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A copula-based approach is used to estimate the dependence among three lumber
strength properties: modulus of elasticity (MOE), modulus of rupture (MOR), and ultimate
tensile strength (UTS). MOR and UTS are destructive measurements so they cannot be
obtained simultaneously for lumber specimens. The dependence modeling is possible
under an appropriate experimental design with i) a shoulder group for rupture, ii) a shoulder
group for tension, and iii) other groups proof loaded in either the rupture or tension mode
with survivors tested to failure in the mode that was not initially tested. With a fitted copula
model based on an assumption of no damage due to the proof loading procedure, we
conclude that there is a strong dependence betweenMOR andUTS conditioning onMOE.
To assess the “no damage assumption,” a graphical method with simulated data from the
fitted copula model is used. It suggests that there may be some damage to the lumber
specimens due to proof loading, especially for weaker lumber specimens. Information from
the dependencemodel can potentially help reducemonitoring costs in the lumber industry.
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1 INTRODUCTION

Lumber structural reliability is contingent upon setting and monitoring strict structural engineering
design values for mechanical strength properties [1, 2]. Two crucial physical and mechanical
structural properties are ultimate tensile strength (UTS) and modulus of rupture (MOR). UTS is
defined as the maximum tensile stress that a lumber specimen can sustain in a direction parallel to
the grain before failure.MOR is defined as the maximum bending stress that a lumber specimen can
sustain before failure. A strong dependence between these two properties has important implications
for monitoring and verification of strength properties. With strong dependence, not all the strength
properties need to be tested. The cost of monitoring lumber reliability can be drastically reduced by
leveraging dependence: measuring only one of the strength properties and predicting the other via
their strong dependence.

The main contributions in this paper are a) description of an experimental design for measuring
lumber strength properties with proof loading that allowed for estimation of dependence of
destructively measured properties and graphical assessment of possible weakening due to proof
loading and b) use of dependence models with flexible univariate margins and flexible bivariate
copulas to summarize joint and conditional dependence. The structure of the experimental data led
to part of the data being used for fitting the dependence models and other parts being used for
sensitivity analysis and assessment of damage due to proof loading stress.
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Both MOR and UTS are measured by destructive testing,
which loads a lumber specimen on a specific strength testing
machine until failure. Since a single lumber specimen cannot
break twice, estimating the dependence of MOR and UTS is
challenging as the two properties cannot be observed
simultaneously. To address this issue, Refs. [3–5] introduce
the first ever proof loading experiments designed to estimate
dependence between the destructive lumber strength
properties MOR and UTS. Proof loading is a technique used
in the lumber industry to eliminate the weakest specimens in a
population. It tests a specimen up to a predetermined load level
and passes specimens through which do not fail at this level.
The proposed experiment stresses each lumber specimen in
either MOR or UTS mode up to a certain load level. The
survivors are then tested to failure in whichever mode that
has not been tested.

Unlike destructive strength properties such asMOR and UTS,
elastic properties of lumber measure the bending deflection of a
specimen caused by a low-level load, with the specimen
completely recovering after measurement. One of the most
common elastic properties of lumber is the vibration modulus
of elasticity (MOE). A strong dependence between the elastic and
strength properties has been demonstrated by various authors.
Reference [6] considers different bivariate models such as
bivariate Weibull and bivariate inverse Gaussian for MOR and
MOE. Reference [7] fits a two-parameter Weibull distribution for
MOR and a normal distribution for MOE and uses the bivariate
Gaussian copula to model the dependence between MOR and
MOE. The strong dependence between the elastic and strength
properties can be used to infer the conditional dependence of
MOR and UTS given MOE. Thus, Ref. [8] considers a trivariate
normal distribution after log-transformingMOR,UTS, andMOE,
instead of directly estimating the dependence between MOR and
UTSwith bivariate models. However, the normality assumption is
very restrictive. A more flexible approach of constructing a
trivariate distribution for the elastic and strength properties is
preferred.

To leverage the proof loading technique and take the well-
known fact that lumber specimens have elastic properties that are
highly correlated with the strength properties into consideration,
an experiment was designed and a copula-based method was
implemented to estimate the joint dependence ofMOR, UTS, and
MOE. The designed experiment was conducted in the summer of
2011 at a wood processing lab located in FPInnovations. Lumber
specimens were randomly divided into six proof loaded groups
and two shoulder groups. The specimens of the shoulder groups
were tested to failure in a tension or a bendingmachine. There are
two kinds of proof loaded groups: specimens stressed with a
bending machine in rupturemode to a certain bending load level,
or specimens stressed with a tension machine in tensionmode to
a certain tension load level.

Using the resulting data of the summer-of-2011
experiment, the dependence of MOR, UTS, and MOE is
modeled via a trivariate distribution constructed by a
copula-based method. Estimation is done sequentially. After
fitting appropriate univariate marginal distributions, the
second step of the estimation finds appropriate copula

families for i) the joint distributions of (MOR, MOE) and
(UTS, MOE) and ii) the conditional distribution of (MOR,
UTS) givenMOE. This second step of the estimation is flexible
and allows different dependence structures to be considered.
We found strong conditional dependence between MOR and
UTS given MOE.

