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We propose a minimalistic model called the 2θ-burster due to two slow phase
characteristics of endogenous bursters, which when coupled in 3-cell neural circuits
generate a multiplicity of stable rhythmic outcomes. This model offers the benefits of
simplicity for designing larger neural networks along with an acute reduction in the
computation cost. We developed a dynamical system framework for explaining the
existence and robustness of phase-locked states in activity patterns produced by
small rhythmic neural circuits. Several 3-cell configurations, from multifunctional to
monostable, are considered to demonstrate the versatility of the proposed approach,
allowing the network dynamics to be reduced to the examination of 2D Poincaré return
maps for the phase lags between three constituent 2θ-bursters.
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1. INTRODUCTION

Neural networks called central pattern generators (CPGs) [1–8] produce and control a great
variety of rhythmic motor behaviors, including heartbeat, respiration, chewing, and locomotion.
Many physiologically diverse CPGs involve 3-cell motifs, such as the spiny lobster pyloric
network [6], the Tritonia swim circuit [4], and the Lymnaea respiratory CPGs [3]. Pairing
experimental studies and modeling studies has been proven to be the key for disclosing basic
operational and dynamical principles of CPGs [9–14]. Although various circuits and models of
specific CPGs have been developed, the mystery of how CPGs gain the level of robustness and
adaptation observed in nature remains unsolved. It is also not evident what mechanisms a single
motor system can use to generate multiple rhythms, that is, whether CPGs need a specific
circuitry for every function or whether it can be multifunctional to determine several behaviors
[15–17]. Switching between multistable rhythms can be attributed to input-dependent switching
between attractors of the CPG, where each attractor is associated with a specific rhythm. The goal
of this article is to characterize how observed multistable states can emerge from the coupling
using simple neural models on small networks.

This article, based on our original work, reemphasizes some basic principles well established in the
characterization of 3-cell networks made of detailed Hodgkin-Huxley–type models of endogenous
bursters [18–20] and the Fitzhugh-Nagumo–like neurons [21]. We use a bottom-up approach to
show the universality of rhythm-generation principles in such 3-cell circuits regardless of the cell
model selected, which can be the HH-type model of the leech heart interneuron [22, 23], the
generalized Fitzhugh–Nagumo (gFN) model of neurons [24], or the minimalistic 2θ-burster
suggested in this article, provided that all three meet some simple and generic criteria. We are
convinced that one should first investigate the rules and mechanisms underlying the emergence of
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cooperative rhythms in basic neural motifs, as well as the role of
coupling in generating a multiplicity of coexisting rhythmic
outcomes in larger networks s[25].

The predecessor of a 2θ-burster proposed and examined below
is the so-called spiking θ-neuron [26]. It is described by a phase
differential equation with a specific term cosθ. The θ-neuron is
meant to demonstrate a slow “quiescent” phase followed by a fast
“spiking” transition. Mathematically, its equation is normal for a
saddle-node bifurcation on a unit circle through which two
equilibrium states, stable and repelling, merge and disappear.
After the equilibriums are gone, the phase point keeps revolving
on a unit circle (see Section 3 below). That is why this bifurcation
is referred to as a homoclinic saddle-node bifurcation on an
invariant circle or SNIC in short. The notion of the θ-neuron
capitalizes on the feature of the saddle-node bifurcation, causing
the well-known bottleneck effect, which results in slow quiescent
and fast spiking time-scale dynamics in such systems.

The concept of the new model, called the 2θ-burster due to the
driving term cos2θ in its ODE description, is inspired by the
dynamics of endogenous bursters (like ones shown in Figure 1)
with two characteristic slow phases: depolarized tonic spiking and
hyperpolarized quiescent. These phases are also referred to as
“on” or active and “off” or inactive depending on whether the
membrane voltage is above or below some synaptic threshold.
During the active phase, the presynaptic cell releases
neurotransmitters to inhibit or excite other cells on the
network, whereas during the inactive phase, the cell takes a
pause from “communicating.” This is a feature of chemical
synapses that contrasts electric one or gap junctions, allowing
cells interact all the time regardless of the voltage values. In
contrast to interact the θ-neuron, there are two slow transient
states, active and inactive, in the 2θ-burster due to two saddle-
node bifurcations that alternate with fast progressions in between.
We recall that a similar saddle-node bifurcation controlling the

duration of the tonic-spiking phase, and hence the number of
spikes is associated with the codimension-one bifurcation known
as the blue-sky catastrophe [23, 29–32].

2. RETURN MAPS FOR PHASE LAGS

We developed a computational toolkit for oscillatory networks
that reduces the problem of the occurrence of bursting and
spiking rhythms generated by a CPG network to the
bifurcation analysis of attractors in the corresponding Poincaré
return maps for the phase lags between oscillatory neurons. The
structure of the phase space of the map is a unique signature of
the CPG as it discloses all characteristics of the functional range of
the network. The recurrence of rhythms generated by the CPG
(represented by a system of coupled Hodgkin-Huxley–type
neurons [23]) allows us employ Poincaré return maps defined
for phaselags between spike and burst initiations in the
constituent neurons [27, 28], as illustrated in Figures 1, 2,
and 6. With such return maps, we can predict and identify the
set of robust outcomes in a CPG with mixed, inhibitory,
excitatory, and electrical synapses, which are differentiated by
phase-locked or periodically varying lags corresponding,
respectively, to stable fixed points and invariant circles on the
return map.

