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In this paper we study the spatial spread of the COVID-19 infection in Lebanon.We inspect
the spreading of the daily new infections across the 26 administrative districts of the
country, and implement the univariate Moran’s I statistics in order to analyze the tempo-
spatial clustering of the infection in relation to various variables parameterized by
adjacency, proximity, population, population density, poverty rate and poverty density.
We find out that except for the poverty rate, the spread of the infection is clustered and
associated to those parameters with varying magnitude for the time span between July
(geographic adjacency and proximity) or August (population, population density and
poverty density) through October. We also determine the temporal dynamics of
geographic location of the mean center of new and cumulative infections since late
March. The understanding of the spatial, demographic and geographic aspects of the
disease spread over time allows for regionally and locally adjusted health policies and
measures that would provide higher levels of social and health safety in the fight against the
pandemic in Lebanon.
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1 INTRODUCTION

The spread of COVID-19 pandemic has practically affected the entire planet, and created enormous
challenges on every aspect of human life and organization, starting with the health sector and with far
reaching consequences on the economy, education, sports, transportation and politics. Since the first
cases were registered in Wuhan, China in December 2019 [1], the global spatial dynamics of the
infection have been changing as the disease swiftly moved toward theWest [2] into Europe then into
the United States, South America, and eventually to the whole world, with nearly 38.1 million cases
and 1.1 million deaths registered until October 12, 2020 [3].

Given the global geographic spread of the virus and the local wide spread in many countries, and
the nature of the transmission of the virus, it is important to understand the spatial mechanisms of
this spread and its dependence on proximity, demographics and social characteristics of infected
areas. Spatial analysis provides a better understanding of the routes of transmission of infections [4],
consequently, it allows the decision-makers to draft and implement effective health and mitigation
measures to reduce risks associated with the pandemic.

In Lebanon, the first case was registered on February 21, 2020 [5] and by October 12, 54,624 cases
and 466 deaths were registered [6]. The first few weeks witnessed a relatively rapid increase but it
sharply declined as a result of the strong mitigation measures enforced by the beginning of March.
The lift of the international travel ban and the partial easing of measures led to the revival of higher
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spread rates since July. Only 1,788 cases were registered by July 1,
2020 before a sharp rise from July through October. The cases
were mainly concentrated in Beirut, its suburbs and its
neighboring areas in Mount Lebanon. On August 4, a huge
explosion rattled the port of Beirut and destroyed thousands
of houses and buildings in the surrounding areas. People were
rushed into hospitals, with thousands of injuries recorded on that
day [7]. On such a horrible incident, hundreds of volunteers and
civil defense teams were involved in rescue work for several days.
The social distancing measures were largely neglected in such an
emergency situation. The spread accelerated in the upcoming
weeks, with sharp rise in Beirut and its surroundings and with a
national widespread reaching all regions and major towns and
cities [8].

Related Literature: Spatial autocorrelation is the statistical
analysis of data studied in space or in space-time aiming for the
identification and estimation of spatial processes [9, 10]. It has
been implemented to study and analyze the spread of various
diseases and infections including cancer, diabetes, SARS,
influenza virus, COVID-19, etc. [11–14]. The concept of
geographical spatial autocorrelation has been expanded into
the study of clustering of infections, including that of the
Coronavirus, among regions sharing similar (neighboring)
demographic or social features [4, 15, 16]. Recent studies also
inspected the effect of city size, population, transportation
systems and demographics on the disease spread and its
mortality rate [17–21]. The understanding of spatial spread
dynamics is essential for drafting and implementing

preventive measures in the fight against infectious diseases
including the most recent spread of COVID-19 [22,
23].The determination of the mean center of a population
(centroid) was discussed in Refs. [24–26] and extending the
concept to the determination of the mean center of wealth and
infections allowed for a spatial analysis of the temporal
dynamics of wealth distribution, economic growth and
infectious diseases [27]. The dynamics of the outbreak of
COVID-19 in Lebanon and its reproduction number
dynamics were studied in Refs. [28–31]. Recent publications
explored other aspects of the spread in Lebanon on the
preventive level [32] as well as on the level of psychological,
pharmaceutical and mental needs and responses to face the
consequences of the infection [33–35].