In addition to estimating the joint dependence of MOR, UTS,
and MOE, the summer-of-2011 experiment also allows us to
assess whether proof loading led to weakening of the lumber
specimens. References [8–10] assume that proof loading does not
damage the lumber specimens. The no-damage assumption may
well be unrealistic in certain situations, especially for the weaker
specimens or when the proof loading level is high. The design of
the summer-of-2011 experiment allows us to assess damage
accumulated in one strength mode caused by proof loading in
a second strength mode with predetermined load levels. The
predetermined load levels are designed to fail 60, 40, and 20% of
the specimens during the proof loading procedure. Our damage
assessment indicates that there is damage to specimens due to
proof loading, especially those specimens that are weaker.
Surprisingly, a high proof load level does not necessarily imply
damage. When specimens are proof loaded in the MOR mode
with a high proof load that fails 60% of the specimens during the
proof load procedure, our analysis suggests that the survivors’
UTS strengths are weakened. However, the same phenomenon is
not observed on the survivors’MOR strength when specimens are
proof loaded in the UTS mode with a similar high load level
setting; those survivors’MOR strengths seem not to be weakened.
Analyses in previous papers on the topic of lumber strength
properties did not discuss potential weakening from proof
loading.

The remainder of the article is organized as follows. In
Section 2, we introduce the experiment and resulting lumber
data set, together with an outline of the univariate analysis. In
Section 3, a copula-based method is used to estimate the
dependence among lumber properties under the experimental
proof loading design. In Section 4, we present a graphical
method for the copula models which takes into account
possible weakening of lumber from the proof loading stage.
This method suggests that there was some weakening. Section 5
has some concluding remarks, including how future
experiments can better assess the weakening of lumber from
proof loading.

2 LUMBER EXPERIMENT FORMEASURING
STRENGTH PROPERTIES AND THEIR
DEPENDENCE
In this section, we introduce the summer-of-2011 experiment.
The experiment and resulting data set are summarized from Refs.
11 and 12. This section also provides a summary of the univariate
analysis for the three strength variables: MOR, UTS, and MOE.

2.1 The Summer-of-2011 Experiment
The lumber data set was experimentally collected in the summer
of 2011. The experimental materials came in three bundles of
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lumber: two bundles labeled No. 1 and No. 2 were of grade-type
SPF 1650f-1.5E, while one bundle labeled No. 3 was of type SPF
No. 2. All the three bundles are mixtures from the Spruce, Pine,
and Fir species. Eight hundred-seventy specimens from these
three bundles were divided into eight experimental groups: R20/
40/60/100 and T20/40/60/100. For all the experimental groups,
the elastic propertyMOE was always measured and then adjusted
for its moisture content following a standard procedure of
American Standard Test Method D1990. Note that, for
simplicity, MOE refers to adjusted MOE in the remainder of
this article.

Groups R60/40/20 and T60/40/20 are called the proof loaded
groups, where specimens were tested under different levels in the
rupture mode and in the tension mode, respectively. Each group
had 87 specimens. The MOE was always measured before proof
loading.

For groups R60/40/20, specimens were first proof loaded in the
rupture mode. If a specimen survived the rupture mode, it was
then loaded to failure on the tension machine to measure its UTS.
The experiment had been designed to fail 60, 40, and 20% of the
specimens in the rupturemode for the R60, R40, and R20 groups,
respectively. For a specimen in these three rupture mode proof
loading groups, MOR was observed if the specimen failed due to
proof loading in the rupture mode and UTS was observed
otherwise.

Similarly, for groups T60/T40/T20, specimens were proof
loaded in the tension mode. If a specimen survived the tension
mode, it was then loaded to failure on the bending machine to
measure its MOR. Again, 60/40/20 stands for the percentage of
the lumber broken in the proof load procedure. For a specimen in
these three tensionmode proof loading groups,UTSwas observed
if the specimen failed due to proof loading in the tension mode
and MOR was observed otherwise.

On the other hand, groups R100 and T100 are called the
“shoulder groups,” and each had 174 specimens; the specimens in
R100/T100 were loaded in a bending/tension machine,
respectively, and tested to failure. Therefore, for group R100,
MOE and MOR were measured. Similarly, for group T100, MOE
and UTS were measured.

Related experiments were considered in earlier research.
Reference [8] had data from two shoulder groups and one
experimental group where specimens were proof loaded in the
rupture mode to approximately the 40th percentile with
survivors tested to failure in the tension mode. Reference
[5] had an experiment with specimens proof loading in the
tension or the compression mode, and the survivors were
tested to failure in the rupture mode. Our experiment is a
symmetric design with the R and the T groups introduced
above. The symmetric design strengthens the dependence
signal between MOR and UTS provided by the proof
loading techniques as suggested by [9] and demonstrated
by [11]. In addition, our experiment does not only consider
low load levels. The load levels range from failing 20–60% of
the specimens during the proof loading procedures. The
specification of the load levels enables us to quantify how
the damage accumulated in the survivors as the proof load
level increases.

2.2 Fitting Univariate Models for Strength
Variables
Analysis with copula models usually involves two steps: the
first step identifies and fits the univariate marginal
distributions, and the second step fits appropriate copula
families to represent the multivariate dependence structure.
In this section, we summarize the univariate analyses forMOE,
MOR, and UTS. The analysis is based on shoulder groups T100
and R100.

The summary statistics for MOR, UTS, and MOE based on
groups R100 and T100 are given in Table 1. From both the
histograms (not included here) of these variables and the
summary statistics, it can be seen that the distributions of
MOR and MOE are roughly symmetric, and the distribution of
UTS is right-skewed.

In previous papers discussing distributions for these three
variables, Weibull, log-normal, and normal distributions have
been used. The normal distribution is symmetric while the
Weibull and log-normal distributions are right-skewed. To
measure how well each of these three candidate distributions
fits the collected data, we calculate the Akaike information
criterion (AIC) values for the fitted Weibull, log-normal, and
normal distributions for MOR, UTS, and MOE. The AIC
measures a model’s suitability based on the log-likelihood and
uses a “penalty” of the number of parameters to avoid overfitting.
A substantially lower AIC indicates a better fit, but generally
diagnostics such as quantile-quantile plots are needed to assess
adequacy of fit. The AIC values for the fittedWeibull, log-normal,
and normal distributions for MOR, UTS, and MOE are included
in Table 2.

