΓ(w · c(u)− 1) on Γ × I, (1c)
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ztU � DuΔU − ∇ · ( v→U) inΩ × I, (1d)

ztV � DvΔV inΩ × I, (1e)

with coupling conditions

−Du∇U · n→ � ch(u,w,U) on Γ × I, (1f)

−Dv∇V · n→ � cg(u, v,V) on Γ × I, (1g)

and initial conditions at time t � 0

U(·, 0) � U0 > 0, V(·, 0) � V0 > 0 inΩ
and u(·, 0) � u0 > 0, v(·, 0) � v0 > 0, w(·, 0)

� w0 > 0 on Γ. (2)

Here, the nonlinear functions f and g, respectively, represent
activation and inactivation of the species, h describes adsorption
and desorption of molecules, and v→ is the divergence-free bulk
velocity field. The parameters DU and DV denote the
nondimensional bulk diffusion coefficients and dv, dw > 0 the
surface diffusion coefficients, which are assumed to be
constant. The nondimensional parameter c> 0 relates to the
spatial scale of the cell.

REMARK 2.1 (mass conservation). Note that this formulation
implies conservation of mass. This means that with dσ denoting
the integration with respect to the surface area measure andM the
total mass, the system satisfies the condition

d
dt

M � d
dt

⎡⎢⎢⎢⎢⎢⎣∫
Ω

[U(x, t) + V(x, t)]dx + ∫
Γ

[u(x, t) + v(x, t)

+ w(x, t)]dσ(x)⎤⎥⎥⎥⎥⎥⎦ � 0.

REMARK 2.2 (velocity field). As vesicles only release their
content when being integrated into the membrane, the velocity
field v→ is conservative, that is, divergence free.

The outflow rate on the membrane depends (potentially
nonlinear) on the concentration w of actin cable ends on the
membrane. Given an outflow function j(w), we construct a
divergence-free velocity field v→ � ∇ϕ as the gradient of a
scalar function ϕ. This potential flow from the internal to the
external membrane is caused by constructing a divergence-free
velocity field and is computed by solving.

0 � Δϕ − αϕ inΩ × I,

∇ϕ · n→ � j(w) on zΩ � Γ,

where α describes a potential flow control rate, which limits the
transport capacity.

3 LINEAR STABILITY ANALYSIS

Here, we present a stability analysis of the generic system which
mainly follows the analysis shown in Ref. 23, to determine
conditions required for pattern formation. We restrict ourselves
to the spherical case, that is, Ω :� B1(0), Γ :� zB � S2.

We assume that the internal pool is sufficiently large and that
Du ≫ 1. This ensures a well-mixed internal pool, similar to the
assumptions in Ref. 23, so that the feedback loop between the
component u (active form) and w (actin) is dominating. This
simplification has clear limits; in particular, it cannot handle any
transport-limited cases. The validity of this assumption will be
backed by the numerical simulations in Section 4.2, comparing
the full model with the simplified coupling used in the following
analysis.

As the rate of transport indirectly depends on the amount ofw on
Γ, the actin concentration on themembrane is now only governed by
an inhomogeneous diffusion controlled by the capacity function
c(u), and we can substitute ~w :� w · c(u)− 1 in Eq. 1c.

The system Eq. 1 then reads

ztu � ΔΓu + c(f (u, v) + h(u, c(u) · ~w,U)) on Γ × I, (3a)

ztv � dvΔΓv + c( − f (u, v) + g(u, v,V)) on Γ × I, (3b)

c(u) · zt ~w � dwΔc~w on Γ × I, (3c)

ztU � DuΔU inΩ × I, (3d)

ztV � DvΔV inΩ × I, (3e)

with Robin-type coupling conditions.

−Du∇U · n→ � ch(u, c(u) · ~w,U) on Γ × I, (3f)

−Dv∇V · n→ � cg(u, v,V) on Γ × I, (3g)

and the initial conditions (2). In the following, we will denote by
x :� (u, v,w,U ,V)T the vector of concentrations and by x* :�
(u*, v*,w*,U*,V*) ∈ R5

+ the spatially homogeneous steady state,
such that

f (u*, v*) � 0, g(u*, v*,V*) � 0, and h(u*,w*,V*) � 0.

Following the approach of Ref. 23, we analyze the stability of
system Eq. 1 at its stationary states. Focusing on the GTPase
cycle, we can interpret f as an activation rate and g as the flux
describing membrane attachment and detachment of the GTPase.
The function h describes the flux induced by exocytosis and
endocytosis. This interpretation corresponds to the following
conditions on f , g, and h

zvf ≥ 0, zvg ≤ 0, zvg ≤ zug, and zUh≥ 0.
For brevity, we introduce the notation

fu :� zuf (u*, v*), fv :� zvf (u*, v*),
gu :� zug(u*, v*,V*), gv :� zvg(u*, v*,V*),
gV :� zVg(u*, v*,V*),
hu :� zuh(u*,w*,U*), hw :� zwh(u*,w*,U*),
hU :� zUh(u*,w*,U*),

assuming that at s* � (u*, v*,w*,U*,V*), the functions satisfy the
strict inequalities

fv > 0, gv < 0, gV > 0, and hU > 0. (4)

As in Ref. 23, to determine stability conditions for the system Eq.
3, we use an expansion in spherical harmonics:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u
v
~w
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(p, t) � ∑
l ∈ N0 ,m ∈ Z,|m|≤ l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ulm(t)
vlm(t)
~wlm(t)

Ulm(t)ψlm(r)
Vlm(t)χlm(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠φlm(p),
with scalar functions ψlm, χlm : [0, 1]→R, and the orthonormal
basis {φlm}l ∈ N0 ,m ∈ Z,|m|≤ l of L

2(Γ). Then, the Laplace operator can
be represented as

−ΔΓφlm � l(l + 1)φlm on Γ.