Despite the accelerating spread in Lebanon (see Figure 1),
there are no relevant studies analyzing the spatial dynamics of
the Coronavirus infections in the country. In this paper, we
study the clustering and spatial progression of new infections in
Lebanon by applying the methods of spatial autocorrelation
with different model parameterizations of geographic,
demographic and social variables including adjacency,
proximity, population, population density, poverty rate and
poverty density. Locating the mean center of the epidemic
spread as a function of time is used to analyze the temporal
geographic development of the spread. The methods used are
general, but our current work is focused on spatial dynamics
only in Lebanon. The paper has many novel aspects as it
addresses and studies the spatial spread of COVID-19 in

FIGURE 1 | Amonthly map of the regional cumulative number of infections in Lebanese districts between April and October 2020. The figure shows a time series of
the infection spread, using a logarithmic scale to account for the rapid increase in the number of infections. The central neighboring districts of Beirut andMount Lebanon
are the most infected throughout the time span studied.
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Lebanon covering the existing gap in current literature. It also
introduces the analysis of spread in relation to social
characteristics of infected regions by analyzing the effects of
poverty rate and poverty density, and applies the concept of the
mean center of infection on the spread of the Coronavirus. The
obtained results provide a solid basis for the concerned policy
makers to draw well-grounded and scientifically based local and
regional measures that would contribute to controlling the
infection spread in the country.

The paper is organized as follows: in section 2 we introduce
the implemented analytic mathematical and statistical methods
and tools. Results are presented and discussed in section 3, and
section 4 concludes the paper.

2 ANALYTIC METHODS AND TOOLS

2.1 Moran’s I Index
Moran’s I index is a univariate inferential statistic used to
measure the spatial autocorrelation based both on locations
and feature values simultaneously. It is defined as Ref. [9]:

I � NΣijWij(Xi − X)(Xj − X)
ΣijWijΣi(Xi − X)2 (1)

whereWij represents different types of adjacency between region i
and region j, corresponding to different models of infectious
spread. N is the number of regions under consideration and Xi

represents the number of new daily infections in district i. X is the
average number of new daily infections per region, and it is given
by X � ΣiXi

N . The numerical outcome of I falls between −1 and 1
and it indicates whether a distribution is dispersed, random or
clustered. A value of I close to 0 indicates a random distribution,
while positive values indicate clustered spatial distribution and
negative values indicate dispersion. Larger values of |I| nearer to 1
mean stronger clustering (positive I) or stronger dispersion
(negative I).

The zI-score associated to this statistic is defined by:

zI � I − E[I]����
V[I]√ (2)

where the expected value E[I] and the variance V[I] are defined in
the Appendix. The z-score or the corresponding p-value of the
statistic are used to reject the null hypothesis, eliminate the
possibility of a random pattern leading to the obtained value
of the Moran I statistic and ensuring the normality of the
distribution under consideration.

2.1.1 Methodology
In this paper, we take a confidence level corresponding to |zI | >
1.96 or equivalently to p < 0.05 in order to confirm the outcome of
clustering or dispersion of our spatial data indicated by I. In this
case we say that the p-value is statistically significant and the
distribution is normal, and based on the value of I we can
determine the pattern of the distribution.

TABLE 1 | The table shows the distribution of the cumulative number of cases among the 26 Lebanese districts on October 12, 2020, with their respective populations,
population densities, poverty rates and poverty densities.

