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We develop a general framework to apply the Kelly criterion to the stock market data,

and consequently, to portfolio optimization. Under few conditions, using Monte Carlo

simulations with different scenarios we prove that the Kelly criterion beats any other

approach in many aspects. In particular, it maximizes the expected growth rate and the

median of the terminal wealth. We also show that, under a normal distribution of returns,

the Kelly criterion has the best performance in the long run. Next, we optimize a portfolio

with the Kelly criterion with no leverage and no short selling conditions and show that this

portfolio lays in the mean-variance efficient frontier and has higher expected return and

higher variance, although it is less diversified, respect to the tangent portfolio optimized

under the Markowitz approach. Finally, we implement a dynamic strategy applied on

the European stock market data and compare the results between the tangent and

the optimal Kelly portfolios. In a dynamic setting, the rolling Kelly portfolio outperforms

competitors particularly in the case of rebalanced portfolios optimized with a 2-years

window width.

Keywords: Kelly criterion, portfolio optimization, optimal growth rate, geometric mean-variance, Markowitz,

EuroStoxx50

1. INTRODUCTION

When an investor allocates his money in the market, what he aims to is making much money as
possible at the lowest level of risk. In literature, many researchers have come up with different
solutions for the investor problem. One of the most famous is proposed by Markowitz [1]. An
alternative approach is the Kelly criterion. It derives from the work of John Larry Kelly Jr, who
was a researcher at Bell Labs. In his seminal paper [2], Kelly utilizes the logarithmic function for
the solution of investment problems. He demonstrates that the logarithmic function maximizes the
long period growth rate, but it is myopic, as it maximizes the capital in the current interval only,
regardless of past or future information. Basically, Kelly defines how much fraction it is best to
invest in a single bet and consequently in a series of bets when the probability and the net outcomes
are known. The Kelly criterion not only works at its finest when we know the actual probability and
net income of our bets, but it is also superior to any essentially different strategy when we just know
the probability distribution of the returns.

The main purpose of this paper is to show the theoretical framework of the Kelly criterion and
to demonstrate its good and bad properties through the implementation of the method under
different conditions. In particular, we consider the performance of portfolios specified under the
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Kelly criterion for the stock market, and implement an
optimization method that considers the Kelly criterion to define
a portfolio composed of a large set of European financial assets
listed in the EuroStoxx50 and observed from 2007 to 2019. We
compare the results obtained for the portfolio based on the Kelly
criterion, hereafter the Kelly portfolio, with those deriving from
portfolios optimized under the Mean-Variance approach. First,
an in-sample analysis is performed by expanding the work of
Kim and Shin [3]: the correlation between assets is considered
and a continuous probability distribution for the assets’ returns is
specified. Next, a out-of-sample analysis is performed exploiting
the work of Estrada [4] but using an alternative approach to
compute the Kelly fractions and implementing a more active
rebalancing strategy based on the readjustment of the portfolio
weights at the end of each time period. Empirical results show
that Kelly portfolios are more risky but, if certain conditions are
met, they bring a much higher reward in terms of final wealth,
whilst the Tangent portfolio cannot reach its goal, leading to a
lower Sharpe ratio respect to the Kelly portfolio. A sensitivity
analysis demonstrates that the choice of the period length to
compute both the variance-covariance matrix and the expected
returns, and the choice of the frequency of rebalancing, are
fundamental for reaching the highest returns. In particular, a
short length of the window width using in a rolling portfolio
optimization framework guarantees that the Kelly portfolio
outperforms competitors w.r.t. the out of sample annual growth
rate and despite the frequency of rebalancing.

The remainder of the paper is organized as follows. Section 2
explains briefly the theoretical background of the Kelly criterion
and its critiques. Section 3 describes the method analytically
and introduces an ad-hoc defined optimization method for the
maximization of the expected growth rate of a portfolio based on
the Kelly criterion. An extended simulation study investigating
about the effectiveness of the Kelly criterion and its properties
is presented in section 4. Section 5 shows the results obtained
from the application of the Kelly criterion on real data from
European stocks and, in particular, to both the static and dynamic
portfolio optimization case. Section 6 ends the paper with some
concluding remarks.

2. MATERIALS AND METHODS

2.1. Background
Markowitz portfolio optimization achieves simplicity in the
mean–variance model by focusing on the economic trade-off
between risk and return in a single-period case. However, many
investors make portfolio decisions in a multiperiod case where
portfolios are rebalanced periodically. For these investors, Latané
[5] recommends an alternative framework, the geometric mean
or growth optimal portfolio model, arguing that the maximum
geometric mean strategy almost surely leads to greater wealth in
the long run than any significantly different portfolio strategy.
This result follows from similar conclusions of John Kelly [2] in
the context of information theory. He outlines how a receiver of
a noisy signal containing information on the outcome of a game
can use that information to his advantage in gambling. Next,
gamblers and investors have used the criterion formalized by

Kelly that became known as the “Kelly criterion for investing and
risk management.” Breiman [6] provides rigorous mathematical
proofs of the Kelly criterion. He defines and demonstrates all
its properties as well as that under some conditions it can be
considered as the best strategy to use. But much of what we
know about the use of the Kelly criterion comes from the work of
Edward Thorp [7, 8], which is the first gambler who uses the Kelly
criterion to beat the Las Vegas casinos playing black jack. Next,
he focuses the attention on the stock market and he became one
of the most efficient trader on Wall Street. Thorp shows how to
use the Kelly criterion as a portfolio optimization method based
on an unconstrained optimal solution, as well as how to use it
to decide which position is better to take w.r.t. different types of
financial assets.

Unfortunately, although for discrete probability distributions
the optimal solution can be found analytically, for assets that
have a continuous probability distribution, such as portfolios,
the solution of the optimization problem is derived from
a second order Taylor approximation under the assumption
of a Gaussian distribution of returns. As for the Taylor
approximation, Nekrasov [9] introduces an algorithm that
considers the approximation used to define the optimal portfolio
computed w.r.t. the Thorpe formula. In contrast, Kim and Shin
[3] do not make assumptions on the probability distribution
of returns and define a ratio between average returns using
historical data. They suggest to start from historical stock returns
and compute both the probability that a stock price increases and
the “average winning and loss ratio.” The latter is computed as
the ratio between the average return when a stock price increases
and the average return when the stock price decreases.With these
inputs, they derive the optimal Kelly ratio. Using this method
on data from the Korean stock market, they find that portfolios
optimized under the Kelly criterion with no leverage and no short
selling have higher returns and higher variance compared to the
tangent portfolio optimized under the Markowitz approach. The
latter is less diversified but lays on the efficient frontier. Similar
results appear in Estrada [4], where it is reported that the Kelly
criterion is superior to traditional strategies in terms of long-term
growth, and that Kelly portfolios are less diversified and have
both an higher expected return and an higher volatility compared
to portfolios composed with the goal of maximizing risk-adjusted
returns. Likewise, Fama and McBeth [10] demonstrate, using
samples of NYSE stocks, that the Kelly portfolios have higher
geometric mean return and beta risk than the market portfolios.
Finally, MacLean et al. [11] summarize the good and bad
properties of a Kelly strategy arguing that: (a) maximizing the
expected utility E[logX] asymptotically corresponds to maximize
the assets growth rate; (b) under fairly conditions, maximizing
E[logX] leads asymptotically to maximize the median of logX;
(c) the Kelly gambler never risks ruin.These results are consistent
with those showed in Ziemba [12], where it is demonstrated
that the expected time required by the Kelly criterion to reach
a preassigned goal is, asymptotically as X increases, least with
a strategy maximizing E[logX]. Moreover, MacLean et al. [11]
also show that, if an investor wishes to bear lower risk trading
it off for lower reward, he should use a fractional Kelly strategy.
They warn that using the Kelly strategy can lead to bets that may