As a result, the L2(Γ) scalar product with φlm leads to the
linearized system

u′
lm � −(l + 1)ulm + c((fu + hu + cuw̃*hw)ulm + fvvlm)

+c(c(u*)hw~wlm + hUψlm(1)Ulm), (5a)

v′lm � −dv(l + 1)vlm + c( − fu + gu)ulm + ( − fv + gv)vlm)
+cgVψlm(1)Vlm, (5b)

c(u)~w′
lm � dwl(l + 1)~wlm, (5c)

U ′
lm(t)ψ(r) � DuUlm(t)(ψ ″

lm(r) +
2
r
ψ′
lm(r) −

1
r2
l(l + 1)ψlm(r)),

(5d)

V ′
lm(t)χ(r) � DvVlm(t)(χ ″

lm(r) +
2
r
χ′lm(r) −

1
r2
l(l + 1)χlm(r)),

(5e)

−DvUlmψlm(1) � c((hu + cuw̃*hw)ulm + c(u*)hw~wlm

+ hUψlm(1)Ulm), . (5f)

−DvVlmχlm(1) � c(guulm + gvvlm + gVχlm(1)Vlm), (5g)

where the last two equations correspond to the coupling
conditions. We use the following ansatz:

Ulm(t) � Blme
λlmt , Blm ∈ R, λlm ∈ R,

Vlm(t) � Blme
μlmt , Blm ∈ R, μlm ∈ R,

which also guarantees that either Ulm,Vlm ≠ 0 in the whole
domain or are identical to zero.

We first consider the case Ulm,Vlm ≠ 0. Then, using U ′
lm �

λlmUlm and V ′
lm � μlmVlm, we obtain from Eqs. 5d and 5e

0 � r2ψ′′
lm(r) + 2rχ′lm(r) − (l(l + 1) + λlm

Du
r2)ψlm(r), (6a)

0 � r2χ′′lm(r) + 2rχ′lm(r) − (l(l + 1) + μlm
Dv

r2)χlm(r). (6b)

In the case λlm, μlm � 0, it is easy to recalculate that we have

ψlm(r) � αlmr
l, χlm(r) � βlmr

l,

with αlm, βlm ∈ R. By contrast, for λlm, μlm > 0, Eqs. 6a and 6b are
modified versions of Bessel differential equations whose solutions
are defined by Bessel functions of first kind. Hence, using the
respective modified Bessel function Jl+1

2
, we derive

ψ(r) � αlmξ l⎛⎝ ���
λlm
Du

√
r⎞⎠, α ∈ R,

χ(r ) � βlmξl( ���
μlm
Dv

√
r), β ∈ R,

with ξl � ��
π

2r

√
Jl+1

2
(r). With this, we finally deduce the ODE system

u′lm � ( − l(l + 1) + cfu)ulm + cfvvlm − Duψ′
lm(1)Ulm, (7a)

v′lm � −cfuulm − (dvl(l + 1) + cfv)vlm − Dvχ′lm(1)Vlm, (7b)

c(u)~w′
lm � −dwl(l + 1)~wlm, (7c)

U ′
lm � λlmUlm, (7d)

V ′
lm � μlmVlm, (7e)

coupled to two algebraic equations given by

0 � c((hu + cuw̃*hw)ulm + c(u*)hw~wlm) + (chUψlm(1)

+ Duψ′
lm(1))Ulm,

0 � c(guulm + gvvlm) + (cgVχlm(1) + Dvχ′lm(1))Vlm.

We introduce the notation

x’lm :�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′
lm

v′lm
c(u)~w′

lm

U ′
lm

V ′
lm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, xlm :�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ulm
vlm
~wlm

Ulm

Vlm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and the jacobian matrix is the system is given as

JF :�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−l(l + 1) + cfu cfv 0 −Duψ′
lm(1) 0

−cfu −dvl(l + 1) − cfv 0 0 −Dvχ′lm(1)
0 0 −dwl(l + 1) 0 0

c(hu + cuw̃*hw) 0 cc(u*)hw ξ 0

cgu cgv 0 0 η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

with

ξ :� chUψlm(1) + Duχ′lm(1) + λlm,

η :� cgVχlm(1) + Dvχ′lm(1) + μlm.

Writing

x′lm � JFxlm,

the stability analysis reduces to an analysis of the eigenvalues of
the matrix JF . To determine stability conditions, we compute
eigenvalues λ of JF via the characteristic polynomial

Pl(λ)�pl,1(λ)[(cgVχlm(1)+Dvχ′lm(1)+μlm−λ) ·(chUψlm(1)
+Duψ′

lm(1)+λlm−λ)]
+pl,2(λ)[(chUψlm(1)+Duψ′

lm(1)+μlm−λ) ·Duψ′
lm(1)]

+pl,3(λ)[(cgVχlm(1)+Dvχ′lm(1)+λlm−λ) ·χ′lm(1)]
+pl,4(λ)[Duψ′

lm(1) ·Dvχ′lm(1)],
(8)

with
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pl,1(λ) � λ2 + [(dv + 1)(l + 1)l + (−fu + fv)c]λ + dvl
2(l + 1)2

+c(l(l + 1))(−dfu + fv),
pl,2(λ) � [ − l(l + 1) + cfu − λ]cgv − c2fvgu
pl,3(λ) � [ − dvl(l + 1) − cfv − λ]c(hu + cu~w*hw)
pl,4(λ) � c2gv(hu + cu~w*hu).

The eigenvalues are now given by the zeros of polynomial (8).
Hence, from Eqs. 7a–7e, as long as Ulm,Vlm ≠ 0, we acquire that
an eigenvalue λ with Re(λ)> 0 exists if and only if first λ � λlm �
μlm ∈ R+

0 and additionally with

κDu ,l(λ) :�
Duψ′

lm(1)
ψlm(1)

� Du(rξ′l(r)
ξ l(r) )∣∣∣∣∣∣∣∣r� ��

λ
Du

√ , (9a)

κDv ,l(λ) :�
Dvχ′lm(1)
χlm(1)

� Dv(rξ′l(r)
ξ l(r) )∣∣∣∣∣∣∣∣r� ��

λ
Dv

√ . (9b)

λlm fulfills the condition

Pl(λlm) :� (cgV + κDv ,l(λlm)) · (chU + κDu ,l(λlm)) · pl,1(λlm)
+(chU + κDu ,l) · κDv ,l · pl,2(λlm)
+(cgV + κDv ,l) · κDu ,l · pl,3(λlm)
+κDu ,l · κDv ,l · pl,4(λlm) �! 0.