Let us introduce a 3-cell network (Figure 1A) made of weakly
coupled HH-like bursters; see the equations in the Appendix.
Here, “weakly” indicates that coupling cannot disturb the shape
of the stable bursting orbit in the 3D phase space of the individual
HH model (Figure 1A). Weak interactions, inhibitory (mainly
repulsing) and excitatory/gap junction (mainly attracting), can
only affect the phases of the periodically varying states of the
neurons, represented by the color-coded spheres (blue/green/red,
respectively, for cells 1/2/3), on the bursting orbit in the 3D phase

FIGURE 1 | (A) Snapshots of the transient states (shown as the blue, green, and red spheres) of three inhibitory-coupled Hodgkin-Huxley–type cells at t � 0 and at
t � 10, superimposed with a bursting orbit (grey) in the 3D phase space (voltage V and two gating variables hNa and mK2 for the fast sodium and slow potassium current )
of the reduced leech heart interneuron model [22, 23]. A plane V � Θsyn representing a voltage threshold of the chemical synapses divides the active “on” phase in which
the red cell 3 inhibits the quiescent green/blue cells 1/2 in the inactive “off” phase, transitioning along the 1D Meq-hyperpolarized branch in the phase space. (B)
Burst initiations in successive voltage traces define the relative delays τ i1’s and the phase lags (given by Eq. 1) between its constituent bursters (see details in refs. 27 and
28.) that after being normalized over the network period are converted to the phase lags Δϕ21 and Δϕ21 populating the map in panel (C). (C) 2D Poincaré return map of
the phase lags between the burst initiations in the symmetric 3-cell motif of the inhibitory-coupled HH-type cells. Observe that this map with five stable fixed points and
the map for the 3-cell motif composed of identical bursters in Figure 3A below have the same structure.
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space of the given interneuron model. As such, weak coupling can
only gently alter the phase differences or phase lags between the
networked neurons (Figure 2A). We also note that coupling
remains weak as long as individual cell models stay away from
bifurcations, such as a saddle-node bifurcation typical for 1D
2θ-bursters. Making coupling stronger will make the convergence
to the phase-locked states faster. However, in this study, we would
like to demonstrate the reduction approach through which the 2D
maps appear because they were defined analytically and not
computationally. Otherwise, the trajectories will lose
smoothness and look jagged and tangled.

Being inspired by neurophysiological recordings performed
on various rhythmic CPGs, we employ only voltage traces
generated by oscillatory networks to examine the time delays,
τ21 and τ31, between the burst upstrokes on each cycle in the
reference/blue cell 1 and in cells 2 (green) and 3 (red). Next, we
will show that like the biologically plausible HH-type networks, 3-
cell circuits of coupled 2θ-bursters can stably produce similar
phase-locked rhythms. They include, for example, peristaltic
patterns or traveling waves, in which the cells burst
sequentially one after the other (see Figures 1 and 3C,E), and
the so-called pacemaker rhythms, in which one cell effectively
inhibits and bursts in antiphase with the other two bursting
synchronously. The symmetric connectivity implies that such 3-
cell networks can produce multiple rhythms due to cyclic
permutations of the constituent cells (see Figure 3 below).

To analyze the existence and the stability of various recurrent
rhythms produced by such networks, we employ our previously
developed approach using Poincaré return maps for phase lags
between constituent neurons. We introduce phase lags at specific
events in time when the voltage in cells reaches some threshold

value, signaling the burst initiation (see Figure 1B). The phase lag
Δϕ(n)1j is then defined by a delay between nth burst initiations in
the given cell and the reference cell 1, normalized over the
bursting period:

Δϕ(n)
12 � t(n)2 − t(n)1

t(n+1)1 − t(n)1

, Δϕ(n)
13 � t(n)3 − t(n)1

t(n+1)1 − t(n)1

, mod 1. (1)

Sequences of phase lags {Δϕ(n)12 , Δϕ
(n)
13 } defined on module one

represent forward trajectories Mn on a 2D phase torus
(Figure 2B). The specific phase-lag values such as 0 (or 1)
and 0.5 represent, respectively, in-phase and antiphase
relationships of cells 2 and 3 with the reference cell 1. We
examine the (Δϕ12, Δϕ13) phase-lag structure of the 2D
Poincaré return maps (such as one shown in Figure 3A) of
the 3-cell networks by initiating multiple trajectories with a dense
distribution of initial phase lags (50 × 50 grid) and by following
their progressions over large numbers of cycles. In the long run,
these trajectories can eventually converge to some attractors, one
or several. Such an attractor can be a fixed point (FP) with
constant values Δϕ*12 and Δϕ*13 in Eq. 1, which correspond to a
stable rhythmic pattern with phase lags locked (Figure 2A). All
phase trajectories converging to the same fixed point are marked
by the same color to reveal the attraction basins of the
corresponding rhythms (Figures 2B and 3A). This reduces the
analysis of rhythmic activity generated by a 3-cell network on the
examination of the corresponding 2D Poincaré map for the phase
lags. For example, the map shown in Figure 3A reveals the
existence of pentastability with the symmetric circuit generating
three pacemaker (PM) rhythms and two, clockwise and

FIGURE 2 | (A) The demonstration of the slow exponential convergence of initial states of Δϕ21 (yellow curves) andΔϕ31 (purple curves) to four phase-locked states:
0 ≡ 1, 1

3,
1
2,

2
3{ } in the inhibitory 3-cell motif (4) with weak coupling βi j � 0.003. (B) Poincaré return map defined on a unit 2D torus, S2 � S1⊗S1 of the two phase lags

(discrete values), revealing color-coded attraction basins of several fixed points (solid dots of the same colors) corresponding to the phase-locked rhythms generated by
the 3-cell motif. A flattened torus is shown in Figure 3A.
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counterclockwise, traveling waves (Figure 3). These three PM
rhythms correspond to the blue, green, and red fixed points near
(0.5, 0.5), (0.5, 0), and (0, 0.5), respectively, whereas two
traveling-wave patterns are associated with stable FPs located
at (1/3, 2/3) and (2/3, 1/3), respectively, in the 2D return map.