Based on exploratory analysis and diagnostic quantile-quantile
plots together with extreme value theory, we choose to use
Weibull distributions for MOR and UTS, and the normal
distribution for the MOE, as the univariate step before fitting
copula models. The Weibull distribution is one of the limiting
distributions of the minimum of a sequence of weakly dependent
random variables. This fact often justifies the use of the Weibull
distribution for modeling the failure strength resulting from the
weakest link. On the other hand, the normal distribution is a
reasonable model for the elastic properties since the overall
elasticity of a specimen depends on the average elasticity over
different segments of the lumber. With these choices for the three
variables, the resulting maximum likelihood estimates with
standard errors for the model parameters are summarized in
Table 2.

3 COPULA-BASED DEPENDENCY
ANALYSIS

In this section, we use a copula-based method to estimate the
dependence among the three lumber strength variables MOR,
UTS, andMOE. More specifically, the R100 and T100 groups are
used to estimate the bivariate distributions (MOR, MOE) and
(UTS, MOE). The R20 and T20 groups are used to estimate the
conditional bivariate distribution of (MOR,UTS) givenMOE, and

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5786143

Cai et al. Dependence Among Lumber Strength Properties

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


then this combination of the two preceding bivariate
distributions leads to the trivariate distribution of (MOR,
UTS, MOE). The R40/R60/T40/T60 groups are used to assess
the fits of different trivariate models. A brief introduction to the
notion of copula is included in Section 3.1 before analyses are
presented in Sections 3.2 and 3.3.

3.1 Brief Introduction to Copulas for
Dependence Modeling
From Ref. [13], for a d-variate distribution F with univariate
margins F1, . . . ,Fd, the copula associated with F is a distribution
function C:[0,1]d→ [0, 1] with uniform (0,1) margin that satisfies

F(x) � C[F1(x1), . . . , Fd(xd)], x ∈ Rd . (1)

If F is a continuous d-variate distribution function with
univariate margins F1, . . . ,Fd and quantile functions
F1

−1, . . . ,F−1d , then

C(u) � F[F−1
1 (u1), . . . , F− 1(ud)], u ∈ [0, 1]d ,

is the unique choice. If F1, . . . ,Fd are absolutely continuous with
densities f1, . . . ,fd, respectively, the joint density from
differentiating Eq. 1 is

f (x) � c[F1(x1), . . . , Fd(xd)] f1(x1)/fd(xd), (2)

where c(u) � zdC(u)/zu1/zud .
Copula models are useful for dependence analysis because

F1, . . . ,Fd can be arbitrary univariate margins, chosen separately
from the dependence structure represented by the copula C. For
statistical analysis, parametric univariate models are fitted for
F1, . . . ,Fd, followed by parametric models for C. Please refer to
Ref. [14] for a more detailed introduction to copula theory,
models, and applications.

3.2 Copula-Based Model Analysis for Three
Strength Variables
For simpler notation, let X �MOR, Y � UTS, and Z �MOE, with
realized values xi,yi,zi if these are observed for specimen i in an
experimental group. The proposed analysis on the lumber data set
based on the copula method is outlined below.

1 For group R100: Observed data are (zi,xi). We fit a bivariate
copula model for MOE and MOR to estimate the dependence
between x and z based on the copula likelihood function.

2 For group T100: Observed data are (zi,yi). We fit a bivariate
copula model for MOE and UTS to estimate the dependence
between y and z based on the copula likelihood function.

3 For group R20/40/60: Observed data are (zi,xi) for xi below the
20/40/60th-percentile threshold x(20/40/60), or (zi,x

(20/40/60),yi*)
otherwise, where yi* is a weakened measure of UTS after proof
loading in the rupture mode.

4 For group T20/40/60: Observed data are (zi,yi) for yi below the
20/40/60th-percentile threshold y(20/40/60), or (zi,y

(20/40/60),xi*)
otherwise, where xi* is a weakened measure ofMOR after proof
loading in the tension mode.

5 For the combination of the R20 and T20 groups, we estimate a
parameter for the conditional dependence of MOR and UTS
given MOE.

3.3 Analysis Assuming No Damage due to
Proof Loading
To simplify the analysis, we first assume that there is no
damage or weakening in the proof loading procedure for the
R20/T20 groups. That is, for group R20, yi*�yi for all i for the
lumber specimens that survive the bendingmode. Similarly, for
group T20, xi*�xi for the lumber specimens that survive the
tension mode. In making reference to cumulative damage
theory, Ref. [15] suggests that a very small percentage will
be weakened and that residual strength is virtually equal to
original strength. In Section 4, a graphical method is used to
assess the validity of the “no weakening” assumption for the
R20/T20 groups.

3.3.1 Bivariate Analysis for (MOE, MOR) and
(MOE, UTS)
We analyze the dependence between the bivariate observations
based on groups R100 and T100. To decide whether non-
Gaussian copulas might be required, deviations for bivariate
Gaussian dependence can be assessed after variables have been
(rank) transformed to N (0, 1). Non-Gaussian dependence

TABLE 2 | The parameter estimates and standard errors for the fitted Weibull
distributions for MOR, UTS, and fitted normal distribution for MOE. The
Weibull density parametrization being used is fWeibull(x; β, λ) �
βλ−1(x/λ)β− 1exp[−(x/λ)β] for x>0. The AIC values for the fitted Weibull, log-
normal, and normal distributions are on the right-hand side.