PROPOSITION 3.1. In (u*, v*,w*,U*,V*), the system (3) is stable
against spatially homogeneous perturbations in the variables
u, v, and w if the following condition is satisfied:

1
3
(fugvhU − fvguhU − gVhufu) + gVhU(fv − fu)> 0, (10)

in which case

fv − fu > hu > 0

holds.
If either U or V � 0, we distinguish two cases and conclude

that in
Case 1 (U � 0),

1
3
(fugv − fvgu) + gV(fv − fu)> 0 0 fv > fu, (11)

Case 2 (V � 0)

hU(fv − fu) − 1
3
fvhu > 0 0 hu < 0, (12)

holds.
PROOF. We first consider the case l � 0. Furthermore, we

assume that U00,V00 ≠ 0. Note that in this case, w is always
constant and w � w0. This also implies hw � 0. Then, the
characteristic polynomial Eq. 8 reduces to

P0(λ) � (cgV + κDv ,l(λ)) · (chU + κDu ,l(λ)) · [λ2 + (−fu + fv)cλ]
+(chU + κDu ,l(λ)) · κDv ,l(λ) · [c2fugv − λcgv − c2fvgu]

+(cgV + κDv ,l(λ)) · κDu ,l(λ) · [ − c2fvhu − λchu]
+κDu ,l(λ) · κDv ,l(λ) · c2gvhu.

For the system to be asymptotically stable in
(u*, v*,w*,U*,V*), it is necessary that all eigenvalues are

negative. This means that P0(λ) has no zeros in [0,∞). We
rewrite

κDu ,0(λ) � Du(rξ′l(r)
ξ l(r) )∣∣∣∣∣∣∣∣r� ��

λ
Du

√ � λ~κ⎛⎝ ���
λ

Du

√ ⎞⎠,

κDv ,0(λ) � Dv(rξ′l(r)
ξ l(r) )∣∣∣∣∣∣∣∣r� ��

λ
Dv

√ � λ~κ⎛⎝ ���
λ

Dv

√ ⎞⎠,

~κ(r) :� ξ′0(r)
rξ0(r).

For λ> 0, equation P0(λ) � 0 is equivalent to

0 � ⎡⎢⎣cgV + λ~κ

���
λ

Dv

√ ⎤⎥⎦ · ⎡⎢⎣chU + λ~κ

���
λ

Du

√ ⎤⎥⎦ · (λ + (−fu + fv)c)
+⎡⎢⎣chU + λ~κ

���
λ

Du

√ ⎤⎥⎦ · ~κ ���
λ

Dv

√
· (c2fugv − c2fvgu − λcgv)

+⎡⎢⎣cgV + λ~κ

���
λ

Dv

√ ⎤⎥⎦ · ~κ ���
λ

Du

√
· ( − c2fvhu − cλhu)

+ λ~κ
���
λ

Du

√
· ~κ

���
λ

Dv

√
· c2gvhu :� ~P0(λ).

For λ � 0, it holds P0(0) � 0. Since w is in this case simply a
constant and w � w0, the linearized system reduces to

0 � (fu + hu)u + fvv + hUU , (13a)

0 � (−fu + gu)u + (−fv + gv)v + gVV , (13b)

0 � 4π(u + v) + 4π
3
(U + V), (13c)

where u, v,U , andV are constants. Summation of Eqs. 13a and
13b yield

0 � guu + gvv + gVV + huu + hUU . (14)

With the stationary equations for U and V, we obtain

0 � guu + gvv + gVV ,

0 � huu + hUU .

Thus, we get

hu � −hUU
u

,

and hence, since u,U , and hU > 0, it holds that hu < 0.
Furthermore, together with Eq. 14b, we haver

0 � fuu + fvv 5 u � −fv
fu
v,

so that

V � 1
gV

(gufv
fu

− gv)v, U � (3fv
fu

− 3 − 1
gV

(gufv
fu

− gv))v.
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By substituting these relations into Eq. 14 and straightforward
calculations, as the first condition, we obtain that this system has a
nontrivial solution if

0 � 1
3
(fugvhU − fvguhU − gVhufv) + gVhU(fv − fu). (15)

With Eq. 10 and the relation gv ≤ gu, we further deduce that

0< 1
3
(fugvhU − fvguhU − gVhufv) + gVhU(fv − fu)

≤
1
3
(fugvhU − fvgvhU − gVhufv) + gVhU(fv − fu)

� (fv − fu − hu)(gVhU − 1
3
gvhU + 1

3
fvgV) + hu(gVhU − 1

3
gvhU)

≤ (fv − fu − hu)(gVhU − 1
3
gvhU + 1

3
fvgV).

Together with Eq. 4, this yields fv − fu > hu.
Let us now consider the case λ ∈ (0,∞). From Ref. 23, we

know that

lim
r→ 0

~κ(r) � 1
3

and lim
r→∞

~κ(r) � 0. (16)

Since we suppose gV , hU > 0, together with Eq. 16, we obtain that
limλ→∞~P0(λ) � +∞. Furthermore, it holds that

lim
λ→ 0

~P0(λ) � gVhU(fv − fu) + 1
3
(fugvhU − fvguhU − fvgVhu). (17)

In other words, (15), (17), and ~w* � w*
c(u*) imply that for λ> 0, if the

conditions from Proposition 3.1 are satisfied, the characteristic
polynomial has no change of sign. This inequality is necessary for
the stability of the homogeneous steady state.