Other attractors in the return maps on a 2D torus can be a
stable invariant curve (IC) corresponding to rhythmic patterns
with periodically varying phase lags. Such a curve can enclose a
focal fixed point on the torus or wrap around the 2D torus [27, 28]
(see Figure 2B and Section 5.4 below). If the map has a single
attractor, then the corresponding network is monostable;
otherwise, it is a multifunctional or multistable network
capable of producing several rhythmic outcomes robustly.
Such as 2D return map, where Π : Mn →Mn+1, for the phase
lags can be represented as follows:

Π :
Δϕ(n+1)

21 � Δϕ(n)
21 + μ1 f1(Δϕ(n)

21 ,Δϕ(n)
31 ),

Δϕ(n+1)
31 � Δϕ(n)

31 + μ2 f2(Δϕ(n)
21 ,Δϕ(n)

31 ) , mod 1, (2)

with small μi being associated with weak coupling; fi being some
undetermined coupling function such that their zeros: f1 � f2 � 0
correspond to fixed points: Δϕ*j1 � Δϕ(n+1)j1 � Δϕ(n)j1 of the map.
These functions, similar to phase-resetting curves, can be
numerically evaluated from all simulated trajectories
{Δϕ(n)21 , Δϕ

(n)
31 } (see Figure 4C). By treating fi as partials zF/zϕij,

one may try to restore a “phase potential”—some surface

F(ϕ21 , ϕ31) � C (see Figure 4). The fi quantities can be
evaluated as the distance between two consecutive points
(iterates) Mn and Mn+1 on every trajectory of the map (see
Figure 3, for example). The shape of such a surface
determines the location of critical points associated with
FPs—attractors, repellers, and saddles of the map. With this
approach, one can try to predict bifurcations due to landscape
transformations and thus to interpret possible dynamics of the
network as a whole. Figures 4A,B are meant to give an idea of
how the potential surface may look like in the case of the 3-cell
circuit with only two stable traveling wave patterns and in the case
of three coexisting pacemakers only, respectively. Figure 4C
shows a numerical reconstruction of the pseudopotential with
the use of the distances between all pairs of successive iterates of
the map with five stable FPs as depicted in Figure 3A.

3. MINIMALISTIC 2θ-BURSTER

The key feature of the 2θ-neuron given by

θ′ � ω − cos2θ + αcosθ, mod 2π, (3)

which is the occurrence of two saddle-node bifurcations giving
rise to the two slow transient phases in its dynamics alternating
with fast transitions in between. Likewise endogenous bursters
with two such slow states (Figure 1), the duration of the active

FIGURE 3 | Multistable outputs of the 3-cell homogeneous network with six equal synaptic connections (all βij � 0.003). (A) The Poincaré return map for the
(Δϕ21 ,Δϕ31) phase lags with five stable fixed points representing robust three pacemaker (PM) patterns: red at 0, 12( ), green at 1

2, 0( ), and blue at 1
2,

1
2( ) and two traveling

wave (TW) rhythmic patterns: yellow clockwise at 1
3,

2
3( ) and teal counterclockwise at 2

3,
1
3( ) (shown in panel (B)). The color-coded attraction basins of these five FPs are

determined by positions of stable sets (separatrices) of six saddles (gray dots). The origin is a repelling FP of the mapwith the even number—total eight of hyperbolic
FPs. Panels (B–E) depict the traces with phases locked to the specific values (indicated by color-coded dots at top-left corners), corresponding to the color-matching
stable FPs in (A).
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tonic spiking, and the quiescent phases can be controlled
independently in the 2θ-burster: the active “on” state and the
inactive “off” state are due to the same bottleneck effects caused
by the saddle-node bifurcations. This regulates the duty cycle of
bursting, which is the fraction of the active-state duration
compared with the burst period. As seen from Figure 5, the
θ-model was meant to replicate phenomenologically fast-spiking
cells, whereas the “spikeless” 2θ-neuron mimics burster dynamics

instead. Next, we show that the network dynamics of a 3-cell
motif of inhibitory coupled 2θ-bursters demonstrate that the key
properties observed in such motifs are composed of Hodgkin-
Huxley–type bursters.

First, let us observe from Eq. 3 that the dynamics of the
individual 2θ-burster is determined mainly by the driving term
ω − cos2θ in symmetric α � 0 and asymmetric cases due to small
α-values. So, whenever the frequency 0< ω≤ 1, there exist two

FIGURE 4 | Critical points of the sketched “pseudopotentials” with periodic boundary conditions reveal the location of potential wells—attractors, as well as
saddles (including with six separatrices in (B)) and repellers (a single local maximum at the origin) in the (ϕ21 , ϕ31) phase space. These configurations correspond to the
network with two traveling waves only (A) and with three pacemakers only (B), respectively. (C) A computational reconstruction of a pseudopotential/coupling function
corresponding to the return map in Figure 3A.