Variable Parameter Estimate (s.e.) Weibull Normal Lognormal

MOR β 3.859 (0.221) 717.3 715.4 733.1
Weibull λ 7.316 (0.152) — — —

UTS β 2.796 (0.157) 676.9 682.6 676.3
Weibull λ 5.051 (0.145) — — —

MOE μ 1.580 (0.015) 99.0 83.5 109.1
Normal σ 0.271 (0.010) — — —

TABLE 1 | Summary statistics for MOR, UTS, and MOE based on the R100 and T100 groups.

Minimum 1st quartile Median Mean 3rd quartile Maximum

MOR (R100) 1.975 5.369 6.611 6.625 7.709 11.747
UTS (T100) 0.938 3.275 4.293 4.498 5.453 9.880
MOE (R100 and T100) 0.734 1.413 1.585 1.581 1.753 2.412
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would be relevant if the scatterplot is far from the elliptical
shape, with tail asymmetry or sharper corners (Section 1.4 of
Ref. [14]). In addition, sample semi-correlations ρ̂−N , ρ̂

+
N can be

computed from the points in the lower quadrant and upper
quadrant, respectively, to get an assessment of tail asymmetry
(more dependence in one joint tail than another). For a variable
with n observations, if the ith order statistic is rank transformed
to i−1/2

n , then Φ−1(i−1/2n ) is the normal score for that variable,
where Φ is the cumulative distribution function (CDF) of the
standard normal random variable. The scatterplot and normal
scores plot of (MOE, MOR) based on R100 and the plots of
(MOE, UTS) based on T100 are shown in Figures 1 and 2,
respectively. From the plots, it can be seen that both pairs of
observations have strong dependence. In addition, the
correlations and semi-correlations of the normal scores for
R100 and T100 are given in Table 3. The semi-correlations
indicate slight asymmetric dependence in the joint tails for both
groups. These diagnostics suggest that, for two bivariate

margins, we can use Gaussian copulas or parametric families
of copulas that deviate a little from Gaussian.

Let the joint distribution of (MOR, UTS, MOE) be

F(x, y, z; η, δ) � C[F1(x; η1), F2(y; η2), F3(z; η3); δ],
where δ is the vector of dependence parameters. F1,F2,F3 are the
univariate CDF’s of MOR, UTS, MOE, respectively, with
corresponding densities f1,f2,f3 and parameter vectors η1, η2, η3,

FIGURE 1 | Left: scatterplot of (MOE, MOR) based on R100. Right: normal scores plot of (MOE, MOR) based on R100.

FIGURE 2 | Left: scatterplot of (MOE, UTS) based on T100. Right: normal scores plot of (MOE, UTS) based on T100.

TABLE 3 | The correlation and semi-correlations of the normal scores for R100
and T100. ρ̂N denotes the correlation of normal scores. The semi-correlations
ρ̂−N and ρ̂+N denote the correlations in the lower quadrant and upper quadrant,
respectively, in the right-hand side of Figures 1 and 2.

Group Variable 1 Variable 2 ρ̂N ρ̂ −
N ρ̂+

N

R100 MOE MOR 0.716 0.432 0.518
T100 MOE UTS 0.667 0.398 0.337
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and η � (η1, η2, η3). Let F12,F13,F23 be the bivariate marginal
CDF’s with respective copula CDF’s C12,C13,C23 and copula
densities c12,c13,c23. From Eq. 2 applied to bivariate margins,
the log-likelihood functions for the R100 group and T100 groups
are as follows, respectively:

LR100 � ∑
i

{log c13[F1(xi; η1), F3(zi; η3); δ13] + log[f1(xi; η1)]
+ log[f3(zi; η3)]},

(3)

LT100 � ∑
i

{log c23[F2(yi; η2), F3(zi; η3); δ23] + log[f2(yi; η2)]
+ log[f3(zi; η3)]},

(4)

where δ13, δ23 are the dependence parameters for the (1,3) and
(2,3) margins, respectively. These likelihood functions measure
the support provided by the data for possible values of the
corresponding parameter vectors.

For multivariate analysis with copula models, it is common to
use a two-stage estimation method to assess the adequacy of the
univariate and copula models, since the dependence modeled
through the copula is separated from the univariate margins. The
first stage finds good fitting parametric models for univariate
margins, and the second stage fixes the univariate parameters and
estimates copula parameters by maximizing the log-likelihood.
The two-stage estimation method is statistically efficient unless
there is very strong dependence. In addition, the two-stage
estimation approach is also a convenient way to compare
different copula models and is less sensitive to copula model
misspecification. Please refer to Section 1.5.2 of Ref. [14] for
details of the two-stage estimation method.

With the two-stage estimation method, we fix the univariate
parameters as in Table 2 and consider a few parametric bivariate
copula models for R100 and T100 data. Chapter 4 of Ref. [14] has
densities and properties of the parametric copula families that we
fit. We only consider a few copula families which differ a little
from Gaussian; these are summarized next.

• The bivariate t(ν) copula is similar to bivariate Gaussian
except it has more dependence in the joint tails as v>0
decreases.

• The bivariate Frank copula has similar properties to
bivariate Gaussian but has less dependence in the joint
tails than Gaussian.

• The bivariate Gumbel copula has more dependence in the
joint upper tail than joint lower tail, and reflected Gumbel
satisfies the converse. If V1,V2 are U (0, 1) random variables
such that (V1,V2)∼C12, then the reflected copula of C12 is the
distribution of the reflected pair (1 − V1, 1 − V2) leading to
C12,reflected(v1, v2) � v1 + v2 − 1 + C12(1 − v1, 1 − v2).