To investigate if this term is also sufficient to exclude an
eigenvalue λ with Reλ> 0, we recheck

~P0(λ) � ⎡⎢⎣cgV + λ~κ

���
λ

Dv

√ ⎤⎥⎦ · ⎡⎢⎣chU + λ~κ

���
λ

Du

√ ⎤⎥⎦ · [λ + c(fv − fu)]
+⎡⎢⎣chU + λ~κ

���
λ

Du

√ ⎤⎥⎦ · ~κ ���
λ

Dv

√
· [c2gvfu − c2fvhu − λcgv]

+⎡⎢⎣cgV + λ~κ

���
λ

Dv

√ ⎤⎥⎦ · ~κ ���
λ

Du

√
· [ − c2fvhu − chu]

+λ~κ
���
λ

Du

√
· ~κ

���
λ

Dv

√
· c2gvhu

≥ ⎡⎢⎣cgV + λ~κ

���
λ

Dv

√ ⎤⎥⎦ · ⎡⎢⎣chU + λ~κ

���
λ

Du

√ ⎤⎥⎦ · [c(fv − fu)]
+⎡⎢⎣chU + λ~κ

���
λ

Du

√ ⎤⎥⎦ · ~κ ���
λ

Dv

√
· [c2gvfu − c2fvhu]

+⎡⎢⎣cgV + λ~κ

���
λ

Dv

√ ⎤⎥⎦ · ~κ ���
λ

Du

√
· [ − c2fvhu]

for λ> 0, gvhu > 0, gv < 0, and hu < 0. Thus, we have to distinguish
two cases. First, consider

fugv − fvgu < 0 or fv − fu < 0.

Since ~κ is decreasing and ~κ≤ 1
3, on [0,∞), we have the downward

estimation

~P0(λ)> c2[13 (fugvhU − fvguhU − fvgVhu) + gVhU(fv − fu)]≥ 0.
For the case

fugv − fvgu > 0, fv − fu > 0.

We directly conclude that ~P0(λ)> 0 and prove the assertion for
the full system.

In order to investigate the system for stability conditions in the
absence of some species, we proceed with the special cases
Vlm,Ulm � 0.

Case 1 (Ulm � 0): The system is overdetermined, and it holds
that μlm � 0. Furthermore, we obtain

0 � c(huulm + hwwlm) + (chUψlm(1) + Duψ′
lm(1))Ulm

� huulm + hwwlm

and hence

u′
lm � ( − l(l + 1) + cfu)ulm + cfvvlm.

Moreover, for Ulm � 0, the characteristic polynomial reduces to

G0(λ) :� cgV(λ2 + (−fu + fv)cλ) + κDv ,0(λ)(λ2 + (−fu + fv)cλ)
−κDv ,0(λ)(cgvλ − c2(fugv − fvgu)).

The stability conditions for this case have already been discussed,
and the proof can be found in Ref. 23.

Case 1 (Vlm � 0): The system is again overdetermined, and the
matrix has an eigenvalue λlm � 0. Moreover, it holds that

0 � c(guulm + gvvlm) + (cgVχlm(1) + Dvχ′lm(1))Vlm

� cguulm + cgvvlm

so that for (7b), we obtain

v′lm � cfu
gv
gu
vlm − (dvl(l + 1) + cfv)vlm.

This implies that any eigenvalue λ corresponding to the linearized
system is given by

λ � c(fugv
gu

− fv) − dvl(l + 1).

For l � 0, we require that all eigenvalues have negative real parts.
We claim that

fugv
gu

− fv < 0.

Furthermore, the characteristic polynomial reduces to

H0(λ) :� −Duψ′
lm(1) · [c2fvhu + λchu]

+(chUψlm(1) + Duψ′
lm(1)) · λc(−fu + fv).
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Since hU > 0, fv > 0, and hu < 0, we deduce that
limλ→∞H0(λ) � +∞. Using Eqs. 9a and 7e, we further calculate

~H0(λ) � −~κ⎛⎝ ���
λ

Du

√ ⎞⎠ · [c2fvhu + λchu] + ⎡⎢⎢⎣chU + λ~κ⎛⎝ ���
λ

Du

√ ⎞⎠⎤⎥⎥⎦
· c(fv − fu).

To prevent that ~H0 has only negative eigenvalues, meaning it does
not change its sign for λ ∈ [0,∞), consider

lim
λ→ 0

~H0(λ) � c2hU(fv − fu) − 1
3
c2fvhu.

This is fulfilled even if

0< hU(fv − fu) − 1
3
fvhu.

Summarized, the derived conditions ensure that ~H0 has only
negative eigenvalues.

We next determine under which conditions small spatial
perturbations from the homogeneous steady state
(u*, v*,w*,U*,V*) induce instabilities.

THEOREM 3.2. Assume that the system (3) satisfies the
condition (10). If in (u*, v*,w*,U*,V*) further holds that(cgV + Dvl) · (chU + Dul) · [dvl2(l + 1)2 + cl(l + 1)( − dvfu + fv)]
+(chU + Dul) · Dul[ − l(l + 1)cgv + c2(fugv − fvgu)]
−(cgV + Dvl) · Dvl[(chw w*cu

c(u*) + chu) · (dvl(l + 1) + cfv)]
+DuDvl

2[(chw w*cu
c(u*) + chu) · cgv]< 0

,(18)

then, the system is linearly asymptotically unstable in
x* � (u*, v*,w*,U*,V*).

REMARK 3.3. In the case ofUlm � 0, the system is asymptotically
unstable in (u*, v*,w*,U*,V*) if it fulfills the condition (11), and
furthermore(cgV + Dvl) · [dvl2(l + 1)2 + cl(l + 1)( − dvfu + fv)]

−Dvl · [ − l(l + 1)cgv + c2(fugv − fvgu)]< 0. (19)

If Vlm � 0 and (12) is satisfied, then the instability condition is
given by(chU + Dul) · [dvl2(l + 1)2 + cl(l + 1)( − dvfu + fv)]

−Dul · [chw(w*cu
c(u*) + chu) · (dvl(l + 1) + cfv)]< 0. (20)

PROOF. Again, we first consider the case Ulm,Vlm ≠ 0. Since we
claim that the system becomes unstable in the presence of
diffusion, we require that the characteristic polynomial has a
positive zero λlm. As alreadymentioned, from (7a)–(7e), as long as
Ulm,Vlm ≠ 0, we acquire that an eigenvalue λ with Re(λ)> 0 exists

if and only if first λ � λlm � μlm ∈ R+
0 , and additionally with (9a)

and (9b), λlm fulfills the condition

Pl(λlm) � (cgV + κDv ,l(λlm)) · (chU + κDu ,l(λlm)) · pl,1(λlm)
+(chU + κDu ,l(λlm)) · κDv ,l · pl,2(λlm)
+(cgV + κDv ,l(λlm)) · κDu ,l · pl,3(λlm)
+κDu ,l(λlm) · κDv ,l(λlm) · pl,4(λlm) � 0.