Region name Number of cases
(Cumulative)

Population
× 100

Population denisty
(Resident/km2)

Poverty
Rate (%)

Poverty density
(Resident/km2)

Akkar 1,171 3,204 418 38.4 38
Minieh-Denniyeh 723 1,408 389 48.6 189
Tripoli 4,198 2,438 9,030 31.7 2,862
Zgharta 854 877 399 25 100
Koura 556 846 489 14.3 70
Bcharre 115 221 140 13.4 19
Batroun 341 589 212 5.5 12
Jbeil 954 1,295 301 12.7 38
Kesrwan 1978 2,605 762 18.5 141
Meten 6,139 5,110 1928 20.4 393
Beirut 6,443 3,417 17,258 25.5 4,401
Baabda 7,277 5,538 2,855 26.8 765
Aley 3,047 3,008 1,144 29.4 336
Chouf 1965 2,770 560 24.2 135
Jezzine 125 321 133 21.9 29
Saida 2,472 2,966 1,079 19.1 206
Nabatieh 683 1802 593 28.2 167
Sour 1,023 2,557 933 30.3 283
Bent Jbeil 331 962 364 22.9 83
Marjeyoun 214 740 279 24.2 68
Hasbaya 76 287 108 23.9 26
Rachaya 79 338 62 16 10
West Beqaa 474 864 184 25.5 47
Zahleh 2,367 1774 424 37.3 158
Baalback 877 2,146 94 40.6 38
Hermel 86 305 42 47.1 20
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We consider a model with six different cases of
parameterization of the adjacency matrix Wij corresponding to
geographic adjacency (case I), proximity (case II), population
(case III), population density (case IV), poverty rate (case V) and
poverty density (case VI). The first four cases follow analogous
parameterizations to those implemented in Refs. [4, 16], while
cases V and VI introduce a new parameterization in order to
inspect possible effects of poverty rate and poverty density on the
viral spread. Table 1 summarizes relevant data from the Lebanese
districts.

In case I, we take Wij � 1 for districts sharing common
borders, and contributing to spatial spread, and Wij � 0
otherwise assuming that the spread does not occur directly
between non-neighboring districts. In case II we determine
Wij � 1

dij
where dij is the driving distance between the

administrative centers of regions i and j, thus assumes that
the geographic spatial spread is inversely proportional to
distance between districts. Those two cases study the effect
of administrative adjacency and the distance proximity of
different districts on the geographic clustering of new
infections in Lebanon.

In case III and case IV, we analyze the effects of population and
population density on the spread of the disease since the virus is
carried by people and its spread is supposed to be related to their
interaction. We sort the districts by the number of their residents

(obtained from Ref. [36]) and then by the density of their
residents relative to their areas, inspecting spread between
districts according to similarities in their inhabitants’ number
and density respectively. Using the sorted order of residents
and densities, districts of consecutive number of residents and
population densities are assigned a factor of Wij � 1, and Wij � 0
otherwise. This provides a statistic about the clustering of
infections according to population and population density
respectively.

Lastly, in cases V and VI, we introduce new parameters,
namely the poverty rate and the poverty density in different
districts and we analyze their effect on infection clustering. We
sort the districts by their poverty rates and poverty density [36]
and assign Wij � 1 for regions of consecutive order of poverty
rate or poverty density, and Wij � 0 otherwise, in a similar
methodology to cases III and IV in order to infer the effect of
similarities in poverty rate and density on patterns of infection
spread.

2.2 Mean Center of Infection
The mean center of infection (henceforth MCI) is a geographic
location that represents the weighted mean of the positions of
infected individuals on the surface of Earth, assumed to be
spherical. Assigning the value of Earth’s radius to unity,
the two spherical coordinates that determine the unique

FIGURE 2 | The figure showsMoran’s I index and its corresponding p-value for cases I and II accounting for adjacency and proximity of new infections registered in
Lebanese districts. Since July, there is a strong clustering of daily infections in regions sharing common borders and among nearer regions.
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position of a point are its latitude λi and longitude ϕi. The
latitude is a measurement of location north or south of
the equator while the longitude is a measurement of
location east or west of the prime meridian at Greenwich,
United Kingdom.