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 October 2020 | Volume 6 | Article 577050

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Carta and Conversano Practical Implementation of the Kelly Criterion

be a large fraction of the current wealth of the investor when
the wager is favorable and the risk of loss is very small.In the
same line of research, particularly interesting are the theoretical
results introduced in Browne and Whitt [13] and in Lo et al.
[14]. The first study defines optimal gambling and investment
policies using a Bayesian approach for the case the underlying
stochastic process has parameters’ values that are unobserved
random variables, so that the optimal strategy is to bet a fraction
of current wealth deriving from a linear function of the posterior
mean increments [13]. The second study demonstrates that the
optimal behavior of an investor using the Kelly criterion is
obtained when she maximizes her absolute wealth in the case of
an infinite horizon. In the case that she maximizes her relative
wealth, the conditions under which the Kelly criterion is optimal
and those under which the investor should deviate from it are
identified. In particular, the investor’s initial relative wealth plays
a critical role and the dominant investor’s optimal behavior is
different from the minorant investor’s optimal behavior [14].

Nowadays many hedge fund managers, including Warren
Buffet from Berkshire Hathaway and George Soros, utilize the
Kelly criterion in their asset allocation strategies [15]. However,
the problem with portfolios composed in accordance with the
Kelly criterion is that these portfolios are riskier than other
portfolios (e.g., efficient mean-variance portfolios) in the short
term.In view of that, Thorp [16] suggests that the logarithmic
utility theory deriving from the Kelly criterion has a normative
or prescriptive nature, but only for those institutions, groups or
individuals whose overriding current objective is maximization
of the rate of asset growth. This might be the reason why, as
stated before, Kelly portfolios are often used by big hedge fund
managers who focus on the long-term growth maximization
rather than on the avoidance of short-term losses. To reduce the
risk profile of Kelly portfolios, a fractional Kelly approach can be
used. It is based on a “investing less than the optimal” strategy.
The less-than-optimal investment fraction is easy to determine
analytically in the univariate case, whilst for multi-asset portfolio
optimization the analytical solution is hard to be found. Davis
and Lleo [17] extend the definition of fractional Kelly strategies
to the case where the investor’s objective is to outperform a
benchmark. They theoretically define benchmarked fractional
Kelly strategies as efficient portfolios even when asset returns
are not lognormally distributed. Peterson [18] demonstrates that
the Kelly criterion can be incorporated into standard portfolio
optimization models that include a risk function. The risk and
return functions are combined into a single objective function
using a risk parameter and the optimization is based on a
differential evolution algorithm providing optimal returns for
the Kelly portfolios that are similar to those obtained from the
Markowitz approach. In the same framework, Rising and Wyner
[19] derived a fractional Kelly portfolio and showed that it is
identical to the full Kelly portfolio optimized on the basis of an
estimate of the expected asset return vector, which is statistically
shrunken to the risk-less rate. In other words, their approach is
based on the consideration that a fractional Kelly investor turns
out to be a full Kelly investor who uses shrinkage estimates of the
markets’ parameters. In contrast, Han et al. [20] shrunk the Kelly
portfolio weights directly rather than shrinking the expected

return toward the risk-free rate. Their approach is based on the
idea of minimizing the expected growth loss of the actual growth
based on the plug-in estimates of the true growth rate. Almost
at the same time, Hsieh and Barmish [21] claim that, when the
optimal Kelly fraction increases, various risk measures become
excessively large providing poor drawdown performances whilst
the Kelly strategy, although being log-growth optimal, may be
too aggressive in the short term. The authors also disagree
with the use of the Taylor series to compute the optimal Kelly
fraction, arguing that this solution may lead to performances
lower than that of the true optimum. Consequently, Busseti
et al. [22] add a drawdown risk constraint in the optimization
problem specified for a portfolio optimized under the Kelly
criterion to lower the risk that this kind of portfolio has, and
argue that this new constraint can somehow be seen as a risk-
aversion parameter. Osorio [23], instead, argues that stock prices
are not log-normally distributed and that both excess kurtosis
and skewness cannot be sufficiently captured. Thus, the Kelly
fractions under the hypothesis that returns follow a Student
t-distribution is derived analytically.

Recently, few researchers are starting to study how the Kelly
criterion can be used on option portfolios. Aurell et al. [24] are
the first to use the Kelly criterion in order to specify a model
to price and hedge derivatives in incomplete markets. Wu and
Chung [25] implement an algorithm that seems able to find the
most profitable option portfolio using the Kelly criterion. Using
data from the Taiwan Stock Exchange Index they demonstrate
that trading signals obtained from traditional strategies were
not necessary when using the Kelly criterion. Finally, Wu and
Hung [26] use the Kelly criterion within a framework where a
strategy involving trading on options exercised on the simple
index futures is defined. Their strategy is based on some entering
signals, such as golden-death cross.

In this paper, we discuss the Kelly criterion and prove its most
interesting properties with various Monte Carlo simulations
under different scenarios. The Kelly criterion is implemented in
a realistic investment situation using data from the European
equity market, both for a single asset and a portfolio of securities.
The main innovation with respect to previous studies is that,
in our settings, portfolios are implemented such that in each
period the expected growth rate is maximized despite the length
of the period. This is done taking into account the correlation
among the assets and the hypothesis of normal distribution of
returns. We compare the results with the traditional portfolio
optimized under the Mean-Variance approach,that assumes that
the investment decisions are solely made with regard to the mean
and variance of returns.

2.2. Methods
In this section, we introduce the fundamental concepts of
the Kelly criterion for discrete and continuous probability
distribution, as well as for both the univariate and
multivariate cases.

2.2.1. Discrete Probability
Following Rotando and Thorp [27], we consider a series of
favorable bets, where a favorable bet is a bet where the following
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condition holds

Pr
(

lim
n→∞

Zn = +∞
)

> 0 (1)

Zn is the final wealth after n trials. An example of a favorable bet
might be a biased coin where the winning probability is p > 1/2.
Let us imagine that for deciding how much of our capital is
allocated to the wager amount we maximize its expected value.
Thus, in each trial we invest all of our wealth in the game. The
problem with this strategy is that ruin becomes almost sure as the
number of trials tends to infinity. In this situation, minimizing
the probability of eventual ruin is not desirable as it corresponds
to minimizing at the same time the expected average gain.

Starting from the scenario described above, Kelly introduced
an alternative strategy that is intermediate between maximizing
gain and minimizing the probability of ruin. Let’s assume that the
condition specified in Equation (1) still holds and we observe a
winning probability 1/2 < p ≤ 1 associated to the outcome 1,
and a losing probability q = (1−p) associated to the outcome−1.
Starting with an initial wealth W0, we suppose to bet a faction f
of the initial wealth. After n trials where we winm times, the final
wealth is given by:

Wn = W0(1+ f )m(1− f )n−m

since

e
n log

(

Wn
W0

)( 1
n )

= Wn

W0
.