From Ref. 23, we know that

lim
λ→ 0

κDu ,l(λ) � Du(rξ′l(r)
ξ l(r) )∣∣∣∣∣∣∣∣r� ��

λ
Du

√ � Dul,

lim
λ→ 0

κDv ,l(λ) � Dv(rξ′l(r)
ξ l(r) )∣∣∣∣∣∣∣∣r� ��

λ
Dv

√ � Dvl,

lim
λ→∞

κDu ,l(λ) � +∞,

lim
λ→∞

κDv ,l(λ) � +∞.

This implies that

lim
λ→∞

Pl(λ) � +∞.

For Pl(λ) in order to change its sign, we finally examine
limλ→ 0Pl(λ) and get the condition (18), which is sufficient to
ensure a positive zero of Pl(λ).

Similarly, consider

Gl(μlm) :� (gV + κDv ,l(μlm)) · pl,1(μlm) − κDv ,l(μlm) · pl,2(μlm).
and

Hl(λlm) :� (hU + κDu ,l(λlm)) · pl,1(λlm) + κDu ,l(λlm) · pl,3(λlm).
Then, (19) and (20) follow directly with the same argumentation.

COROLLARY 3.4. Assume that the system (3) satisfies the
condition (10) and either Du or Dv are chosen sufficiently
large. Then, the instability condition (18) is satisfied if the
following conditions hold:

Case 1:

C1 :� fugv − fvgu − fvhu − ( cuw*

c(u*))fvhw + gvhu + ( cuw*

c(u*))gvhw ≥ 0,
C2 :� dvfu − fv + gv + dvhu + dv( cuw*

c(u*))hw > 0,
Q :� C2

1 − 4dvC2 > 0,

and for r ± � 1
2dv

(C2 ±
��
Q

√ ) exists an l ∈ N such that r− < l(l+1)
c

< r+.
Case 2:

C1 :� fugv − fvgu − fvhu − ( cuw*

c(u*))fvhw + gvhu + ( cuw*

c(u*))gvhw < 0
and with r+ as defined above exists an l ∈ N with l(l+1)

c
< r+.
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REMARK 3.5. If Ulm � 0 and the system fulfills condition (12),
then the instability condition (20) holds for sufficiently large Dv ,
if the following conditions are satisfied:

Case 1:

C1 :� fugv − fvgu ≥ 0,
C2 :� dvfu − fv + gv > 0,
Q :� C2

1 − 4dvC2 > 0,
and for

r ± � 1
2dv

(C2 ±
��
Q

√ )
exists an l ∈ N with

r− <
l(l + 1)

c
< r+.

Case 2:

C1 :� fugv − fvgu < 0

and with r+ as defined above exists an l ∈ N with

l(l + 1)
c

< r+.

REMARK 3.6. If Vlm � 0 and the system fulfills condition (12),
then the instability condition (20) holds for sufficiently largeDu if
the following condition is satisfied.

Case 1:

C1 :� −fv[hu + (w*cu
c(u*))hw]≥ 0,

C2 :� dvfu − fv + dvhu + dv(w*cu
c(u*))hw > 0,

Q :� C2
1 − 4dvC2 > 0,

and for

r ± � 1
2dv

(C2 ±
��
Q

√ )
exists an l ∈ N with

r− <
l(l + 1)

c
< r+.

Case 2:

C1 :� −fv[hu + (w*cu
c(u*))hw]< 0

and with r+ as defined above exists an l ∈ N with

l(l + 1)
c

< r+.

PROOF. We first restrict ourselves to Ulm,Vlm ≠ 0 and the case
Du ≫ 1 as well as Dv ≫ 1. In order to achieve instability, we
consider (18) and narrow down to the coefficient ofDu · Dv which
is given by

ε � dvl
2(l + 1)2 + cl(l + 1)( − dvfu + fv)

+( − l(l + 1)cgv) + c2(fugv − fvgu)
−[(chw(w*cu

c(u*)) + chu) · (dvl(l + 1) + cfv)]
+[(chw(w*cu

c(u*)) + chu) · cgv]
� dvl

2(l + 1)2

+cl(l + 1)( − dvfu + fv − gv − dvhu − dv( cuw*

c(u*))hw)
+c2(fugv − fvgu − fvhu − ( cuw*

c(u*))fvhw + gvhu + ( cuw*

c(u*))gvhw)

.

We define

~ε :� d2
v l

2(l + 1) − dvcl(l + 1)C1 + c2dvC2,

whose roots are given by

r± � C2

2dv
±

�����������(C2

2dv
)2

− C1

√√
.

In order to satisfy condition (18) and to obtain an instability, we
now require e< 0. First, assume C1 ≥ 0 and C2 > 0. Then, e
represents a right displaced upward open parabola which
intersects the positive axis at points r ± . Thus, with l ∈ N to
ensure e< 0, we have to satisfy the conditions of case 1. By
contrast, if C1 is negative, then the parabola is shifted to the left,
and we directly prove case 2 to obtain e< 0.

We further consider Du ≫ 1 as well as the case Du ≈ 1. Since
we suppose that Dv ≫ 1, as before, we observe that either Dule or
Dvle becomes dominant in (18). This implies that an instability
exists for sufficiently large Du or Dv .

Finally, with the same argumentation as before, the analysis of
the coefficient Du in (19) as well as Dv in (19) deduces Remarks
3.5 and 3.6 (for the case U � 0, see also Ref. 23).

In contrast to the model of Ref. 23, the conditions in our model
depend onw* as well as the capacity function c(u*) at steady state.
This is a direct consequence of the actin part which is simulated
by an inhomogeneous diffusion controlled by a capacity function
which in turn depends on the active membrane bound form. As a
consequence, we have shown that the actin feedback can directly
contribute to system instability. This actin-mediated feedback
was reported in Ref. 33, and it was suggested that it increases
robustness of the polarization and even can ensure polarization in
the absence of GDI.