The Cartesian position vector ri
→ � (xi, yi, zi) is related to

spherical coordinates with unit radius by the relations Ref. [37]:

⎧⎪⎨⎪⎩
xi � cos λi cos ϕi

yi � sin λi cosϕi

zi � sinϕi

(3)

We denote the district number of infections (new or cumulative)
by Xi as defined above, and the Cartesian positions of the
administrative centers by (xi,yi,,zi). Then, the Cartesian
position of the weighted mean of infections r̂i

→
is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂ � ΣiXixi
ΣiXi

ŷ � ΣiXiyi
ΣiXi

ẑ � ΣiXizi
ΣiXi

(4)

As suggested by Ref. [24], the precise position on the surface of a
sphere can be determined from the normalized position vector
defined by ri

→ � (x, y, z) � r̂i
→∣∣∣∣∣∣∣ r̂i→
∣∣∣∣∣∣∣
,leading to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x � x̂��̂

x2
√ + ŷ2 + ẑ2

y � ŷ��̂
x2

√ + ŷ2 + ẑ2
z � ẑ��̂

x2
√ + ŷ2 + ẑ2

(5)

Consequently, we can recover the spherical position of the mean
center of infections by calculating the mean latitude and
longitude as:

⎧⎪⎪⎨⎪⎪⎩
ϕ � sin− 1z

λ � tan− 1y
x

(6)

The latitude and the longitude can be located and plotted on maps
and geographic information systems. We employ the spherical
coordinates of geographic locations of the capitals of the 26
administrative districts in Lebanon and the number of daily
and cumulative infections in each region in order to determine
the daily MCI accordingly. This provides a tool to analyze the
temporal dynamics of the mean geographic spread of the disease.

FIGURE 3 |Moran’s I index and its corresponding p-value for cases III and IV accounting for population and population density of different districts. The daily spread
was not clustered with respect to district population and density until late August 2020, where it started achieving strong spatial clustering between districts of adjacent
population ranks.
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3 RESULTS AND DISCUSSIONS

The determination of the Moran’s I index and its corresponding
p-value for the effect of adjacency and proximity of cases I and II
on the clustering of daily new infections of COVID-19 in
Lebanon shown in Figure 2, leads to the conclusion that since
July 2020, there is strong clustering of infections in regions
sharing common borders and among nearer regions. There
were only few days when new infections were not clustered in
adjacent regions, and only one day where distance was not shown
to be a detrimental effect in the spatial spread of new cases. The
maximum value of Moran’s I reached 0.660 for case I and 0.380
for case II indicating a high level of geographic clustering of the
disease spread since July. The infections before July had a high
p-value, indicating a high probability for random geographic
spread.

The results of the spatial spread dynamics in relation to
population and population density adjacency as shown in
Moran’s I and p-value of cases III and IV depicted in
Figure 3 reveal that the spread was not clustered with respect
to the regional population until late August 2020, where it started
achieving a positive value of I with p < 0.05 indicating spatial
clustering between regions of adjacent population rank, with
several days showing a probability of random spread. The
maximum attained I was 0.666. However, the statistics for

districts with adjacent rank of population density show very
strong spatial clustering since the middle of August with I
attaining a maximum value of 0.832, which is the highest
among all six studied cases.

The results of case V (Figure 4) show that the spatial spread
cannot be attributed to adjacent ranking of poverty rates among
the districts since the p-values remain above the 5% level of
confidence up until October 2020, hence no spatial clustering
occurs. But when we consider the poverty density in case VI, we
obtain positive values for Moran’s I since the end of August, with
p < 0.05 except for five days. Hence, spatial clustering among
regions with adjacent ranking of poverty density occurs. The
maximum attained I in this case is 0.666.

In comparison, we find out that clustering of new infections
occurs starting on different dates between July and August for all
considered cases except for case V corresponding to district
populations. The strongest level of spatial clustering (highest I)
occurs for model IV of population density after mid-August,
while clustering associated to geographic adjacency and
proximity (cases I and II) has the longest time span (since
early July) and the highest levels of confidence.

By construction, spatial autocorrelation and its corresponding
Moran’s I index are defined in terms of univariate data
observations [10, 38, 39]. Multivariate spatial analysis implies
a compromise between multivariate analysis (relations among

FIGURE 4 | Moran’s I index and its corresponding p-value for cases V and VI accounting for regional poverty rate and poverty density. The poverty rate is not a
decisive factor for spatial spread but when we consider the poverty density, we obtain spatial clustering starting on the end of August.
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variables) and autocorrelation (spatial structure) [40, 41], and it
was not employed in the context of this work, which was based on
Moran’s univariate statistics.