In this framework, the exponential rate of the asset growth per
trial is

log

[

Wn

W0

]
1
n

= m

n
log(1+ f )+ n−m

n
log(1− f )

Kelly chooses to maximize the expected value of the growth rate
coefficient G(f ), namely

G(f ) = E

{

log
[

Wn
W0

]
1
n

}

= E
{

m
n log(1+ f )+ n−m

n log(1− f )
}

= p log(1+ f )+ q log(1− f )
(2)

To maximize G(f ), we need to derive Equation (2) respect to f :

G′(f ) = p

1+ f
− q

1− f
= p− q− f

1− f 2
= 0

The value of f that maximizes G(f ) is f ∗ = p− q. It is also shown
that f ∗ is the unique maximum of G(f ), since:

G′′(f ) = −f 2 + 2f (p− q)− 1
(

1− f 2
)2

< 0

Thus, G′(f ) is monotone strictly decreasing in [0, 1), whilst

G
′
(0) = p − q > 0 and limf→1−1 G′(f ) = −∞. Plugging

f ∗ = p− q into Equation (2) we obtain

G
(

f ∗
)

= p log p+ q log q+ log 2 > 0.

FIGURE 1 | Growth rate function G(f ) for different proportions of wealth (f ).

Moreover, since G(0) = 0 and limf→1−1 G(f ) = −∞, there is a
unique value f c > 0 and 0 < f ∗ < f c < 1, such that G(f c) = 0.

The growth rate function G(f ) is represented in Figure 1w.r.t.
different values of the fraction of wealth f .

Breiman [6] and Thorp [7] demonstrate that the final wealth
of the player Wn exceed any fixed bound M when 0 < f < f c,
but not for a finite number of trials. In contrast, ruin is going
to happen almost surely if f > f c. In the case f = f c, the
wealth after n trials will oscillate randomly between 0 and +∞.
Moreover, the Kelly criterion beats any other strategy over a long
period of time and it asymptotically minimizes the time required
to reach a certain level of wealth. The criterion is still valid even
if the probability changes over the trials. In this case, a subject
must choose the optimal f ∗i in each trial in order to maximize
E[logWn].

2.2.2. Continuous Probability Distribution
To implement the Kelly Criterion for a portfolio of securities,
it is necessary to consider the case of continuous probability
distributions. Following Thorp [8], let us suppose we have an
initial wealth W0 and we want to determine the optimal betting
fraction f ∗ to invest each time in a financial asset. The problem is
that, unlike in the previous case, for a financial asset there is no
finite number of outcomes of a bet, thus we cannot use discrete
distributions but we need to refer to continuous distributions. In
this case the goal is maximizing

g(f ) = E[log(1+ fx)] =
∫

log(1+ fx)dP(x) (3)

where P(x) is a probability measure for the outcome and f is the
fraction of invested capital. We assume a constraint 1 + fx > 0
in order to avoid undefined logarithms. If the outcomes of x are
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distributed as a symmetric random variable around E(x) = µ

with Var(x) = σ 2, then:

Pr(x = µ + σ ) = Pr(x = µ − σ ) = 0.5

With this assumption we are simplifying the experiment of
investing in the stock market by splitting it into two separate
outcomes. If positive, the return per unit of investment is µ + σ ,
otherwise it is µ − σ . The wealthW can thus be described as

W(f ) = W0[1+ (1− f )r + fx] = W0[1+ r + f (x− r)]

where r is the return obtained on a risk-free asset, such as a
treasury bond. Hence, the expected growth rate g(f ) is defined
as

g(f ) =E[G(f )] = E

[

W(f )

W0

]

= E
{

log[1+ r + f (x− r)]
}

=

= 0.5 log
[

1+ r + f (µ + σ − r)
]

+ 0.5 log
[

1+ r + f (µ − σ − r)
]

Next, if the time interval is divided into n sub-intervals of the
same length it is possible to consider n independent random

variables xi with mean µ
n and variance σ 2

n . For each xi, it results

Pr

(

xi =
µ

n
+ σ√

n

)

= Pr

(

xi =
µ

n
− σ√

n

)

= 0.5

The ratio between the final wealth Wn(f ) and the initial wealth
W0 is

Wn(f )

W0
=

n
∏

i=1

(

1+ (1− f )r + fxi
)

(4)

The expectation of the natural logarithm on both sides of
Equation (4) gives g(f ), which is represented with a second order
Taylor approximation centered in f = 0

E

[

log
Wn(f )

W0

]

= g(f ) = nE
[

log
(

1+ r + f (xn − r)
)]

and re-scaled w.r.t. n

gn(f ) = nE

[

log

(

1+ r

n
+ f

(

µ

n
+ Uσ√

n
− r

n

))]

(5)

In Equation (5), U = ±1 is a symmetric Bernoulli random

variable and the expansion log(1 + u) = u − u2

2 + O
(

u3
)

, when
u → 0, yields

gn(f )

n
= r

n
+ f

(

µ

n
+ E(U)

σ√
n
− r

n

)

−
f 2σ 2E

(

U2
)

2n
+ O

(

n
1
2

)

(6)
Since E(U) = 0 and E(U2) = 1, Equation (6) reduces to

gn(f )

n
= r

n
+ f

(µ

n
− r

n

)

− f 2σ 2

2n
+ O

(

n
1
2

)

= r + f (µ − r)− f 2σ 2

2
+ O

(

n
1
2

)

(7)

As n → ∞,O
(

n
1
2

)

approaches 0. In this case, Equation (7)

results in

g∞(f ) = r + f (µ − r)− f 2σ 2

2
(8)

The optimal Kelly fraction f is found maximizing g∞(f ), i.e.,
differentiating Equation (8) w.r.t f

f ∗ = µ − r

σ 2
(9)

Thorp [8] observes that, as n → ∞, the limit valueW
def= W∞(f )

of Wn(f ) corresponds to a log normal diffusion process with
an underlying security having mean µ and variance σ 2. This
is a well-known model for securities’ prices. Thus, g∞(f ) is the
instantaneous growth rate of the invested capital characterized
by a betting fraction f . Betting the optimal fraction f ∗ leads to a
growth rate

g∞
(

f ∗
)

= (µ − r)2

2σ 2
+ r

Compared to the case of a discrete distribution, the constraint
0 ≤ f < 1 is not required. The additional constraint 1 + fx > 0
required in Equation (3) is also not required. The case f < 0
is now feasible, as it simply requires selling the security short
and this strategy could be advantageous when µ < r. The
investor who follows this strategy has to adjust his investment
“instantaneously.” This conceptualization appears in the option
theory and does not prevent the practical application of the
model [28].

2.2.3. Implementing Kelly Criterion Portfolios
Beside investing in a single financial asset it is also possible to
compose portfolios optimized under the Kelly criterion. In the
following we use the term Kelly portfolio to refer to such a kind
of portfolio.