4 NUMERICAL SIMULATIONS

We follow the methods of line approach to handle time
derivatives independent from spatial derivatives.

Throughout this work, we employ a control volume finite
element (CVFE) method using first-order trial functions and
constant test functions on the dual mesh to discretize in space.
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These methods are also known as vertex-centered finite volume
scheme and can be formulated as a Petrov–Galerkin method.
Advective terms are stabilized using upwinding. In particular, the
CVFE method has the property to be locally mass conservative
and thus our discrete model recovers this feature of the
continuous model. For details of the methods, we refer to text
books, for example, Ref. 15.

The temporal evolution is discretized using a simple first-
order implicit Euler method. We solve the arising fully coupled
nonlinear system using a Newton–Krylov solver with an AMG
preconditioner.

The implementation is based on the Distributed and Unified
Numerics Environment (DUNE) framework [2, 3] and the dune-
pdelab package [4]. Coupled bulk-surface problems are solved by
the DUNE modules multidomain and multidomaingrid [20].

4.1 Reaction Kinetics and Parameters
The generic formulation described in Section 2 allows us to
investigate cell polarization under consideration of distinct
protein kinetics.

For a particular choice of the kinetics f and g, we simulate the
application to different geometries. It serves as an exemplary
model to study transport-mediated polarity in different cell types
(see Supplementary Material for the derivation of the reaction
kinetics).

The functions are given by

f (u, v) � (k1 + (a1 + a2u
1 + a3u

))v − k2u, (21)

g(u, v,V) � (k3 + k5u)V − k4v. (22)

The particular choice of parameters for the numerical simulation
of the nondimensionalized system (1) is given in Table 1. The
model parameters are estimated from values reported in the
literature. We based our choice on published results in Refs.
11–14, 25, and 32. A full list of these parameters is given in the
Supplementary Material. The effective parameters were then
obtained by rescaling with respect to the membrane diffusion
coefficient Dm, which relates to the parameter dv :� 1 in the
nondimensional formulation.

4.2 Actin-Mediated Cell Polarization
In the following, we confirm the results of the linear stability
analysis performed in the previous section. In particular, we
compare simulations of the full system (1) and the simplified
system (3), which was used in the analysis. As we assumed a well-
mixed pool, the effect of exocytosis and endocytosis were
assumed to dominate over the actual vesicle transport along
actin cables. To simulate transport via exocytosis and
endocytosis, we define

h(u,w,U) � e1wU − e2(1 − δ(w) w
wmax

)u.
In the simplified (well-mixed) case, the transport to the
membrane is slower, due to the nearly homogeneous
distribution of U. Thus, we had to increase e1 and decrease e2
to obtain similar results as for the full system, where molecules are
actively transported. These rates are chosen such that we obtain
similar ratios between internal and membrane components as
before. We set e1 � 84.3 and e2 � 4.167.

TABLE 1 | Parameters used for computations of the generic system. Variables
and constants used for numerical simulations of the nondimensionalized
system (1) considering reaction kinetics derived in Ref. 6 are shown.

Param. Value Description

dv 1.0 Diffusion coefficient of the inactive membrane-bound species
dw 27.78 Diffusion coefficient of the actin cables
Dv 305.5 Diffusion coefficient of the cytosolic component
Du 0.278 Diffusion coefficient of the internal component
Γ 15.6 Spatial scale factor
k1 0.056 Basal activation rate
k2 27.78 Basal inactivation rate
k3 0.025 Basal membrane attachment rate
k4 13.89 Basal membrane detachment rate
k5 10.77 Feedback mediated membrane attachment rate
a1 19.41 GEF mediated activation rate
a2 59.42 GEF mediated feedback activation
a3 2.23 Negative feedback/inactivation rate
e1 0.703 Rate of exocytosis
e2 8.33 Rate of endocytosis
wmax 0.0163 Rate controlling local endocytosis
B 27.78 Transport gradient control rate
V 1.53 Capacity function control rate
A 419.94 Potential flow control rate
u0 0.004 Initial concentration of the active membrane-bound species
v0 0.196 Initial concentration of the inactive membrane-bound species
w0 0.002 Initial concentration of the actin cable density
U0 1.504 Initial concentration of the internal component
V0 0.902 Initial concentration of the cytosolic component

FIGURE 1 | Computational results demonstrating the influence of the
diffusion constant for actin cable movement on the polarization process. The
development of the maximum of u in time is shown. Computations with
different rates for dw are compared.
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In all computations, we use functions f , g as given in (22) and
(23), respectively. We use initial concentrations and parameters
as given in Table 1.

We numerically solve system (3) for the different cases to
investigate its behavior.

The most interesting outcome of the stability analysis is the
fact that the conditions determining instability are completely
independent of the diffusion parameter dw. This implies that the
only requirement on dw is that it must be nonzero. In this case, the
capacity function c(u) determines whether the system is stable
against small perturbations or not. We further call this capacity-
driven instability.

Figure 1 shows the development of u in time for distinct
values of dw. We observe that even for large changes of dw,

provided that dw ≠ 0, the system is always unstable and tends to
form a polarized patch. It becomes clear that the capacity
function c(u) as well as w* determines the stability behavior.
The constant dw only changes the temporal dynamic of
polarization (see Figure 1). For reduced rates, the maximum
value of u is reached much later. It can be shown that even for
dw ≪ 1, the system is still able to form a polarized patch, albeit
after a very long time (t > 30).

As mentioned in Remark 2.1, the model is mass conservative.
Our numerical model adequately reproduce this behavior due to
the use of a locally mass conservative method. The evolution of
mass of the different components u, v,U ,V as well as the total
mass is visualized in Figure 2.

Another result of the stability analysis is the fact that we may
observe polarization, even if V � 0 or U � 0. From Figure 3, we
see that the generic system is able to represent these cases. Even in
the absence of a cytosolic exchange or a transport mechanism, the
system becomes unstable and forms a polarized cluster.