The location of the MCI was determined as a function of time as
shown in Figure 5. The mean latitude and longitude of the infection
were determined according to the methods described in Equation 6.
The location of the cumulative MCI is plotted on the geographic map
of Lebanon during the same period in Figure 6, together with the
mean center of population of the country. It started near the city of
Jounieh, north-west of the mean center of population, but it has
moved southward sinceMay throughAugust, where it startedmoving
northward again. The location of theMCI of new infections was quite
geographically distributed before July as the lower plot of Figure 5
shows, before becoming more homogenous afterward.

The reproduction number R (which has maintained a relatively
high rate in Lebanon since June [28, 29]) and the rate of the infection
spread correlate with people’s mobility [42]. Geographic clustering
occurs because people’s motion and local travel is higher in their
close neighborhoods, especially in a country like Lebanon where
with the absence of national public transportation throughout the
country [43] diminishes nationwide mobility. Higher levels of social
interaction among people in dense regions also contribute to the
spread of the disease, and this has shown the strongest clustering
effect.

In this study, we employed Moran’s I statistics with various
parameterizations, in addition to the mean center of infection which

is a measure of the centrality of the infections, with its dynamic
temporal changes. The two approaches are complementary, and
allow us to visualize the dynamics of spread, with its temporal
geographical clustering characteristics. In addition, spatial
autocorrelation provides unique information about demographic
and social characterization of the spread.

Our statistical tests and results correspond to the number of
registered cases, which might differ from the actual infections in
case of under-reporting, under-testing or in case of asymptomatic
infections.

4 CONCLUSION

In this paper we introduced the Moran’s I index with its associated
z-score and p-value to study the spatial autocorrelation of registered
new infections of COVID-19 in Lebanon. We introduced six
different cases of parameterization of the spread related to
adjacency, proximity, population, population density, poverty rate
and poverty density. We discovered that poverty rate is not
statistically relevant to the spatial spread of the disease while
geographic bordering, distance between district centers, number
and density of residents and poverty density lead to clustering of
the disease, with varying strengths and level of confidence since July
and August through October. We also introduced methods to
determine the geographic coordinates of the mean center of the

FIGURE 5 | This figure is a plot of the latitude and longitude of the weighted geographic center of COVID-19 infections in Lebanon. The upper graphs represent the
temporal progression of the cumulative number of infections while the lower graphs represent that of the new daily cases.
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infection, and determined this center sinceApril 2020, and plotted its
variations over time up until October.

One of the major limitations that prohibit a more detailed
analysis is the public unavailability of data on the municipal or
sub-district level that would allow amore detailed spatial analysis,
and consequently more locally-specific policies and measures to
slow down its spread.

The study of the spread of the infection allows relevant
authorities to draw appropriate country-specific and regional
measures to curb the spread. The understanding of the spatial,
demographic and geographic aspects of the disease spread over
time provides an essential basis for to take more efficient
decisions of local and inter and intra-regional measures, thus

contributing to increased social and health safety and security in
the fight against the pandemic.
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APPENDIX

The expected value of Moran’s I statistic is given by:

E[I] � −1
N − 1

while its variance is defined as:

V[I] � E[I2] − E[I]2

where

E[I2] � A − B

(N − 1)(N − 2)(N − 3)(ΣijWij)2
and A and B are given by:

A � N[2(N2 − 3N + 3)ΣijW
2
ij − 2NΣi(ΣjWij)2 + 3(ΣijWij)2]

B � 2Σi(Xi − X)4
(Σi(Xi − X)2)2 [(N

2 − N)ΣijW
2
ij − 2NΣi(ΣjWij)2 + 3(ΣijWij)2]

consequently, the zI-score is given by zI � I−E[I]���
V[I]

√ .
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