The log-likelihood and AIC values based on the copula
families are given in Table 4. The different families provide
similar fits, and the more tail asymmetric copulas (Gumbel
and reflected Gumbel) fit less well. Based on the AIC values
and the bivariate scatterplots, there are not much improvements
on the bivariate Gaussian copulas, so for simplicity of
interpretation, we consider Gaussian copula to be adequate for
both R100 and T100. In the next subsection, we consider the
trivariate copula with an additional bivariate copula for the
conditional dependence of MOR, UTS given MOE.

3.3.2 Trivariate Analysis on MOE, MOR, and UTS with
the Vine Copula
In this section, we analyze the dependence among the trivariate
observationsMOE,MOR, andUTS. Assuming a vine structure on
three variables as shown in Figure 3, the copula density is

f123 � c13(F1, F3; δ13) · c23(F2, F3; δ23) · c12;3(F1|3, F2|3; δ12;3) · f1f2f3,
(5)

where δ13, δ23, δ12;3 are the dependence parameters associated
with the bivariate copula densities c12,c13,c12;3. The copula
density c12;3 is used for the conditional dependence of MOR
and UTS givenMOE. This vine structure follows naturally from
the experimental design. The two pairs or edges XZ and YZ in

TABLE 4 | Model comparison for groups R100 and T100: the log-likelihood and AIC values based on different parametric copula models with fixed univariate parameters/
distributions. The notation t(ν) indicates the bivariate t copula with degree of freedom parameter ν.

R100 Gaussian t(3) t(6) t(9) Frank Gumbel Reflected Gumbel

Log-likelihood 64.2 62.4 65.1 65.4 65.5 60.8 59.3
AIC −126.3 −122.7 −128.2 −128.8 −128.9 −119.6 −116.7

T100 Gaussian t(3) t(6) t(9) Frank Gumbel Reflected Gumbel

Log-likelihood 51.0 39.9 46.3 48.1 51.4 42.9 41.8
AIC −100.0 −77.8 −90.6 −94.2 −100.8 −83.8 −81.6

FIGURE 3 | A vine structure on three variables with two trees: X �MOR,
Y � UTS, and Z � MOE.
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tree T1 are the two pairs of bivariate variables observed in
groups R100 and T100, and the edge XY;Z in tree T2 allows us to
estimate the conditional dependence between X �MOR and Y �
UTS, which cannot be simultaneously observed, given Z �
MOE. Please refer to Refs. 14,16,17 and 18 for more
information about vines and vine copulas, and their
derivations.

The vine copula is an approach to construct a multivariate
copula with flexible dependence. There is no general method to
construct a multivariate copula from the set of bivariate marginal
copulas, and the vine construction approach avoids compatibility
issues for d ≥ 3 variables by using d−1 bivariate marginal copulas
and (d − 1)(d − 2)/2 bivariate copulas to represent conditional
dependence based on 1,2, . . . , or d−2 variables. In our context,
the conditioning on MOE is natural and we are illustrating the
simplest vine copula with one edge representing bivariate
conditional dependence.

For the groups with proof loading, a complication is a
likelihood function with censored data. Take the group R20 as
an example. Let K1 � {i : (zi, xi) observed}, and
K2 � {j : (zj, x(20), yj) observed}. Let

F1|23(x∣∣∣∣y, z; η, δ) � C1|2;3[F1|3(x∣∣∣∣z; η1, η3, δ13)∣∣∣∣F2|3(y∣∣∣∣z; η2, η3, δ23); δ12;3],
where C1|2;3(·) is a conditional distribution (partial derivative with
respect to the second argument) of the bivariate copula C12;3(·). The
log-likelihood function for the R20 group is

LR20 � ∑
i ∈K1

{logc13[F1(xi;η1),F3(zi;η3);δ13]+ log[f1(xi;η1)]
+ log[f3(zi;η3)]} + ∑

j ∈K2

{logF1|23(x(20)∣∣∣∣∣yj,zj;η,δ)
+ logc23[F2(yj;η2),F3(zj;η3);δ23] + log[f2(yj;η2)]
+ log[f3(zj;η3)]}, (6)

where F1|23(·) � 1 − F1|23(·) is the survival function of F1|23(·) and
yj�y*j is assumed for j ∈ K2. Note that we assume yj�y*j because in
this section we are performing estimation assuming no damage
during proof loading.

Similarly, for group T20, let K ′
1 � {i : (zi, yi) observed} and

K ′
2 � {j : (zj, y(20), xj) observed}. Let

TABLE 5 |Model comparison based on the sum of Eqs 6 and 7 for groups R20/T20: the log-likelihood and AIC values based on different parametric copula models forC12;3

to represent the conditional dependence of (MOR, UTS) givenMOE, with fixed univariate models and fixed bivariate Gaussian copulas C13 for (MOR,MOE) and C23 for
(UTS, MOE). The notation t(ν) indicates the bivariate t copula with degree of freedom parameter ν.