Consider a risk-free asset with a portfolio fraction f0 and n
risky assets with portfolio fraction f1, . . . , fn. Let r be the return
of the risk-free asset corresponding to the borrowing rate as well
as to the rate paid in the case of selling. If 6 =

(

si,j
)

, with i, j =
1, 2, . . . , n, is the variance-covariancematrix of assets’ returns and
M = (µ1,µ2, . . . ,µn)

T is the row vector of the expected returns
for the n assets, a Kelly portfolio satisfies

µ = fir +
n
∑

i=1

fiµi = r +
n
∑

i=1

fn (µi − r) = r + FT(M − R)

σ 2 = FT6F
(10)

To find the optimal F∗, it is necessary to maximize

g∞
(

f1, . . . , fn
)

= r + FT(M − R)− FT6F

2
(11)

Equation (11) corresponds to a quadratic maximization problem
with an unconstrained solution:

F∗ = 6−1[M − R] (12)
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A unique solution of Equation (12) requires the existence of6−1.
In the case of uncorrelated assets’ returns the variance-covariance
matrix 6 is diagonal and the optimal fraction, deriving from the
Kelly criterion, is

f ∗i = µi − r

σ 2
i

The Kelly portfolios are optimized under the no leverage
and no short selling conditions. Applying roughly Equation
(12) under these conditions would lead us to consider a
unconstrained portfolio. To overcome this situation, we consider
the maximization of the expected growth rate g∗, under no
short and no leverage constraints, as the reference optimization
criterion. Notationally, it corresponds to:

g∗ = argmaxF

[

r + FT(M − R)− FT6̂F
2

]

s.t.
∑n

i=1 fi ≤ 1; 0 ≤ fi ≤ 1

(13)

where r, F, and M have been defined in Equations (10) and
(11), respectively, and 6̂ is the plug-in estimator of the variance-
covariance matrix 6. The maximization of g∗ is constrained on
portfolio weights fi defined in [0, 1] and such that they sum
up to one, that is: to the fully invested capital condition. The
optimization criterion specified in Equation (13) is a quadratic
maximization problem allowing us to determine the fractions of
wealth to be allocated to each single equity.

All the computations presented in the following are performed
using the R software for statistical computing [29] installed on
a PC equipped with a Intel i9 5.3 GHz processor. In particular,
the quadprog [30] library is used to implement the optimization
method introduced in section 2.2.3 for Kelly portfolios and the
library fPortfolio [31] is used to define portfolio compositions
based on the Markowitz method.

2.3. Monte Carlo Simulations
In the previous sections we have described the Kelly criterion and
its properties. In the following, we perform some experiments
through Monte Carlo simulations to test if the optimal Kelly
strategy outperforms risk-averse and risk-seeking analogs of a
financial asset whose returns are normally distributed.

The stock prices are considered continuous random variables
that moves up and down in a random way. Thus, stock prices
are supposed to be realizations of stochastic processes. A model
that fits well with these assumptions is the Geometric Brownian
Motion (GBM).

For the sake of simplicity, we assume we have two financial
assets only: the first one is risky with annual mean return µ =
12% and annual volatility σ = 40%; the second one is a risk-free
asset with constant annual interest rate rf = 1%. We consider
252 trading days in a year, thus converting the above-mentioned
risk-return measures to daily rates we get:

µDaily =
12%

252
≈ 0.0476; σDaily = 40%√

252
≈ 2.5198;

rDaily =
1%

252
≈ 0.004.

Based on Equation (9) the optimal Kelly fraction is f ∗ =
0.6875. The daily returns are defined through the following GBM
specification:

rt =
(

µDaily −
σ 2
Daily

2

)

+ σDailyZt (14)

where Zi has a standard normal distribution. After each
investment period, an investor that puts the Kelly fraction f ∗ will
receive:

Wt+1 =
(

Wt −
(

Wt · f ∗
))

· erf +
(

Wt · f ∗
)

· ert (15)

In Equation (15), the fraction of wealth not invested in the risky
asset is placed in the risk-free one, whilst the part invested in the
stock market with the simulated return rt is added to the wealth
at the end of the previous periodWt .

For comparative purposes, besides the Full Kelly strategy other
alternative strategies are considered, namely:

• Half Kelly: where fHK = 1
2 f

∗ = 0.34375
• Double Kelly: where fDK = 2f ∗ = 1.375
• Triple Kelly: where fTK = 3f ∗ = 2.0625

The Half Kelly strategy represents a more risk adverse investor,
whilst the Double and Triple Kelly strategies indicate investors
that are seeking for risk. Since double and triple Kelly fractions
are >1, the investor is forced to leverage his wealth going short
on the risk-free asset. He borrows money to invest more than
his wealth. Using daily simulated returns rt , the data generating
process is repeated 100, 1,000, 10,000, and 40,000 times. Thus,
an equivalent number of trades is considered each time. Those
different scenarios are run using Monte Carlo simulations with
10,000 trajectories.

3. RESULTS

3.1. Evidence From the Simulation Study
3.1.1. 100 Trades
Table 1 shows the value of the final wealth after 100 trades
realized on the 10,000 simulated GBM trajectories defined in
Equation (14) and obtained from an initial wealth equal to 1.

The results show a trade-off between mean and standard
deviation of the final wealth. Increasing the bet size induces
an increase in the average final wealth, although the highest
median value of the final wealth is obtained from the Full Kelly
strategy. Next, the more the amount invested in the stock at each
individual trade increases, the more the probability to lose money
at the end of 100 trades increases. Moreover, the probability to
double the initial wealth increases as the fraction size increases
while the time to reach the target level of wealth decreases.
Finally, there is no strategy able to increase 10-fold the initial
wealth with the number of maximum trades fixed at 100. These
results contradict the theory underlying the Kelly criterion and
lead us to the conclusion that 100 trades are too few for the
criterion to work properly.
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TABLE 1 | Results after 100 trades.

WT statistics Half Kelly Full Kelly Double Kelly Triple Kelly

Mean(WT ) 1.019 1.034 1.066 1.099

Median(WT ) 1.016 1.020 1.1007 0.965

Std(WT ) 0.088 0.180 0.380 0.613

P(WT < 1) 42.7% 45% 49.2% 53%

P(WT < 0.5) 0% 0% 0.02% 10.6%

P(WT < 0.1) 0% 0% 0% 0%

P(Wt > 2) 0% 0.02% 3,9% 10.6%

Mean(T :2) Na 82 76.5 64.1

P(Wt > 10) 0% 0% 0% 0%

Mean(T :10) Na Na Na Na

The first three lines report the mean, the median and the standard deviation of the final

wealth, respectively. The next three lines report the probability to obtain a final wealth which

is lower than the initial wealth, or of half of it, or even lower than 1/10 of it, respectively.

The last four lines report the probability that the final wealth exceeds 2 (or even 10) and

the average times needed to reach those levels of wealth.

TABLE 2 | Results after 1,000 trades.

WT statistics Half Kelly Full Kelly Double Kelly Triple Kelly

Mean(WT ) 1.211 1.405 1.874 2.436

Median(WT ) 1.168 1.217 1.185 0.678

Std(WT ) 0.336 0.811 2.629 6.992

P(WT < 1) 28.5% 36.1% 48% 59.8%

P(WT < 0.5) 0% 5% 24.8% 42.6%

P(WT < 0.1) 0% 0% 1.4% 12.1%

P(Wt > 2) 4% 30% 53% 58.8%

Mean(T :2) 824.8 604 395.5 292.3

P(Wt > 10) 0% 0% 3.6% 10.5%

Mean(T :10) Na Na 787.7 567.6

The first three lines report the mean, the median and the standard deviation of the final

wealth, respectively. The next three lines report the probability to obtain a final wealth which

is lower than the initial wealth, or of half of it, or even lower than 1/10 of it, respectively.