FIGURE 5 | Comparison of the oscillatory dynamics generated by the spiking θ-neuron and the 2θ-burster. Panels (A) and (C) present snapshots of typical
trajectories generated by both models on a unit circle S1 (parametrized using Cartesian coordinates: x(t) � sin(θ(t)) and y(t) � −cos(θ(t)) with the origin 0 at 6 pm. (A)
Clustering of purple spheres near the origin is due to a post-effect posteffect caused by a saddle-node bifurcation (SNIC) in the θ-model, whereas the 2θ-burster in (C)
features two such bottleneck post-effect due to two heteroclinic saddle-node connections causing the stagnation of gray spheres near the top, “on” state and the
inactive “off” state of the symmetric 2θ-burster and fast transitions in between. (B) Spiking trace (purple) of the θ-neuron, overlapped with 2-plateau traces of the
2θ-neuron with three values of the bursting duty cycle:x50%, 30%, and 70% (solid, short-, and long-dashed gray curves, respectively) controlled by small variations of
the α-parameter in Eqs. 3 and 4.
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pairs of stable and unstable equilibriums: one pair is near the
bottom θx0 and the other is at the top around θxπ. The stable
equilibria are associated with the hyperpolarized active and
depolarized quiescent states of neurons, respectively.
Increasing ω> 1 makes the 2θ-neuron oscillatory through two
simultaneous (if α � 0) saddle-node bifurcations (SNIC) on a unit
circle S1, which is its phase space. Moreover, as long as
ω � 1 + Δω, where 0< Δω≪ 1, the 2θ-burster possesses two slow
phases: the active “on” state near θ � π and the inactive “off” state
near 0 on S1. These slow phases are alternated with fast
counterclockwise transitions, which will be referred to as an
upstroke and a downstroke, respectively. For greater values of
ω, the active and inactive phases are defined more broadly they
are: π/2< θ ≤ 3π/2 and 3π/2< θ ≤ π/2, respectively. This is
convenient because the inactive phase remains below the
synaptic threshold, which is set at θth � π/2 so that cosθth � 0
for the sake of simplicity, thus equally dividing the unit circle (see
Figure 6A). The duty cycle of the 2θ-burster is controlled by the
axillary term αcosθ in Eq. 3, provided that it remains oscillatory as
long as ω − |α|> 1. Note that when α � 0, the duty cycle of bursting
is 50%, and the corresponding traces have two even plateaus (see
Figure 5B). The active or inactive phases can be extended or
shortened with small variations of the α-parameter so that α< 0
increases the duty cycle and α> 0 decreases the duty cycle of the
individual 2θ-burster when it is shifted, respectively, closer to the
top or to the bottom saddle-node “phantom,” because the
bottleneck effects become more profound, see Figure 5B,C.

4. THREE EQUATIONS FOR 3-CELL
NETWORK

A 3-cell circuit of the 2θ-bursters coupled with chemical synapses
is given by the following system:

θ′1 � ω − cos 2θ1 + α cos θ1 − [ β21
1 + ek cos θ2

+ β31
1 + ek cos θ3

]
· [1 − 2

1 + ek sin θ1
],

θ′2 � ω − cos 2θ2 + α cos θ2 − [ β12
1 + ek cos θ1

+ β32
1 + ek cos θ3

]
· [1 − 2

1 + ek sin θ2
],

θ′3 � ω − cos 2θ3 + α cos θ3 − [ β13
1 + ek cos θ1

+ β23
1 + ek cos θ2

]
· [1 − 2

1 + ek sin θ3
],

mod 2π.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

The 2θ-burster is coupled in the network using the fast-
inhibitory synapses driven by the fast-threshold modulation
[33]. It is due to the sigmoidal term 1

1+ekcosθi[ ] that, rapidly (here
k � 10) varying between 0 and 1, triggers an influx of inhibition
flowing from the presynaptic neuron to the postsynaptic neuron,
as soon as the former enters the active “on" phase above the
synaptic threshold cosθth � 0, that is, π/2< θi < 3π/2. Note that the
negative sign of this term makes the synapse inhibitory so that
replacing it with “positive sign” makes the synapse excitatory
because it would increase the rate of θ′ during the upstroke, in
contrast to slowing down the upstroke in the inhibitory case. The
strength of the coupling is determined by the maximal
conductance value βij. Depending on the magnitude of βij
values, the active cell in the “on” state can either slow down
the inactive postsynaptic one due to the bottleneck effect (weak
coupling) or shut it down completely with the saddle-node
bifurcation in its perturbed state (strong coupling), which can
be referred to as soft vs. hard locking, respectively. If the post-
synaptic cell happens to be at the active phase, then the inhibition

FIGURE 6 | (A) Sampling themoments in phase traces, yi(t) � −cos(θi(t)), plotted against time, when they reach a synaptic threshold θsyn � 0, defines a sequence
of the phase lags (τ(n)21 , τ

(n)
31 ) between upstrokes in the reference (blue) neuron 1 and the other two 2θ-neurons coupled in the 3-cell network. (B) Parametric

representation of the 1D phase space of the coupled 2θ-bursters traversing counterclockwise (long gray arrows indicating rapid transition between “on and off” states)
on a unit circle S1. Small downward blue and red arrows illustrate the inhibitory perturbations projected from the active green cell above the synaptic threshold that
delays the forthcoming upstroke of the blue cell and speeds up the red cell toward the inactive phase. The gray arrows indicate the direction and its speed on a unit circle.
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will shorten its duration significantly provided that βij is large
enough. We deemphasize that it is the closeness to the saddle-node
bifurcations in the postsynaptic cells that determines whether the
coupling is weak or strong. Our coupling strategy is to ensure that
θ′i > 0 in all three equations in Eq. 4, that is, the cells maintain
endogenous bursting in isolation and on the network and converge
to the phase-locked states exponentially (Figure 2A). This does not

have been the case case. By increasing increasing βij and α or by
decreasing bursting frequency ω or by manipulating all three
parameters, one can speed up the convergence substantially
(Figure 7D) or even make the network rapidly reach any
steady state in one or two steps [21].

The last term 1 − 2
1+eksinθ[ ], breaking the symmetry of coupling

on upstrokes and downstrokes, converts the synaptic input into

FIGURE 7 | Bifurcations of FPs in the (Δϕ21 ,Δϕ31)-return map for the symmetric motif as the coupling β parameter and the duty cycle (via variations of α) are
changed; β-values are [0.001, 0.003, 0.01, 0.03] from top to bottom labeled (A–D), respectively, while α-values are [−0.11, −0.05, 0.0, 0.11] from left to right labeled, 1
through 4, respectively, with 50% DC at α � 0.0 in column 3. With larger β-values, the rate of convergence to the FPs increases. The TW rhythms dominate the network
dynamics when the DC is about 50%, as seen in the middle columns. The PM rhythms become dominant at small and large DC values, as depicted in the outer
panels. Once can observe that with larger β-values, the network converges to the phase-locked states substantially faster, which is indicated by the growing distance
between the successive iterates in the maps in panel D1–D4.
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qualitative inhibition. Namely, its sign is switched from + to −
upon crossing the values θ � 0 and θ � π. During the fast upstroke,
when 0< θ < π, this term is positive, thereby ensuring that
inhibition slows down or delays the transition into bursting.
When π < θi < 2π, during the fast downstroke, this term
1 − 2

1+eksinθ[ ]< 0 to ensure that the inhibition speeds up the
transition from the active (tonic-spiking) phase of bursting
into the inactive (quiescence) phase. This is
phenomenologically consistent with neurophysiological
recordings because inhibition projected onto the postsynaptic
burster typically shortens the burst duration and extends the
interburst intervals. Alternatively, this term can be replaced with
1 − 1

1+eksinθ[ ] as it not only breaks the symmetry but also only acts
during the upstroke of bursting.