Copula Gaussian t(3) t(6) t(9) Frank Gumbel Reflected gumbel

Log-likelihood −340.2 −340.5 −340.4 −340.3 −340.5 −340.1 −341.6
AIC 682.3 683.0 682.9 682.8 683.0 682.1 685.1

FIGURE 4 | Plots of profile negative log-likelihoods for L13(ρ13), L23(ρ23), L12;3(ρ12;3).
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F2|13(y∣∣∣∣x, z; η, δ) � C2|1;3[F2|3(y∣∣∣∣z; η2, η3, δ23)
|F1|3(x∣∣∣∣z; η1, η3, δ13); δ12;3],

where C21;3(·) is a conditional distribution (partial derivative with
respect to the first argument) of the bivariate copula C12;3(·). The
log-likelihood function for the T20 group is

LT20 � ∑
i ∈K ′

1

{logc23[F2(yi;η2),F3(zi;η3);δ23]+ log[f2(yi;η2)]
+ log[f3(zi;η3)]} + ∑

j ∈K ′
2

{logF2|13(y(20)∣∣∣∣xj,zj;η,δ)
+ logc13[F1(xj;η1),F3(zj;η3);δ13] + log[f1(xj;η1)]
+ log[f3(zj;η3)]}, (7)

where F2|13(·) � 1 − F2|13(·) is the survival function of F2|13(·) and
xj�xj* is assumed for j ∈ K ′

2. To estimate the conditional
dependence parameter δ12;3 of C12;3, we create a log-likelihood
function from the sum of Eqs 6 and 7.

For proof loading to the 40th and 60th percentiles, it might be
more likely that there is some weakening or damage to the
surviving lumber specimens so that the R40/R60/T40/T60
groups are not included in the above log-likelihoods.

To summarize, the sequential steps are as follows in order that
model comparisons can be done at each stage based on the
estimated marginal models of previous stages.

• L1(η1) is the log-likelihood based on a density f1(·; η1) for
MOR from the R100 data.

• L2(η2) is the log-likelihood based on a density f2(·; η2) for
UTS from the T100 data.

• L3(η3) is the log-likelihood based on a density f3(·; η3) for
MOE from the R100 and T100 data.

• L13(δ13) � L13(δ13; η̂1, η̂3), from Eq. 3, is the log-likelihood
based on a density c13(·; δ13) forMOR,MOE from the R100
data, with estimated univariate parameters.

• L23(δ23) � L13(δ13; η̂2, η̂3), from Eq. 4, is the log-likelihood
based on a density c23(·; δ23) for UTS, MOE from the T100
data, with estimated univariate parameters.

• L12;3(δ12;3) � L12;3(δ12;3; η̂1, η̂2, η̂3, δ̂13, δ̂23), from the sum
of Eqs 6 and 7, is the log-likelihood based on a copula
C12;3(·; δ12;3) for the conditional dependence ofMOR, UTS
given MOE from the R20/T20 data, with estimated
univariate parameters and estimated bivariate
dependence parameters for each of MOR, UTS paired
with MOE.

FIGURE 5 | Gaussian copula model and R20. Q-Q plot of observed residual UTS against simulated UTS with the identity line, given MOR greater than its 20th

quantile and MOE in different quantile intervals.
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If MOR, UTS, and MOE follow a trivariate Gaussian copula,
the parametrization involves a partial correlation of transformed
MOR, UTS given MOE to represent the conditional dependence.
Note that for a given correlation matrix R of dimension d×d, the
multivariate Gaussian copula is defined as

C(u,R) � Φd[Φ− 1(u1),Φ− 1(u2), . . . ,Φ− 1(ud);R], u ∈ [0, 1]d ,
when R is positive definite, where Φ denotes the univariate
standard Gaussian distribution function and Φd denotes the
joint CDF of a multivariate normal distribution with mean
vector 0 and covariance matrix equal to the correlation matrix R.

When d�3, R can be written as

R � ⎡⎢⎢⎢⎢⎢⎣ 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

⎤⎥⎥⎥⎥⎥⎦.
To avoid the positive definite matrix constraint, we define the
partial correlation

ρ12;3 � (ρ12 − ρ13ρ23)/ ���������������(1 − ρ213)(1 − ρ223)√
or equivalently ρ12 � ρ13ρ23 + ρ12;3

���������������
(1 − ρ213)(1 − ρ223)

√
. Then the

correlation matrix can be parameterized by (ρ13, ρ23; ρ12;3), and
these parameters are algebraically independent on the cube

(−1,1)3. That is, the vector (ρ13, ρ23; ρ12;3) is free to vary in
(−1,1)3, and the resulting correlation matrix R is always
positive definite.

Under the trivariate Gaussian copula setting, c13, c23, c12;3, c23,
and c12;3 in Eq. 5 can be written as

c13(u, v, ρ13) � cGaussian(u, v, ρ13),
c23(u, v, ρ23) � cGaussian(u, v, ρ23),
c12;3(u, v, ρ12;3) � cGaussian(u, v, ρ12;3),

where

cGaussian(u, v, ρ) � exp〈 − 1
2 {[Φ−1(u)]2 + [Φ−1(v)]2 − 2ρΦ−1(u)Φ−1(v)}/(1 − ρ2)〉�����

1 − ρ2
√

exp〈 − 1
2 {[Φ− 1(u)]2 + [Φ− 1(v)]2}〉 .

The general trivariate vine copula is essentially an extension of the
trivariate Gaussian copula after the latter has been parameterized
to (ρ13, ρ23, ρ12;3). As in Table 4, we can also consider other
parametric copula families for CXY;Z�C12;3 with the log-likelihood
from the sum of Eqs 6 and 7. With the bivariate copula families
summarized in Section 3.3.1, the results are summarized in
Table 5.