The last four lines report the probability that the final wealth exceeds 2 (or even 10) and

the average times needed to reach those levels of wealth.

3.1.2. 1,000 Trades
Table 2 shows the results of the final wealth after 1,000 trades
realized on the 10,000 simulated GBM trajectories defined in
Equation (14) and obtained from an initial wealth equal to 1.

The results, in line with the 100 trades case, still provide
evidence about a trade-off between mean and standard deviation
and confirm that the Full Kelly strategy has the highest median
value of the final wealth compared to the other strategies.
Compared to the 100 trades case, both mean and standard
deviation increase, whilst the median of the final wealth always
increases except in the case of the Triple Kelly. The probability
that the final wealth is below the initial one always decreases
except in the case of the Triple Kelly. In view of that, it is possible
to argue that over betting can still bring high returns in terms
of the final wealth but at the cost of a very high risk. Moreover,
the probability for the final wealth to exceed a pre-specified

TABLE 3 | Results after 10,000 trades.

WT statistics Half Kelly Full Kelly Double Kelly Triple Kelly

Mean(WT ) 6.82 32.67 496.8 940.5

Median(WT ) 4.65 6.897 1.599 0.017

Std(WT ) 7.51 116.9 5098.6 13478

P(WT < 1) 3.5% 12.9% 44.6% 78.9%

P(WT < 0.5) 0.2% 5.8% 36.5% 75%

P(WT < 0.1) 0% 0.4% 19.9% 63.5%

P(Wt > 2) 91.9% 92.1% 86.6% 77.3%

Mean(T :2) 3668 2356 1467 866

P(Wt > 10) 22.8% 56% 53.7% 41.9%

Mean(T :10) 7854 6066 3941 2784

The first three lines report the mean, the median and the standard deviation of the final

wealth, respectively. The next three lines report the probability to obtain a final wealth which

is lower than the initial wealth, or of half of it, or even lower than 1/10 of it, respectively.

The last four lines report the probability that the final wealth exceeds 2 (or even 10) and

the average times needed to reach those levels of wealth.

target value, particularly Wt > 2, increases in the case of risk-
seeking strategies. The riskiest strategies need less time to reach
these goals. These results are still not sufficient to support the
properties of the Kelly criterion, thus 1,000 days of trades are not
enough to be considered as a long term investment in a Kelly’s
perspective.

3.1.3. From 10,000 to 40,000 Trades
Table 3 reports the information about the final wealth after
10,000 trades realized on the 10,000 simulated GBM trajectories
defined in Equation (14) and obtained from an initial wealth
equal to 1.

Again, we can notice that mean and standard deviation
increase as the bet size increases. This result is consistent with the
previous simulations. The full Kelly has the highest median value
of the final wealth, whilst the corresponding result for the Triple
Kelly is lower than the initial wealth. The probability that the final
wealth is below the initial one decreases considerably compared
to the previous two simulations except for the Triple Kelly. For
the latter, the investor is losing his wealth almost 80% of the times.
Thus, over betting three times the optimal Kelly fraction is not
really a wise strategy, even for risk seeking investors, because the
higher risk is not compensated by a corresponding higher reward.
These results demonstrate that 10,000 trades seems sufficient to
prove the well-known problem of over betting, but still the Full
Kelly does not beat the other strategies.

To overcome this problem we run an additional simulation,
but it refers to a very extreme case and cannot be considered
as a meaningful and implementable model. Due to consistent
reduction in computing power we run the Monte Carlo
simulation for 40,000 trades with 1,000 trajectories, and we
also used simulated monthly returns, thus simulating a monthly
rebalancing between the risky asset and the risk-free asset. This
would mean to trade every month for more than 3,000 years. The
results of these simulations are shown in Table 4.

In the extreme and unrealistic example represented in Table 4

all the properties of the Kelly criterion are met. The Full Kelly
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TABLE 4 | Results after 40,000 trades.

WT statistics Half Kelly Full Kelly Double Kelly Triple Kelly

Mean(WT ) 1.01e64 1.01e89 2.6e56 5.2e−96

Median(WT ) 4.37e55 2.18e69 4.3e55 7.2e−161

Std(WT ) 3.21e65 3.22e90 8,48e57 1.6e−94

P(WT < 1) 0% 0% 15.2% 100%

P(WT < 0.5) 0% 0% 14.2% 100%

P(WT < 0.1) 0% 0% 13.2% 100%

P(Wt > 2) 100% 100% 99.3% 77.3%

Mean(T :2) 228 200 691 85

P(Wt > 10) 100% 100% 98.1% 45.9%

Mean(T :10) 740 606 2195 260

The first three lines report the mean, the median and the standard deviation of the final

wealth, respectively. The next three lines report the probability to obtain a final wealth which

is lower than the initial wealth, or of half of it, or even lower than 1/10 of it, respectively.

The last four lines report the probability that the final wealth exceeds 2 (or even 10) and

the average times needed to reach those levels of wealth.

is the one with the highest mean and median value of the final
wealth, as well as the fastest one reaching wealth goals besides
the Triple Kelly that never reaches the target level and causes
initial wealth deterioration 100% of the times. Thus, these results
provide evidence that long run had to be really long. In the end,
as demonstrated by Breiman [6], the Full Kelly strategy beats
all the other essentially different strategies even if we do not
know the exact outcomes of the bets but we just know their
probability distribution.

In the following, we summarize the main findings of the
three experiments based on 100, 1,000, 10,000, and 40,000
trades, respectively.

The results obtained for the short term scenario, i.e., 100
trades, do not support the main property of the Kelly criterion.
In this case, the only meaningful outcome is that the Full Kelly
has the highest median value of the final wealth, and that over
betting leads to higher reward but at the cost of higher risk.

The results do not change much in the 1,000 trades case: over
betting still lead to high return but again at the cost of a higher
risk, whilst under betting tends to reduce the risk as in the Half
Kelly strategy.

In the very long term scenario (40,000monthly trades) the Full
Kelly is finally able to beat any other essentially different strategy.
Moreover, the Full Kelly is the fastest strategy to reach any wealth
goal, and provides the highest value of the final mean wealth. In
contrast, the Triple Kelly strategy implicates sure ruin. The Half
Kelly beats the Double Kelly, leading to a higher growth but with
a lower risk.

Figure 2 shows the experiment counterpart of Figure 1.
For 10,000 trades, i.e., the most plausible scenario for the
Kelly criterion to work well, the different values in mean,
standard deviation and median obtained from the simulations
are summarized in the levels of mean log wealth. The Full Kelly
maximizes the expected logarithm of the final wealth, and it is
possible to notice that under betting can still have a positive
growth. Over betting, instead, requires more attention as it could
lead to disastrous events in the long run. This is the case of the

Triple Kelly strategy (the final wealth is very close to zero). As for
the Double Kelly, the mean final wealth is higher than the initial
one but nevertheless lower than that obtained with both the Half
and Full Kelly.

3.2. Real Data Examples
In this section, we evaluate the performance of the Kelly Criterion
used either on single stocks or on portfolios composed with
equities listed in the EuroStoxx50. We evaluate the performance
of different portfolios created using the mean-variance approach.