The electrical coupling or the gap junction between the neurons
is handled by the other term −Celecsin(θpre − θpost). It slows down
the rate θ′post when θpost > θpre and speeds it up if θpost < θpre. The
conductivity coefficient Celec is to be set around two orders of
magnitude smaller than β values to maintain a balanced effect in
the network. When Celec and β are of the same magnitude, the

dynamics of network are solely dictated by the electrical coupling
with the inhibitory synapses insignificantly affecting it.

Let us note that unlike the bidirectional electrical synapse,
a chemical one is unidirectional and hence asymmetric because
it has a synaptic threshold: the chemical synapse
becomes functional when the membrane voltage in the
presynaptic cell rises above the only synaptic threshold in the
active phase; otherwise the synapse is silent. This is the reason why
a network composed of identical cell, and identical chemical
synapses can only be called symmetric loosely, in some
permutation sense. This is the reason why a permutation-
symmetric 3-cell network always possesses a pair of traveling
wave patterns (stable or not) where the cells burst sequentially
and/or may generate three pacemaker patterns where one cell
bursts in antiphase with the two others. Note that the last rhythms
cannot be produced by a properly symmetric network by default.

5. POINCARÉ RETURN MAPS FOR THE
PHASE LAGS. RESULTS

Figure 6A shows how phase lags between upstrokes are introduced
(here, cell 1 (blue) is the reference) between the three-networked
2θ-bursters turning counterclockwise on the unit circle S1

(Figure 6B). It is observed that inhibition generated by the green
cell 2 in the active slow phase near θ � π above the synaptic threshold
(given by cosθth � 0) brings the other two cells closer to the bottom
quiescent state bear θ � 0 by accelerating the red burster 3 on the
downstroke and by slowing down the blue burster 1 on the upstroke.

Following the same approach used in the weakly coupled HH-
type models above, we first create a uniform distribution of initial
phases on S1, and therefore, the phase lags between the three
2θ-bursters. Next, we integrate the network (4) over a large
number of cycles and record burst initiations (see Figure 5A)
to determine the phase lags between the reference cell 1 and two
other cells and determine the kind of phase-locked states they can
converge. This approach is illustrated in Figure 2A for the
symmetric 3-cell motif composed of identical 2θ-bursters and
equal inhibitory synapses. The corresponding 2D Poincaré return
map, with the coexisting stable fixed points and saddles is shown
in Figure 3. By stitching together the opposite sides of this map,
we wrap it around a 2D torus as shown in Figure 2B.

The fixed points and their attraction basins are coded with
different colors in the map. For example, the Poincaré return
map for the (Δϕ21, Δϕ31) phase lags represented in Figure 3A
has five stable fixed points representing robust three pacemaker
FPs: red at 0, 12( ), green at 1

2, 0( ), and blue at 1
2,

1
2( ) and two traveling

wave rhythmic patterns: yellow clockwise at 1
3,

2
3( ) and teal

counterclockwise at 2
3,

1
3( ). The borders of the attraction basins of

these five FPs are determined by positions of stable sets (separatrices)
of six saddles (gray dots). The origin is a repelling FP. In total, there
are eight hyperbolic FPs in this Poincaré return map.

Let us underline another handy feature of the 2θ-burster
paradigm. We can easily detect and explore repelling FPs or
invariant circles, if any, existing in the 2D Poincaré map by
reversing the integration direction of system (4), that is,
multiplying the right-hand sides by −1, simulating the network

FIGURE 8 | (A) “Winner takes all”motif with two synapse strengths, β13
and β12, increased (indicated by darker connections), relative to the other
synapse strengths. (B) The first of three (Δϕ21 ,Δϕ31) return maps, with β13
and β12 synaptic strengths slightly greater than the other βs, the (blue)
attraction area extends so that the two saddles nearest the blue PM at 1

2,
1
2( )

move away from the blue PM, closer toward the yellow and teal TWs at 1
3,

2
3( )

and 2
3,

1
3( ), respectively. (C)With further increase in β13 and β12, these saddles

and TWs merge with and annihilate each other through saddle-node
bifurcations, and the blue PM basin grows. (D) At greater β13 and β12 values,
the network becomes a winner-take-all, blue PM winning, after the red and
green PMs, at 1

2,0( ) and 0, 12( ), respectively, vanish through subsequent
saddle-node bifurcations. The parameters are as follows: ω � 1.15, α � 0.07,
and β � 0.003 except β13 and β12 � 0.0038, 0.004, and 0.015 for panels
(B–D).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2020 | Volume 6 | Article 5889048

Kelley and Shilnikov 2θ-Burster for Rhythm-Generating Circuits

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


in backward time. This reverses the direction to spin trajectories
clockwise on S1, whereas the backward time integration will make
dissipative systems run to infinity.