No other copula family for C12;3 is substantially better than
Gaussian, so it is simpler to next proceed with the assessment of
the fit of the trivariate Gaussian copula. Note that the graphical

FIGURE 6 | Gaussian copula model and R40. Q-Q plot of observed residual UTS against simulated UTS with the identity line, given MOR greater than its 40th

quantile and MOE in different quantile intervals.
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method for assessing damage introduced in Section 4 is mostly
not sensitive to the choices of the bivariate copulas in the vine.
Different bivariate copulas lead to similar conclusions when using
the proposed graphical method to assess the damage effect of
proof loading. The parameter estimates (and corresponding
conditional standard errors) for this trivariate Gaussian
copula are

ρ13 � 0.726 (0.029), ρ23 � 0.678 (0.034),
ρ12;3 � 0.587 (0.142), ρ12 � 0.789 (0.072). (8)

The standard errors are based on the square root of inverse of
the second derivative of the negative log-likelihoods
corresponding to L13,L23,L12;3 as mentioned above. Not
surprisingly, ρ12;3 is estimated with much less precision
because of the censoring and the fact that MOR and UTS
cannot be measured simultaneously. It can be seen from the
profile negative log-likelihoods in Figure 4 that L12;3(ρ12;3) is
much flatter near the optimal value. Reference [8] uses a trivariate
normal copula with log-normal univariate margins and has
similar estimates of the pairwise correlations of the strength
measurements. Using a regression approach and proof loading
experiments with different upper bound loads, Ref. [5] has some
point estimates of correlation of MOR and MOE exceeding 0.9,
but with wide interval estimates.

4 GRAPHICAL METHOD TO ASSESS THE
DAMAGE EFFECT OF PROOF LOADING

In this section, we take the possible weakening due to proof
loading into consideration and suggest a graphical method, using
Q-Q plots and simulated data from the fitted model, to examine
the empirical damage effect and assess the assumptions used in
Section 3.3. The details of the graphical method are given in
Section 4.1. In Section 3, the parameter estimates and copula
family candidates are based on the groups R100, T100, R20, and
T20; the additional groups R40, R60, T40, and T60 are used for
sensitivity analysis of copula choice and an assessment of the
damage effect of proof loading. This topic is not covered in the
other experiments reported in Section 2. Further analyses are
given in Section 4.2.

4.1 Assessing the Damage Effect
In Section 3, we analyze the lumber data by assuming there is no
weakening due to proof loading. But this assumption may not
hold for all the experimental groups, especially for R40 and T40,
where the level is relatively higher. We propose a graphical
method based on the Q-Q plot to evaluate whether the
estimated dependence parameters represent the damage effect
well enough. Take the group R20 as an example. We can compare
the following two sets of data.

FIGURE 7 | Gaussian copula model and R60. Q-Q plot of observed residual UTS against simulated UTS with the identity line, given MOR greater than its 60th

quantile and MOE in different quantile intervals.
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a. Simulated distribution, with sample size n, for UTS given
MOR is greater than its 20th quantile, based on the fitted
trivariate model and its estimated univariate and dependence
parameters.

b. Observed distribution of residual UTS (i.e., Y*) given
observed MOR is greater than its 20th quantile.

The trivariate distribution of X, Y, and Z is such that the values
of a) should be stochastically larger than those of b), conditioning
onMOE in different quantile intervals. That is, if the dependence
parameters can accurately represent the damage effect, then in the
Q-Q plot of b) against a), we expect to see some or most of the
points below the 45o diagonal line. More points below the
diagonal line would be a sign of more weakening. Similar
comments hold for the Q-Q plots based on the other proof
loaded groups.

We simulated 10,000 sets of trivariate observations of MOR,
UTS, and MOE based on the MLE’s in Eq. 8, and the above-
mentioned Q-Q plots are shown in Figures 5–10 for groups R20/
40/60 and T20/40/60, respectively.

It can be seen that, for most groups, points in the Q-Q plots are
mainly below or near the diagonal identity line; this indicates that
the Gaussian copula model may be fine as a first-order model. For
the R20 and T20 groups, the points are mainly marginally below
the diagonal line. For the R40 and T40 groups, the points are
noticeably mostly below the diagonal line, indicating that there is

some weakening of many specimens that survive to the 40th

percentile. For the R60 group, the points are mostly below the
diagonal line for the bottom half of those that survive in the
rupture mode to the 60th percentile. However, for the T60 group,
the points are fairly close to the diagonal, indicating that the
strong specimens that can survive in the tension mode to the 60th

percentile were not weakened. These Q-Q plots have similar
patterns even if ρ12;3 is increased from 0.589 to 0.800 for the
simulated distribution.

As a sensitivity analysis to the bivariate copula choices in the
vine, the above procedure was applied to other vine copulas
mentioned in Section 3. The conclusions are the same for vine
copulas that are shown to fit well based on the proposed Q-Q
plots. In a case, such as bivariate Gaussian copulas for (MOR,
MOE) and (UTS, MOE) and Gumbel copula for the conditional
dependence given MOE, the Q-Q plots based on the vine model
with these bivariate copulas indicate that this model is not as
appropriate because points tended to deviate further below and
above the 45o diagonal line.