3.2.1. Kelly Criterion When Trading on a Single Equity
We consider Banca Intesa as the reference stock. It concerns
one of the major Italian banks and it is listed in both the
FTSEMIB and the EuroStoxx50 indexes. Daily returns are
computed from the adjusted prices observed on daily basis from
January 1, 2007 to December 31, 2018 (2,920 observations). The
distribution of the observed returns has mean µ = 0.000407
and variance σ 2 = 0.000712. We consider an annual constant
risk-free rate of 1%, that converted on daily basis corresponds
to: rdaily = 0.01

252 = 3.968254e5.
To compute the optimal (Full) Kelly fraction we plug the

risk/return information into Equation (9)

f ∗ = µ − r

σ 2
=

0.000407− 0.01
252

0.000712
≈ 0.5159

The trading strategy is implemented as follows. We consider a
full Kelly portfolio composed of Banca Intesa and the risk-free
asset that is rebalanced in each trading day to keep the portfolio
weights of the two assets fixed. The portfolio value at time t + 1
is given by

Wt+1 =
(

Wt −
(

Wt · f ∗
))

·
(

1+ rft
)

+
(

Wt · f ∗
)

·
(

1+ rBIt
)

where rft and rBIt are the observed returns for the risk-free asset

and Banca Intesa, respectively, whilstWt −
(

Wt · f ∗
)

andWt · f ∗
are their portfolio weights.

This strategy is compared with the Half Kelly, the Triple Kelly
and the buy-and-hold strategies considering Banca Intesa as a
unique asset. For sake of simplicity, we assume there are no
transaction costs, and that the risk-free rate corresponds to the
borrowing rate.

The cumulative returns obtained from the different strategies
are represented in Figure 3. The Full Kelly strategy has the
highest final wealth, and reaches the maximum wealth during
the sample period. The Triple Kelly goes almost close to ruin,
thus the investor using this strategy would have lost most of
his wealth after 12 years of investment. The Half Kelly has
the second highest final wealth and in the periods of high
volatility and negative returns is the best-performing strategy.
This result supports the motivations underlying the widespread
use of this strategy among practitioners. Both Half Kelly and Full
Kelly over performed the buy and hold strategy (Banca Intesa),
and this finding further supports the good properties of the
Kelly criterion.

In Table 5, we report three performance indicators for the
compared strategies, namely the Compound Annual Growth
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FIGURE 2 | Mean log-wealth obtained for the different Kelly strategies in the 10,000 trades case.

FIGURE 3 | Cumulative returns for Kelly strategies on the Banca Intesa equity (daily data).

Rate (CAGR), the final wealth and the maximum drawdown.
The Half and Full Kelly over-perform the Buy and Hold strategy,
both w.r.t. CAGR and maximum drawdown. Results obtained
for the Triple Kelly portfolio confirm that over-investment can
have disastrous outcomes, with a maximum drawdown very
close to 95%.

Summarizing, this simple example shows that the Kelly
Criterion can suggest the optimal way to maximize the final
wealth in all cases when the mean and variance of a stock are
known or they can be estimated accurately.

In the following, we use real data to compute the optimal
Kelly portfolio aimed at maximizing the expected growth rate
g∗ according to Equation (13) and compare these portfolios
with that created under the standard Markowitz approach. We
perform both an in-sample and out-of-sample analysis either in
a static or rolling way.

3.2.2. Kelly vs. Mean-Variance
We compare the portfolio optimized under the Full Kelly
criterion and the optimization method introduced in section
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TABLE 5 | Risk-Return performance measurements for the compared strategies

in the single equity case (daily data).

CAGR (%) Final wealth Max drawdown (%)

Banca Intesa 1.23 1.1606 79.2

Half Kelly 2.72 1.3798 25

Full Kelly 3.27 1.4712 48.4

Triple Kelly −0.59 0.4825 94.3

TABLE 6 | Composition of the Tangent Portfolio for in-sample (monthly) data.

N. Equity Weights Returns (%)

1 Vinci 0.2327 0.406

2 Adidas 0.2162 0.381

3 Iberdrola 0.1560 0.243

4 Air Liquide 0.1659 0.188

5 Unilever 0.0843 0.091

6 Sanofi 0.0641 0.107

7 URW 0.0423 0.031

8 Danone 0.0252 0.023

Total Expected return of the Tangent Portfolio 1.490%

Sandard deviation of the Tangent Portfolio 2.062%

Coefficient of variation 1.383%

2.2.3 with the efficient portfolio optimized using the mean-
variance approach on a data set composed of daily returns
of 42 equities listed in the EuroStoxx50 index: Adidas, Air
Liquide, Allianz, Axa, Banca Intesa, BASF, Bayer, BBVA, BMV,
BNP, Carrefour, CRH plc, Deutsche Telekom, Daimler, Danone,
Deutsche Bank, Enel, Engie, Eni, EOAN, Generali, Iberdrola,
Kering, L’Oreal, LVMH, Munchener Ruck, Nokia, Orange,
Philips, Safran, Saint-Gobain, Sanofi, Santander, SAP, Schneider
Electric, Siemens Telefonica, Total, Unibail Rodamco Westfield,
Unilever, and Vinci. Equities are observed from January 1,
2000 to December 31, 2018. The other equities composing the
Eurostoxx50 (Airbus, Anheuser-Busch, Credite Agricole, Endesa,
EssilorLuxottica, ING Groep, Societe Generale, and Volskwagen)
are excluded from the analysis as they showmissing values and/or
were included in the index after the year 2000.

Table 6 shows weights, return and risk of the tangent portfolio
(the portfolio that maximizes the Sharpe Ratio) composed
considering an annual risk free rate of 1%, whilst Table 7 shows
the characteristics of the optimal Kelly portfolio, with no short
and no leverage condition.

Results show that the Kelly portfolio is less diversified with
respect to the tangent portfolio, as it is composed of three
assets only whilst the latter includes eight assets. Comparing the
expected returns and risk of the two models, the Kelly portfolio
gives the investor a higher expected return of0.256% per month,
but it bears a greater standard deviation (2.342%). Nevertheless,
the difference in risk is really negligible if considered in relative
terms, i.e., comparing the values of coefficient of variation.

These findings are consistent with the previous literature,
particularly with Laureti et al. [32] which called this phenomenon

TABLE 7 | Composition of the Optimal Full Kelly Portfolio for in-sample (monthly)

data.

N. Equities Weights Returns (%)

1 Vinci 0.5151 0.899

2 Adidas 0.4082 0.719

3 Sanofi 0.0768 0.128

Total Expected return of the Optimal Kelly 1.747%

Standard deviation of Full Kelly 2.342%

Coefficient of variation 1.341%

“portfolio condensation,” and with Estrada [4] which reports that
portfolios built under the Kelly criterion are less diversified, have
a higher expected return, and higher risk compared to those
composed with the goal of maximizing risk-adjusted returns.

The same findings can be observed in Figure 4. It shows the
efficient frontier composed of 50 portfolios optimized using the
Markowitz criterion, plus the minimum variance portfolio, the
equally weighted portfolio and the tangent portfolio. Moreover,
the capital market line and the optimal Full Kelly portfolio are
also represented.