5.1. Homogeneous Motif With Identical
Cells and Synapses
It will be shown below that 2θ-bursters weakly coupled in 3-cell
networks, whether they are homogenous/symmetric or
nonhomogeneous/asymmetric, can generate the same stable
rhythms as the networks of biologically plausible HH-type
models. We also discuss the bifurcations occurring in the
networks and corresponding maps as synaptic connectivity and
intrinsic temporal characteristics of the 2θ-bursters are changed.
Bifurcations in the system are identified and classified by a change
in the stable phase rhythms, which can be due to the stability loss of
a particular FP or when it merges with a close saddle so that both
disappear through a saddle-node bifurcation.

Let us first consider a symmetric network with two bifurcation
parameters: the coupling strength β � βii (i � 1, 2, 3) and the
α-parameter in Eq. 3 that controls the duty cycle (DC) of the
2θ-bursters. We use five different DC values as α is varied
from −0.11 to 0.11l while synaptic strength is increased
through four steps from β � 0.0001 through β � 0.1. The results
are presented in Figure 7. The Panels A2/3 represent the most
balanced, weakly coupled network that can produce all five bursting
rhythms with 50% DC. One can see that by increasing the β-value,

the saddles separating 2 TWs and 3 PMs move toward the latter
ones, and after some critical values, three pairs, a saddle and the
nearest stable PM,merge and vanish simultaneously. After that, the
symmetric network can produce two only rhythms: counterclockwise
and clockwise TWs corresponding to the teal and yellow stable FPs
at 1

3,
2
3( ) and 2

3,
1
3( ), respectively. This would correspond to the case

of the “pseudopotential” depicted in Figure 4A.
The stable PMs promote or dominate the dynamics of the

symmetric case at extreme α-values corresponding to the bursting
rhythms with short or long burst durations. Once we compare
panels, say A1 and D4 reveal this time, the separating saddles
group around the stable TWs to minimize their attraction basins,
and hence the likelihood of the occurrence of these rhythms in the
network. These cases correspond to the “pseudopotential”
depicted in Figure 4B.

5.2. “Winner Takes all” Motif
The first asymmetric case considered is a motif termed the “winner
takes it all.” In this modeling scenario, both outgoing inhibitory
synapses from the given cell, here the reference blue burster 1, are
evenly increased in the strength, see Figure 8A. It is observed that
such a configuration breaks down the circular (and permutation)
symmetries supporting traveling waves in the network. Let us start
with Figure 8B: no surprise that with an initial increase in β1,2/3,
two saddles shift away from the blue PMat (0.5, 0.5) toward 2 TWs,
then merge with them to disappear pairwise. Next, as β1,2/3 is

FIGURE 9 |Mono-biased network motif (F) with one different synapse due to increasing β21. (A) The first of five (Δϕ21 ,Δϕ31) return maps, an increase in β21 value
breaks down a counterclockwise symmetry so that the attraction basin (teal) of the corresponding TW at 2

3,
1
3( ) shrinks as a nearby saddle moves closer to it and away

from the green PM at 1
2,0( ) (A andB). (C)With further increase in β23, the counterclockwise TW at 2

3,
1
3( ) vanishes through a saddle-node bifurcation after merging with the

nearest saddle, followed by another saddle-node bifurcation eliminating the red PM at (0, 0.5) (D). At greater β23 values, the green PM at 1
2, 0( ) encompasses the

majority of the network phase space, along with the blue PM at 1
2,

1
2( ), preserving the size of its attraction basin. The parameters are ω � 1.15, α � 0.07, and β′s � 0.003

except β21 � 0.00042, 0.0045, 0.01, and 0.02 for panels (A–D).
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increased further, two other saddles annihilate the green
and red PMs through similar saddle-node bifurcations
(Figure 8C). In the aftermath, the 3-cell network with a
single burster generating the repulsive inhibition much
stronger than the other two cells becomes a monostable
one producing a single pacemaking rhythm with the phase
lags locked at (0.5, 0.5).

5.3. Mono-Biased Motif
We refer as a mono-biased motif to another asymmetric
network with a single different synapse. In this case, the
strength β21 of the outgoing synapse from cell 2 to cell 1 is
increased, which violates the circular symmetry supporting the
counterclockwise traveling wave in the network, see Figure 9F.
So, as β21 is increased, the counterclockwise stable FP at 2

3,
1
3( )

first disappears through a saddle-node bifurcation, as seen in

Figures 9A,B. Because this was the saddle between the TW and
the green PM, the attraction basin of the latter increases after the
first bifurcation in the sequence. The next saddle-node
bifurcation eliminates the red stable FP at (0, 0.5). The
reasoning is as follows: for this rhythm to persist, the red
PM should evenly inhibit both green and blue PMs.
However, a growing inhibition imbalance between them is no
longer reciprocal. As we pointed out earlier, the stronger
inhibition from cell 2 shortens the active phase of the blue
burster. As so, they cannot longer line up by the burster 3,
which causes the disappearance of this PM-rhythm and the FP
itself (Figure 9C). Similar arguments can be used to justify the
disappearance of the green PM as cell 2 cannot inhibit cells 1
and 2 evenly to hold them together as β21 is increased further
(not shown). This is in this case is in good agreement with the
3-cell networks of the HH-type bursters.