The requirement Du ≫ 1 yields that Dv must not be very large
to ensure instability. We have seen that even in the case Dv ≈ 1,
the instability conditions may be satisfied. Our numerical
simulations confirm these results. Figure 4 illustrates capacity-
driven polarization for the system (3), where Dv � 1.

4.3 Cell Shape Influences Transport-Driven
Cell Polarization
Active transport of molecules plays a significant role in many
cell types. For example, in the fission yeast, neurons and the
Caenorhabditis elegans zygote microtubules may mediate the
transport of important regulators of cell polarization and in
this way ensure its correct location [19, 26, 30]. Therefore, our
modeling approach can be used to investigate polarization for a
range of different cell types with distinct shapes.

In order to understand the influence of the cell shape on
polarization, we simulate the system for different three-
dimensional model geometries. We employ a random signal to
drive the cell out of its uniform state. The results are shown in
Figure 5. In all cases, we obtain an enhanced peak of the
nondimensional concentration u.

FIGURE 2 | Computational validation of mass conservation. Temporal
evolution of mass of components u, v,U,V , and the total mass. As the
numerical scheme is based on a locally mass conservative CVFE method, the
conservation of mass property of the model is also fulfilled in the
numerical simulations.

FIGURE 3 | Numerical simulations of the generic system showing distinct cases of instability. Computational results of system (3) showing distinct cases of
instability (e1 � 84.3, e2 � 4.167). (A) The internal as well as cytosolic component is nonzero. A small initial perturbation leads to an instability inducing a polarized patch.
(B) Without the cytosolic component, a capacity-driven instability causes peak formation. (C) Even if the internal component is zero, the cell is still able to become
unstable.
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One observes that transport-mediated polarization is
significantly accelerated in nonspherical cells. In this case, the
gradient increases or decreases with the length or broadness of the
shape, respectively. Regarding the polarity direction, our results
show that transport can change the spatial location of the

polarized patch. This becomes particularly obvious in
Figure 5D which shows polarity in a cell that features a small
bud. In this case, we excite the cell from its homogeneous state by
a signal comprising of two stimuli S1 and S2 of the same intensity.
The signals are imposed on opposite sides of the cell surface, one

FIGURE 4 | Numerical simulations of the generic system showing capacity-driven instability. Computational results of system (3) with e1 � 15, e2 � 0.2 are shown
The internal as well as cytosolic component is nonzero. Computational results of the system (3) with drastically reduced diffusion constant DV � 1. (A) Concentration u
after time t � 10 (h≠ 0). (B) Concentration V after time t � 10 (h≠0). (C) Temporal development of u. Computational results are shown for the system with and without
consideration of transport.

FIGURE 5 | Numerical simulations of the generic system applied to different geometries. Simulation results at different time steps with functions (22), without (left)
and with (right) the proposed active molecule transport. A spatial noise signal applied to the initial uniform state u0 (A–C) results in cluster formation. In (D), we applied an
excitation for Δt � 0.69 with two equal stimuli with s1 � s2 � 0.1. For geometries (A–D), we observe an enhanced peak due to active transport. In the case of two stimuli
(D), it can even change the polarization site toward the protrusion.
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located at the protrusion. Depending on the presence of
transport, different patterns are obtained. In the presence of
active transport, a peak forms at the bud, without u clusters at
the opposite side. The influence of protrusions on diffusion-
driven polarization in a cell has already been studied in Ref. 10.
Their results have shown that protrusions locally limit molecule
aggregations. Diffusive transport into the protrusion is slightly
hindered so that the cytosolic concentration decreases faster in

this region. As a result, the cluster emerges at another location.
Interestingly, our results demonstrate that for sufficiently high
rates of active transport, this kind of “bottle neck” can be
compensated, and the cluster forms at the protrusion.

Depending on the particular rates, feedback strength, and the
interplay between transport and reaction kinetics, transport can either
enhance or disturb polarity. For some choices, it even perturbs the
system so strongly that it is no longer capable of polarization.

FIGURE 6 | Illustration of the influence of internal barriers on cell polarization. Computational results of our nondimensional model with and without transport are
presented. Organelles which are represented by circles or ellipses are placed at distinct positions in the cell. Computations with two equal stimuli exciting the initial
uniform state u0 with s1 � s2 � 0.2 for Δt � 0.69 are shown.
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4.4 Influence of Internal Components on
Cell Polarization
Cells contain many different cell components of distinct shape
and size like for instance the nucleus, the Golgi, or the
endoplasmic reticulum. All these structures serve as a kind of
diffusion and transport barrier within the cell. In this way, the

spatial position of organelles can influence signaling pathways,
including the accumulation of polarization molecules.

How internal barriers control diffusion-driven cell
polarization has already been investigated in Ref. 10. The
results have demonstrated that the cluster formation close to
organelles is very unlikely. Diffusion-driven polarization mostly

FIGURE 7 | Comparison of the influence of organelles as well as the cell shape on diffusion- and transport-mediated polarization. Numerical simulations of our
nondimensional model with and without transport are presented. A large organelle which is represented by an ellipse is placed at distinct positions in a cell exhibiting a
small protrusion. (A) Simulations with two equal stimuli exciting the initial uniform state u with s1 � s2 � 0.2 for Δt � 0.69 are illustrated. Cluster formation either occurs
behind the organelle or, if the barrier is sufficiently far away from the surface, at the protrusion. (B)Only a strong stimulus s1 � 0.33 can reverse this feature (bottom
computation).
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occurred in the neighborhood of large organelles, but not behind
them. The local accumulation of substances at the opposite side of
protrusions or in regions with low curvature is more likely [10].

In order to investigate whether active transport alters the
results, we perform similar computational experiments. We
consider the two-dimensional case, where the cell is
characterized by a circle. Organelles are modeled by elliptic or
circular shapes placed in the cell interior. The results are shown in
Figure 6. Again, we excite the cell from its homogeneous state by
a signal comprising two stimuli S1 and S2 of the same intensity.
Whereas one signal is located near the organelles, the other is
placed at the opposite side.