4.2 Further Analyses for the Damage Effect
In this subsection, we summarize further analyses to understand
the accuracy of estimating the conditional dependence parameter.

i. We simulated R100/T100/R20/T20 data sets with the same
sample sizes as in the experiment, assuming the trivariate

FIGURE 8 | Gaussian copula model and T20. Q-Q plot of observed residual MOR against simulated MOR with the identity line, given UTS greater than its 20th

quantile and MOE in different quantile intervals.
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distribution with Gaussian copula having the parameters in
Eq. 8 and Table 2, as well as another parameter set with
ρ12;3 � 0.800 (ρ12 � 0.899) but other bivariate and
univariate parameters unchanged. With 100 replications
in each case, we find that the MLEs of the parameters
each have minimal bias, but the estimate of ρ12;3 has the
largest root mean square error among dependence
parameters (0.17 with true ρ12;3 � 0.587, and 0.08 with
true ρ12;3 � 0.800, whereas the root mean square error is
0.04 for estimates of ρ13 and ρ23).

ii. We simulated data sets as i) with parameters in Eq. 8 and
Table 2. But for the R20/T20, we multiplied the UTS and
MOR values of surviving specimens after proof loading by a
number less than 1. With more “damage,” we find more
negative bias (and increased SD) for the estimated ρ12;3
parameter. For example, for no damage, the bias is in −0.01
with a SD of 0.17; for xi*�axi and yi*�ayi with a uniform in
(0.97,1), the bias is −0.10 with a SD of 0.18; for xi*�axi and
yi*�ayi with a � 0.97, the bias is −0.15 with a SD of 0.25.

iii. For the surviving specimens in the actual experimental R20
and T20 groups, we assume that yi � 1.1y*i (for R20) and
xi�1.1xi* (for T20) for the purpose of another maximum
likelihood evaluation in the sum of Eqs 6 and 7. This
corresponds to the approximation that the actual strength
measurements are 1.1 times the observed weakened
measurements. The maximum likelihood estimate of ρ12;3

increases to 0.747. If 1.05 is used in place of 1.1, the
maximum likelihood estimate of ρ12;3 increases only
to 0.693.

iv. The vine copula approach is flexible enough so that the
strength of conditional dependence can vary with the
conditioning values (of MOE in the current application).
Similar to examples in Ref. [19], we can modify Eqs 6 and 7
with bivariate Gaussian copulas so that C12;3 has parameter
ρ12;3(z) that depends on the value ofMOE. Using variations
of log{ρ12;3(z)/[1 − ρ12;3(z)]} or ρ12;3(z) as linear functions
of a transform of F3(z), the log-likelihood with one extra
regression parameter increased from −340.2 to −339.4; the
regression parameter was always negative suggesting that
the conditional dependence is decreasing as the value of
MOE increases. But this effect is not significant based on
standard errors. For example, with
log{ρ12;3(z)/[1 − ρ12;3(z)]} � β0 + β1F3(z), the vector
(β0, β1) is estimated as (1.17, 2.81) so that ρ12;3 decreases
from 0.77 to 0.16 as F3(z) increases from 0 to 1.

The above extra analyses suggest that the assumption of no
weakening or damage in the R20/T20 survivors might lead to an
underestimation of the parameter representing conditional
dependence of MOR and UTS given MOE. Furthermore, there
is the possibility that the conditional dependence is not constant
over values of MOE.

FIGURE 9 | Gaussian copula model and T40. Q-Q plot of observed residual MOR against simulated MOR with the identity line, given UTS greater than its 40th

quantile and MOE in different quantile intervals.
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5 CONCLUSION

The proof loading experiment discussed in this article allows for
modeling and estimation of the conditional dependence of MOR
and UTS given MOE, in addition to bivariate dependence
parameters for (MOR, MOE) and (UTS, MOE) and univariate
marginal parameters. From model fitting and diagnostics, we
conclude that there is a strong dependence between MOR and
UTS when conditioning on MOE. Our analysis takes a copula-
based multivariate approach with univariate distributions that
can be different and a dependence structure, that is, summarized
via copulas. We also consider the possible weakening or damage
of lumber specimens in the proof loading stage. In earlier
research, Ref. [8] assumed a multivariate normal distribution
after log transforms of the strength measurements and they did
not consider possible damage in the proof loaded group that
survived the first stage. Other than these differences, our
estimates of the pairwise correlations are comparable when
considering the standard errors. A graphical method is used to
assess the possible damage effect, and it suggests that there is
damage to specimens due to proof loading, especially those
specimens that are weaker. The vine copula approach allows
for flexible univariate margins and different bivariate copula
families to summarize marginal and conditional dependence,
and hence this graphical method could be combined with a
sensitivity analysis to the model choices in the vine.

With a sample size of 174 for the two shoulder groups of R100
and T100, the univariate parameters and bivariate parameters for
(MOR, MOE) and (UTS, MOE) can be well estimated via
maximum likelihood. With the sample size of 87 for R20
(bending mode) and T20 (tension mode), because of much
censoring, the conditional dependence parameter of MOR and
UTS given MOE is not as precisely estimated. With a trivariate
Gaussian copula model, the standard error of the conditional
dependence parameter ρ̂12;3 is approximately 0.15, whereas the
standard errors of other bivariate parameters ρ̂13 and ρ̂23 are
about 0.03–0.04. Because the current experiment suggests that
there could be some damage or weakening of specimens from first
stage proof loading, a future experiment could measure MOE
based on traverse vibration for all specimens as well as the
survivors of the first stage proof loading (such as R20, R40,
R60, T20, T40, and T60). In order to provide a consistent
adjustment for moisture content and moisture adjusted MOE,
a small fraction of lumber specimens could be set aside and not
undergo proof loading in order to measure MOE initially and
after other groups have been proof loaded in the first stage. The
extra measurements for survivors should help in estimating a
joint distribution of MOE, MOR, and UTS.

A better probabilistic model for the dependence among the
three lumber strength properties can potentially help reduce the
monitoring cost in the lumber industry. Future work could
include applying the copula-based method to estimate the

FIGURE 10 | Gaussian copula model and T60. Q-Q plot of observed residual MOR against simulated MOR with the identity line, given UTS greater than its 60th

quantile and MOE in different quantile intervals.
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dependence among properties of more tree species and lumber
sizes and including other strength measurements such as ultimate
compression strength in the experimental design. For other
methods of strength prediction, see Ref. [20].
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