FIGURE 10 | (C) “Pairwise-biased” network motif with two reciprocal synapse strengths β23 and β32, increased. (A) The first of five (Δϕ21 ,Δϕ31) return maps, with
β23 and β32 slightly greater than other synaptic connections the network possesses all five attracting FPs. (B) Evenly increasing β23 and β32 values break down the
rotational symmetry of the network so that both TWs at 1

3,
2
3( ) and 2

3,
1
3( ) vanish through saddle-node bifurcations while the red and green PM basins equally expand and

the blue basin shrinks. Here, two areas of the map, due to slow transitions throughout the saddle-node ghosts, are color coded in black because of the uncertainty
in ultimate destination. (D–E)With further increases in β23 and β32 values, the blue basin continues to shrink until red and green basins encompass almost all of the areas
of the map. One can see from Panel (E) that the red and green PMs at 1

2, 0( ) and 0, 12( ) are also about to merge with nearby saddles and disappear through two
homoclinic saddle-node bifurcations (SNIC). (F) At greater values in β23 and β32, the blue PM at 1

2,
1
2( ) has only a very narrow attraction basin, corresponding to the only

phase-locked rhythm, coexisting with a dominant phase-slipping repetitive pattern. The phase slipping (its trace shown in Panel (G)) corresponds to a stable invariant

curve (black attraction basin), passing throughout 1
2, 0( ) and wrapping abound the 2D toroidal phase space to reemerge near 0, 12( ) and so forth. (G) Five exemplary

episodes of the traces vs. time showing periodically varying (slipping) phase lags. The parameters are ω � 1.15, α � 0.07, and β � 0.003, except β23 and β32 are 0.005,
0.006, 0.009, and 0.035, in panels (A), (B), and (D–F).
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5.4. Dedicated HCO
The abbreviation HCO stands for a half-center oscillator, where
a pair of neurons coupled reciprocally by inhibitory synapses to
produce alternating bursting. Such a dedicated HCO is formed by
cells 2 and 3 with stronger synapses due to β23 � β32 in the
configuration shown in Figure 10C. Again with start off with the
symmetric case depicted in Figure 10A, one can observe at once that
having the dedicated HCO should break down the circular
symmetries of the network. So, the stable TWs become
eliminated first as β23 � β32 starts increasing. As these synapses
become stronger, the attraction basin of the blue PM at (0.5 0.5)
shrinks substantially, but the FP itself persists.Meanwhile, increasing
β23 � β32 further creates the inhibitory imbalance that makes the
further existence of the green and red PMs impossible due to the
factors that we outlined above for the mono-biased motif. Both
vanish at the same time due to saddle-node bifurcations. However, at
the bifurcation, both double FPs are connected by a heteroclinic orbit
that transforms into a stable invariant curve wrapping around the
torus (see Figure 10F). This stable invariant curve is associated with
a phase-slipping rhythm that recurrently passes slowly through the
“ghosts” of all four vanished FPs except for the coexisting blue PM,
see the fragments of the corresponding traces presented in
Figure 10G.

5.5. Clockwise-Biased Motif
The clockwise-biased motif in this case represents the 3-cell
network with counterclockwise connections stronger than ones

in the clockwise direction, see Figure 11E. This configuration
does not break the circular symmetries of the network but
implies that either TW should win over the opposite one,
which should result in their attraction basins changing
correspondingly. Figure 11 presents four transformation
stages of the map as β13, β32, and β21 sequentially increased.
With a small increase, the shape of the map becomes slightly
twisted with the three saddles shifting away from the stable PMs
toward the teal TW at 2

3,
1
3( ). A further increase brings the saddle

close to the teal one, thereby shrinking its attraction basin and
substantially widening the basin of the clockwise TW at 1

3,
2
3( ).

Finally, as some bifurcation threshold is reached, the saddles
collapse at the stable FP that becomes a complex saddle with
three outgoing and three incoming separatrices. This means that
the counterclockwise TW becomes an unstable rhythm in such
biased 3-cell motif that is fully dominated by the clockwise TW
rhythm.

5.6. Gap Junction
In our last example, we consider the symmetric motif with a gap
junction or electric synapse added between cells 1 and 2 as shown
in Figure 12C. Recall that a gap junction is bidirectional unlike
unidirectional chemical synapses with synaptic thresholds. Recall
that it is modeled by this term −Celecsin(θpre − θpost) that slows
down the rate θ′post when θpost > θpre and speeds it up if θpost < θpre.
Due to this property, the electrical synapses, like excitatory ones,

FIGURE 11 | (E) Clockwise-biased motif with three synaptic strengths, β13, β32, and β21 sequentially increased. (A) As all three counterclockwise synapses are
slightly strengthen, saddles shift away from the three stable PMs, blue at 1

2,
1
2( ), green at 1

2, 0( ), and red at 0, 12( ), toward the teal clockwise TW at 2
3,

1
3( ) (B) thus shrinking its

basin and widening the attraction basin of the dominant counterclockwise TW (yellow) at 1
3,

2
3( ) (C). (D)With the stronger synaptic values, the three saddles collapse into

the CC TW, which becomes a complex saddle with three incoming and three outgoing separatrices. The parameters are ω � 1.15, α � 0.07, β � 0.003 except β12,
β23, and β31 � 0.0033, 0.025, 0.035, and 0.055 for panels (A–D).
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typically promote synchrony between such coupled oscillatory
cells, as in our case between cells 1 and 2.

It is observed that introducing an electrical synapse
between only two of the cells of the motif breaks down
both circular symmetries in the system. This is documented
in Figures 12A,B depicting the maps for the networks with
Celec being increased from zero to 0.0003. One can see that
both TWs vanished from the repertoire of the network.
Further increase in Celec makes the stable green and blue
stable PMs disintegrate as both cells become synchronous
and burst in alternation with the red cell 3. This completes the
consideration of the monostable network with a relatively
strong gap junction between cells 1 and 2 that can only
produce the only one pacemaker rhythm.