From Figure 4, we can see that the optimal Full Kelly portfolio
is located on the efficient frontier, but rather far from the capital
market line. Its position in themean-variance space confirms that
it shows both a higher risk and a higher return compared to the
other represented portfolios.

Finally, Figure 5 shows the cumulative returns of the four
portfolios previously represented in the mean-variance space
(Figure 4).

It is possible to notice that 1 unit of wealth invested in the Full
Kelly portfolio grew more than 25 times at the end of the period
whilst in the same period the min-variance and the equally-
weighted portfolios are valued less than one third of the value
of the Kelly portfolio. The latter is also valued more than the
tangent portfolio but, consistent with the literature, it presents
more pronounced drawdowns.

3.2.3. Rolling Optimization
In the previous section we discuss the similarities and differences
of portfolio composed with respect to the Kelly or the Markowitz
optimization criteria. In this section, we investigate about the
behavior of the two criteria when portfolios are optimized in
a dynamic manner using a rolling optimization approach. The
latter considers a lookback period th = (t − h, . . . , t) and
defines the portfolio composition at time t̃ (t̃ = th, th+1, . . . ,Th)
according to the following algorithm:

1. Compute mean and variance-covariance matrix of the assets’
returns observed in t̃.

2. Compute the portfolio weights using a specific optimization
method [Kelly portfolios implemented in Equation (13) or
Markowitz] with inputs identified in step 1.

3. Compute portfolio returns in t̃.
4. Repeat steps 1 to 3 for t̃ ∈ (th+1, ...,T)
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FIGURE 4 | Efficient Frontier and optimal portfolios (monthly data).

Basically, at each time point the portfolio is rebalanced based on
the results obtained when optimizing w.r.t. data observed in the
most recent h time points.

As in the previous section, we use data of the 42 equities listed
in the EuroStoxx 50 and consider their monthly returns from
January 2007 to December 2018 (144 observations). The rolling
lookback period h is set to 24 months (2 years). Thus, we assume
the investment starts on the 25-th month and the portfolio is
rebalanced monthly. Again, we compare the performances of
the tangent portfolio, the minimum variance portfolio and the
optimal Full Kelly portfolio. The equally weighted portfolio,
rebalanced monthly, is considered the benchmark portfolio.

The results can be seen in Figure 6.
We notice that the only portfolio that beats the benchmark

is the optimal Kelly portfolio, and for most of the considered
investment horizons it is the one producing the highest
cumulative return. The minimum variance and the tangent
portfolio follow a very close path, but they are frequently below
the equally weighted portfolio. Table 8 shows some statistics of
the four portfolios. As expected, the Kelly rolling Portfolio has the
highest return and the highest volatility,themaximum drawdown
value is similar to that of the tangent portfolio, but it’s still higher
than the equally weighted and minimum variance one, whilst the
average drawdown is highest in the rolling Kelly. This is typical of
the Kelly criterion approach. Results also show that theminimum
variance portfolio has its typical low-risk characteristic, and in

fact it produces the lowest drawdown and both the smallest
expected return and volatility. Surprisingly, the tangent portfolio
optimized using the Markowitz criterion does not perform well-
compared to the others and particularly with respect to the
benchmark in terms of expected returns.This result is consistent
with the findings of Levy and Duchin [33] who claim that the re-
balanced buy and hold portfolio, that they call the “1/N rule” has
an important advantage over classical diversification methods:
it is not exposed to estimation errors that cause investors who
follow for example the Markowitz rules to either over-invest or
under-invest in a given security. For this reason, the “1/N rule”
may actually outperform the classical diversification methods in
the out-of-sample framework.

We also compared the four portfolios in terms of risk
measures: we consider the Sortino Ratio, which is used to score
a portfolio’s risk-adjusted returns with respect to an investment
target using downside risk (in our case the risk-free rate is
considered as the minimum acceptable return). The equally
weighted portfolio is the one with the best performance. This
is probably due to the highest diversification. However, all the
four considered portfolios have similar values for the Sortino
Ratio. If one focuses on the Sharpe Ratio, the portfolios show
similar results.The rolling Kelly portfolio is ranked first, whilst
the equally weighted is ranked last. The tangent portfolio,
although by definition is the one that maximizes the Sharpe
Ratio, performs worse compared to the minimum variance
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FIGURE 5 | In-sample cumulative returns of portfolios (monthly data).

and the Kelly portfolio. Table 8 also reports the Information
Ratio(IR), which measures the performance of a portfolio
compared to a benchmark index, in our case the Equally weighted
portfolio, after adjusting for its additional risk. Results for
IR shows that the only portfolio having a positive IR, thus
over-performing the equally weighted portfolio, is the rolling
Kelly whilst the other two portfolios do not consistently beat
the benchmark.

3.2.4. Sensitivity Analysis
We investigate about the effect of changes in the width of
the rolling window or in the frequency of returns on the
compound annual growth rate through a sensitivity analysis,
whose results are shown in Table 9. We compared the
CAGR and the annualized standard deviation of the mean-
variance portfolio and of the Kelly portfolio considering
different lengths of the window width, ranging from 2 to
9 years. The comparison is made for daily, weekly, and
monthly returns, each case inducing daily, weekly, and monthly
portfolio rebalancing.

Results in Table 9 reports values of the two metrics (CAGR
and annualized standard deviation). It is worth to notice that,
using a short window width (2 years of returns) to compute both
the expected average returns and variance-covariance matrix,
the rolling Kelly portfolio performs outstandingly better than
the tangent portfolio. Moreover, the 2-years window width case
produces the best performance of the rolling Kelly portfolio

despite of both other possible lengths of the window width and
the time frequency of returns (daily, weekly, or monthly). The
opposite happens for the tangent portfolio: longer windows lead
to higher returns. We conjecture that this result is driven by
the nature of the Kelly criterion. The latter points out the best
size of the bet that, in a series of favorable bets, maximizes
the final wealth of the gambler/investor. Thus, it is reasonable
to argue that the Kelly criterion is able to capture very well
the short term trends of the returns a set of stocks. However,
the Kelly portfolio still works fine when the width of the
rolling window increases in length, particularly in the case of
daily returns. Whereas, CAGR is usually unfavorable if we use
weekly returns, thus this choice is somehow discouraged. At
the same time, results provide evidence that daily returns lead
to portfolios with higher CAGR and higher standard deviation
respect to monthly and weekly returns. This is probably from
the higher frequency of rebalancing that portfolio optimized on
daily returns have compared to those optimized using weekly or
monthly returns.

To summarize, the rolling Kelly portfolio performs well
if the window width is small (2 years in our study)
and it is possible to create small portfolios rebalanced on
daily basis. As for the risk side, the rolling Kelly portfolio
performs worst compared to the rolling tangent portfolios.
In all cases, the standard deviation of Kelly portfolio is
larger and of course it tends to grow as the frequency of
returns increases.
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FIGURE 6 | Out of sample cumulative returns for 24-months rolling portfolios (monthly data).

4. DISCUSSION

This paper shows the theoretical framework of the Kelly criterion
as a portfolio optimization method. The criterion was introduced
with the purpose of improving information theory, but thanks to
the work of various economists and researchers it was applied as
a stock market investment strategy. This work also demonstrates,
using the Monte Carlo method, all the properties of the Kelly
criterion for a continuous probability distribution of returns.
We also showed that ignoring the optimal bet size can lead to
unpleasant outcomes if the fraction of the capital is greater than
that suggested by the Kelly criterion, whilst it can be a reasonable
risk adverse strategy if the bet size is lower.