Without consideration of transport effects, we obtain similar
results as presented in Ref. 10. The organelles near the surface
negatively affect cluster formation at this site. Contrarily, we see
that under consideration of active molecule transport, the polar
cluster forms behind the internal component. In this case,
organelles support a nearby spatial location of the polarity patch.

As mentioned before, protrusions positively influence
transport-mediated polarization too. This raises the question
of how polarity behaves in cells exhibiting both a complex shape
and internal barriers. Figure 7 illustrates this interplay. It
becomes clear that since protrusions as well as diffusion
barriers can promote polarization, the localization of
organelles next to protrusions strongly enhances polarity.
Conversely, we see that an opposed position leads to a
competing situation. As long as the organelle is sufficiently
far away from the surface and centrally located, the cluster
still forms at the bud. In contrast, when the organelle is placed
near the membrane, but opposed to the protrusion, we obtain
polarization behind the organelle. Only a very strong stimulus
at the protrusion reverses the outcome. This is demonstrated by
the last computational experiment illustrated in Figure 7, where
the cell is excited at the bud tip with a signal S1 of strength
s1 � 0.33.

5 DISCUSSION

Based on a complex bulk-surface reaction–diffusion–advection
system for cell polarization proposed in Ref. 6, in this work, we
have introduced a generic approach for the simulation of
transport-mediated cell polarization. We performed numerical
simulations with distinct cell geometries and cell types, and
compared the results to those found in the literature. Since
our main interest was to analyze the conditions leading to
cluster formation, we further performed a linear stability
analysis considering a spherical cell.

The results have shown that vesicular transport may not only
influence the robustness, shape, and intensity of the polar cluster
but also its spatial location. Particularly, in cells with complex
shapes, we observed different patterns between simulations with
and without active molecule transport. Here, protrusions and
narrower domains differently affected symmetry breaking.
Whereas complex shapes rather inhibit diffusion-driven
symmetry breaking, transport-mediated polarization can be
enhanced under these circumstances.

However, cells are able to robustly polarize at sites of complex
protrusions. For example, the tip of the future axon is strongly
polarized during neuronal development. These findings suggest
that, especially in nonspherical cells, active transport may be
required to ensure the correct location of the polarized patch,
which is in line with previous finding in Ref. 7.

Based on a complex bulk-surface system for the simulation of
cell polarization, we have presented a reduced generic system of
bulk-surface reaction–diffusion–advection equations. Our main
interest here was to analyze the conditions leading to pattern
formation. Therefore, using a spherical cell, we applied a linear
stability analysis to a simplified system composing three surface
quantities and two bulk concentrations. Our results have
demonstrated that two different main mechanisms lead to
symmetry breaking. The first one is related to a classical
diffusion-driven instability studied in Refs. 22 and 23. The
second mechanism is controlled by a capacity-dependent
inhomogeneous diffusion of the transport triggering factor.
Such dependence has the capability to induce a positive
feedback leading to spatial patterns.

However, we have restricted our analytical and numerical
studies to stationary domains. In many cases, biological processes
induce the development of cell shapes. Thus, the consideration of
surfaces which evolve continuously in time would be of great
interest. But this implies a more complicated modeling, analysis,
and simulation of the coupled system and could be focus of
further studies. The results have shown that vesicular transport
may not only influence the robustness, shape, and intensity of the
polar cluster but also its spatial location. Particularly, in cells with
complex shapes, we observed different patterns between
simulations with and without active molecule transport. Here,
protrusions and narrower domains differently affected symmetry
breaking. Whereas complex shapes rather inhibit diffusion-
driven symmetry breaking, transport-mediated polarization
can be enhanced under these circumstances.

Another outcome of the computational results is the distinct
role of organelles. Whereas internal barriers inhibit diffusion-
driven polarization behind them, active transport is able to
overcome this negative feedback to facilitate polarity next to
organelles. The influence of internal components on the direction
of cluster formation has already been shown by biological
experiments. To give an example, studies with the fission yeast
have demonstrated that the position of the interphase nucleus
dictates the future site of cell division [5]. These findings together
with our results emphasize that it is of particular importance to
consider spatial aspects in the mathematical study of cell
polarization. As a consequence, to investigate such biological
processes in greater detail, the application of more complex
mathematical models, including coupling bulk-surface PDEs,
must take on greater significance.

Unfortunately, with growing complexity, the analysis of
mathematical models becomes increasingly challenging. To
enable a linear stability analysis, we continued with a reduction
of the generic approach given by reaction–diffusion–advection
equations to a minimal coupled bulk-surface reaction–diffusion–
transport system. The stability analysis has shown that the
reduced generic system is able to generate spatial patterns
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under certain conditions. These conditions confirm that the
transport process derived in this work can increase the
robustness of the system. The reason is that two distinct
mechanisms act in parallel to generate symmetry breaking.
These can explain polarization in Δrdi1 and LatA-treated cells.
Treating wild-type yeast cells with latrunculin A (LatA) removes
the actin-dependent recycling pathway, while Δrdi1 denotes cells
with removed GDI, which both can establish polarization [27].

The first one relates to a classical Turing instability which
requires a large difference in the cytosolic and membrane
diffusion coefficient. Even if there is no transport of molecules
from and to an internal compartment, this mechanism is able to
achieve polarization. Since this case has already been analyzed in
detail, at this point, we refer the reader to Ref. 23.

The second mechanism is based on a capacity function that
regulates the concentration of the component driving transport.
Under certain conditions, this mechanism can induce symmetry
breaking, even if the cytosolic exchange is blocked. Hence, this
case explains symmetry breaking in cells lacking the cytosolic
component. In this case, dw ≠ 0, the capacity function c(u)
together with the homogeneous state of w entirely determines
the stability behavior.

By the performance of numerical simulations, we finally
confirmed the results of the stability analysis and
demonstrated that our model is able to show the different
cases derived. Furthermore, we have shown that this capacity-
driven instability also generates pattern when the cytosolic and
membrane diffusion rates are equal. For that reason, and since the
diffusion constant dw has no essential impact on the stability of
the system, we assert that this instability mechanism distinguishes
from the Turing-type instability.
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