6. CONCLUSION

Our ultimate goal is to use the top-down approach to single out
the fundamental principles of the rhythm formation in small
networks that can be systematically generalized and applied for
understanding larger network architectures. Due to the
rhythmic nature of the bursting patterns, we employed
Poincaré return maps defined on phases and phase lags
between burst initiations in the interneurons. These maps
allow us to study quantitative and qualitative properties of
the stable rhythms and their corresponding attractor basins.
The specific goal of this study is to demonstrate the simplicity
and usability of the 2θ-bursters to construct multistable,
polyrhythmic neural networks that have the same dynamical
and bifurcation properties as ones composed of biologically
plausible models of Hodgkin-Huxley–type bursters and
chemical synapses [34, 35].We argued that the maps derived
from the HH-type bursters and ones from the 2θ-bursters have
the same structure. As such, these maps serve as a detailed
blueprint containing all necessary information about the
network in question, including its rhythmic repertoire,
stability of generated patterns, and the like. In addition, with
such maps, one can predict possible transformations before they
occur in the network. Furthermore, we showed that depending
on strengths of inhibition, the maps and hence the
corresponding networks may have different distributions of
phase-locked states. As such, the proposed approach reveals
the capacity of the network and the dependence of its outcomes
on coupling strength, wiring circuitry, and synapses, thereby
allowing one to identify necessary and sufficient conditions for
rhythmic outcomes to occur. Our study is a further step toward
the foundation of the bifurcation theory of multifunctional
rhythmic circuits including network with a modular
organization of subcircuits [25].

In this article, we did not discuss the rhythm-generating
motifs composed of 2θ-cells that are quiescent in isolation.
While motifs, made of coupled 2θ-cells initially placed at the upper
“on” state, functions well using the escape mechanism for the
rhythmogenesis, the other basic mechanism based on the post-
inhibitory rebound [24] is not (fully) applicable to 2θ-cells because
it requires at least two dynamical variables, slow and the fast, to

warrant the occurrence of specific transient dynamics in the
system.

Our computational approach based on the reduction to
the evident Poincaré return maps for phase lags extracted
from voltage traces were inspired by neurophysiological
recordings from biological CPGs, such as the 3-cell
pyloric one and swim CPGs of sea slugs. The predictive
power of the map approach is that it allows constructing a
desired neural circuit with some preset properties. With
such maps, one also gains generalizable insights helpful for
the better understanding of the fundamental and universal
rules of the pattern formation in various models of central
pattern generators. Our findings can be employed for
identifying or implementing the conditions for normal
and pathological functioning of basic CPGs of animals
and artificially intelligent prosthetics that can regulate
various movements.

The Reader is welcome to download the open-source
Motiftoolbox (supports GPUs) https://github.com/jusjusjus/
Motiftoolbox to interactively explore various 3-cell, 4-cell, and

FIGURE 12 | Gap junction in the symmetric 3-cell network (C) is
represented by a resistor symbol placed between cells 1 and 2. (A) At
Celec � 0.00015, the network yet generates five phase-locked rhythms with
comparably sized basins of attraction. (B) Increasing Celec breaks
the circular symmetries of the network, which makes both TWs at 1

3,
2
3( )

and 2
3,

1
3( ) vanish through saddle-node bifurcations while the basin of the

red PM at 0, 12( ) widens. (D) With an even greater electrical coupling, the
red PM becomes the winner-takes-all after the electrical connection ensures in-
phase synchrony between cells 1 and 2 (C) that eliminates the blue and green
PMs in themap after subsequent saddle-node bifurcation. The parameters
are ω � 1.15, α � 0.07, β � 0.003, and Celec � 0.00015, 0.0003, and 0.0015
for panels (A), (B), and (D).
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large circuits composed of the HH-type, FN-like, and
2θ-bursters.
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APPENDIX

The time evolution of the membrane potential, V, of each neuron
is modeled using the framework of the Hodgkin–Huxley
formalism, based on a reduction in a leech heart interneuron
model:

CV ′ � −INa − IK2 − IL − Iapp − Isyn,

τNah′Na � h∞Na(V) − h,

τK2m′
K2 � m∞

K2(V) −mK2,

(5)

see ref. 23 and the references therein. Its dynamics involve a fast
sodium current, INa with the activation described by the voltage-
dependent gating variables, mNa and hNa, a slow potassium
current IK2 with the inactivation from mK2, and an ohmic leak
current, Ileak:

INa � gNa m
3
Na hNa (V − ENa),

IK2 � gK2 m
2
K2(V − EK),

IL � gL (V − EL).
(6)

C � 0.5nF is the membrane capacitance and Iapp � 0.006nA is an
applied current. The values of maximal conductances are
gK2 � 30nS, gNa � 160nS, and gL � 8nS. The reversal potentials
are ENa � 45mV, EK � −70mV, and EL � −46mV. The time
constants of gating variables are τK2 � 0.9s and τNa � 0.0405s.
The steady-state values, h∞Na(V), m∞

Na(V), and m∞
K2(V), of the of

gating variables are determined by the following Boltzmann equations:

h∞Na(V) � [1 + exp(500(V + 0.0325))]− 1
m∞

Na(V) � [1 + exp(−150(V + 0.0305))]− 1

m∞
K2(V) � [1 + exp( − 83(V + 0.018 + Vshift

K2 ))]− 1
.

(7)

Fast, nondelayed synaptic currents in this study are modeled
using the fast-threshold modulation (FTM) paradigm as follows
[33]:

Isyn � gsyn(Vpost − Esyn)Γ(Vpre − Θsyn),
Γ(Vpre − Θsyn) � 1/[1 + exp{ − 1000(Vpre − Θsyn)}]; (8)

where Vpost and Vpre are voltages of the post- and presynaptic
cells; the synaptic thresholdΘsyn � −0.03V is chosen so that every
spike within a burst in the presynaptic cell crosses Θsyn, see
Figure 1. This implies that the synaptic current, Isyn, is initiated as
soon as Vpre exceeds the synaptic threshold. The type, inhibitory
or excitatory, of the FTM synapse is determined by the level of the
reversal potential, Esyn, in the postsynaptic cell. In the inhibitory
case, it is set as Esyn � −0.0625V so that Vpost(t)> Esyn. In the
excitatory case, the level of Esyn is raised to zero to guarantee that
the average of Vpost(t) over the burst period remains below the
reversal potential. We point out that alternative synapse models,
such as the alpha and other detailed dynamical representations,
do not essentially change the dynamical interactions between
these cells [19].
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