Our simulation and applications on real data show that the
use of the Kelly criterion to find the optimal share of wealth to
invest in a stock produced results consistent with the literature.
The knowledge of the first twomoments of the distribution of the
returns makes the Kelly criterion able to find the optimal fraction
to be invested in a single stock, maximizing the final wealth over
a long series of trades. However, bad estimates of mean and
variance, or over-betting can lead to unpleasant outcomes, whilst
under-betting is a risk controlled strategy. In the multivariate
case, we demonstrated that the portfolio constructed under the

TABLE 8 | Out of sample performance of the 24-months rolling portfolios (monthly

data).

Portfolio Rolling

Kelly

Rolling

Tangent

Rolling

Min. Var.

Equal

weights

Cagr 15.01% 10.55% 7.95% 12.41%

Final wealth 4.05 2.73 2.15 3.22

Max drawdown 24.52% 25.74% 15.74% 22.39%

Average drawdown 9.29% 7.29% 5.22% 5.61%

Mean 1.34% 0.95% 0.72% 1.08%

St. Dev. 5.82% 4.69% 3.92% 4.63%

Sortino ratio 0.369 0.305 0.264 0.375

Sharpe ratio 0.705 0.582 0.688 0.506

Information ratio 0.124 −0.133 −0.0467 Na

Kelly criterion lays in the efficient frontier, and it has a higher
mean and risk, but is less diversified with respect to the tangent
portfolio optimized under the Markowitz model. When used in
a dynamic approach, specifically in a rolling window fashion, the
portfolio optimized with the Kelly criterion reaches higher CAGR
and a poorer drawdown performance respect to the Markowitz
portfolios. The same evidence has been provided in Hsieh and
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TABLE 9 | Results of the sensitivity analysis.

Returns
CAGR Window

(S.D.) 2 years 3 years 4 years 5 years 6 years 7 years 8 years 9 years

Monthly Kelly 15.02% 8.65% 8.80% 14.61% 14.98% 10.37% 13.91% 13.21%

(19.8%) (18.3%) (21.3%) (21.2%) (22.0%) (20.85%) (19.6%) (19.3%)

Tangent 9.63% 10.68% 9.2% 11.82% 12.75% 12.95% 13.73% 13.00%

(14.9%) (14.61%) (15.5%) (14.7%) (14.5%) (14.9%) (15.1%) (14.9%)

1 5.17% −2.03% −0.40% 2.79% 2.23% −2.58% 0.18% 0.21%

(4.9%) (3.7%) (5.8%) (6.5%) (7.5%) (5.9%) (4.4%) (5.0%)

Weekly Kelly 13.18% 3.28% 7.74% 12.3% 13.37% 8.34% 9.57% 12.57%

(27.3%) (26.0%) (24.4%) (23.8%) (24.0%) (24.2%) (22.9%) (22.7%)

Tangent 10.86% 7.52% 5.86% 10.91% 12.31% 11.52% 12.20% 13.25%

(20.0%) (20.0%) (19.5%) (18.4%) (18.7%) (18.3%) (18.8%) (18.9%)

1 2.32% −4.24% 1.88% 1.39% 1.06% −3.18% −2.63% −0.68%

(7.2%) (6.0%) (4.9%) (5.4%) (5.2%) (5.9%) (4.1%) (3.8%)

Daily Kelly 19.72% 9.49% 13.84% 11.47% 16.50% 13.77% 15.97% 16.31%

(27.8%) (26.3%) (24.5%) (24.2%) (25.3%) (25.1%) (24.8%) (24.9%)

Tangent 14.39% 12.09% 9.23% 12.70% 16.31% 16.16% 18.13% 17.85%

(21.0%) (20.6%) (20.3%) (19.8%) (20.2%) (20.2%) (20.5%) (20.8%)

1
5.33% −2.60% 4.61% −1.23% 0.19% −2.39% 2.16% −1.54%

(6.8%) (5.3%) (4.3%) (4.4%) (5.1%) (4.9%) (4.3%) (4.1%)

Barmish [34]. Increasing the number of trades and the frequency
of rebalancing increases the performance of the Kelly portfolio
but with higher risk. On the downside, this increasing number of
trades increases the transition costs, which were not taken into
account in this work. Thus, rebalancing too frequently does not
seem a wise decision. From the sensitivity analysis, it appears
that rebalancing frequently, i.e., each week, both the Kelly and
the Tangent portfolios is not wise. Moreover, the optimization
works at its best if the window width is large 2 years and with
daily rebalancing.

When we used the Kelly criterion in the real stock
market world, our results were coherent with the properties
demonstrated in the Monte Carlo simulations, and also coherent
with the previous literature. The portfolio optimized with the
Kelly criterion, with no short and no leverage constrains, lays
on the efficient frontier computed with the Markowitz approach,
and is more risky but gives higher reward to the investors
respect to the tangent and the minimum variance portfolio.Being
placed on the efficient frontier causes the Kelly portfolio to be
consistent with the Markowitz mean-variance (M-V) portfolios
and thus with the Capital Asset Pricing Model (CAPM) also.
Both approaches, MV and CAPM, have been developed within
the expected utility theory, but Levy [35] recently demonstrates
that MV and CAPM can coexist with Consensus Prospect Theory
(CPT). In this respect, it is reasonable to assume that this
coexistence is still valid if portfolios are optimized using the
Kelly criterion. Overall, the rolling method used to compute
the variance-covariance matrix and the mean returns showed
that a constrained Kelly optimization is a good method for a
dynamic portfolio optimization, but still has pros and cons of
the Kelly criterion: high reward and high risk. In our case the
Kelly portfolio had higher returns respect to the tangent portfolio
constructed under the mean variance approach, but this higher
reward comes with a higher volatility and a poor drawdown.
Similar results where fund in Kim and Shin [3] and Estrada [4]

even if they used a different approach when they compute the
optimal Kelly fractions.

If the gamble is favorable or the probability distribution of
returns is known, or can it be estimated correctly, no other
strategy can beat the Kelly criterion in the long run if it is followed
diligently. But this is not a very common case. Estimation
errors are not rare and can lead to over betting the optimal
fraction, and we have seen that this is not pleasant because it
can lead to a lower final wealth or in the worst case to the
ruin of the investor. However, optimizing the portfolio with the
Kelly criterion is still a valid strategy for risk-seeking investors
that also are comfortable with undiversified portfolios, and this
strategy can lead to high returns, especially if the market is
somehow bullish.

To conclude, we notice that previous literature documents
that the Kelly criterion optimization generally provides
consolidated results: a high return on the long run, high
variance and many losses on the short term. Our future research
is addressed to further increase the performance of Kelly
portfolios even in the short term. We are currently working on
investigating about the benefits on portfolio risk deriving from a
robust estimation of the variance-covariance matrix. Moreover,
since the Kelly criterion is the best strategy to use on a series
of favorable bets, its use in option strategies and derivatives is
also under investigation as it could result in maximizing the
benefits compared with the traditional trading strategies. Last
but not least, we will implement the method introduced in Iorio
et al. [36, 37] to select stocks to be included in a Kelly portfolio
through P-spline clustering of time series.
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