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The finite-time chaos synchronization between two different chaotic systems with
uncertain parameters and external disturbances is studied. A new and improved
adaptive fast nonsingular terminal sliding mode control (ANFTSM) has been designed
for a fast rate convergence of tracking error to zero in finite time. The effectiveness of the
proposed control method is shown in simulation results.
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1 INTRODUCTION

Chaotic systems are very complex nonlinear systems that are highly sensitive to initial conditions and
the system’s parameters. Recently, the synchronization of chaotic systems has attracted several
researchers. A basic concept of synchronization is to design a suitable controller to control the slave
system such that the states of the slave system have the same amplitude as the master states. There
have beenmany control methods for synchronization of chaotic systems such as adaptive control [1],
observer-based control [2], backstepping control [3], active control [4], and sliding mode control [5].
In general, the parameters of the chaotic system are inevitably perturbed by external disturbance. To
handle this problem, the sliding mode control which is one of the most effective methods was
proposed in [6] for chaos synchronization with uncertainties and disturbances. Generally, the
traditional sliding mode control (SMC) has some important problems such as discontinuous control,
which often causes the chattering phenomenon. To cope with the mentioned problem, some new
SMC has been developed. Moreover, SMC cannot ensure the system states will converge to the
equilibrium point in finite time. As a result, a new control method which is called a terminal sliding
mode (TSM) control was proposed in [7]. It was developed by introducing fractional power into the
sliding mode, which guarantees chaos synchronization is achieved in finite time and it gives a fast
convergence and good tracking precision. In [8], the authors have investigated a chattering-free by
introducing a new and improved robust predefined-time sliding mode control (CFRPSMC) scheme
to eliminate the chattering phenomenon and solved the trajectory tracking problem of a remotely
operated vehicle with matching uncertainties in predefined-time. However, when the system states
are far away from the equilibrium point, TSMC may not present a good convergent efficiency. The
fast terminal sliding mode (FTSM) control in [9] was developed for second-order uncertain systems
to ensure the system states have a faster convergence speed when they are far away from the
equilibrium point in finite time. In the last case, there is a singularity problem because the terms with
negative fraction power may exist. To overcome this problem, a new type of sliding mode control
method called nonsingular terminal sliding mode (NTSM) control was presented in [10].

In any case, these methods still require a knowledge of the upper bound of the disturbances or
uncertainties. Therefore, an adaptive technique was applied for the type of sliding mode control to
adjust the control gain of the controllers. In [11] the authors studied the synchronization of two
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different uncertain chaotic systems with unknown parameters
using a robust adaptive sliding mode controller. The
synchronization of the second-order chaotic systems which
was controlled by an adaptive terminal sliding mode controller
with input nonlinearity was studied in [12]. Two novel controllers
NTSMC and ANTSMC methods were designed in [13] for
synchronization of smart grid chaotic systems which eliminate
the undesirable chattering phenomenon in finite time. In [14], the
authors have designed two novel controllers by using AFSMC
methods to solve the chattering problem for a class of single-input
multiple-out (SIMO) nonlinear systems with unknown
mismatched uncertainties in finite time.

Motivated by the above discussions, in this paper, the adaptive
control technique is applied to design a new and improved
nonsingular fast terminal sliding mode (NFTSM) control to
solve the synchronization problem between two different
chaotic systems with unknown parameters and disturbances.
The finite-time stability is achieved by using some finite-time
lemma and the Lyapunov stability theory. Furthermore,
numerical results are given to confirm the effectiveness of our
proposed controllers. The main contributions are listed as
following.

• An improved ANFTSM controller is designed to succeed the
finite-time synchronization of two different chaotic systems
with external and disturbance.

• The fast nonsingular terminal sliding mode is used to
eliminate the singularity problem and to provide a fast
rate of when the system states are far away from the origin.

• An ANFTSM controller does not require the knowledge of
the upper bound of the disturbances or uncertainties.

• A comparison between the effectiveness of ANFTSM and
NTSM controllers is given which shows that ANFTSM
controller gives a faster convergence rate to zero for the
synchronization error in finite time.

The rest of this paper is organized as follows. In Section 2, the
synchronization problem is addressed and necessary preliminary
results are given. The main result is given in Section 3. In Section
4, numerical examples and discussions are presented. Finally, the
conclusion is given in Section 5.

2 PROBLEM DESCRIPTION

In this section, the definition of the finite-time synchronization
concept and some necessary lemmas are given.

Consider the second-order chaotic system with unknown
parameters [15] which is of the following forms:

The master system:

_y1(t) � y2(t),
_y2(t) � g(y, t) + Δg(y, t), (1)

where y1(t) and y2(t) ∈ R are the states of the master system,
g(y, t) ∈ R is the nonlinear function of the master system,

Δg(y, t) ∈ R is the uncertain parameter of the master system
and t ∈ R with R being the set of real numbers.

The slave system:

_x1(t) � x2(t),
_x2(t) � f (x, t) + Δf (x, t) + v(t) + u(t), (2)

where x1(t) and x2(t) ∈ R are the state vectors of the slave system,
f (x, t) ∈ R is the nonlinear function of the slave system,
Δf (x, t) ∈ R is the uncertain parameter of the slave system,
v(t) is the disturbance input of the slave system and u(t) ∈ R
is the control input. The synchronization error is defined
as e(t) � x(t) − y(t).

Let e1(t) � e(t) and e2(t) � _e(t). Using Eqs. 1, 2, one obtains
_e1(t) � e2(t),
_e2(t) � f (x, t) − g(y, t) + d(x, y, t) + u(t), (3)

where d(x, y, t) � Δf (x, t) − Δg(y, t) + v(t) is the
perturbation term.

ASSUMPTION 2.1. The perturbation term is bounded, namely,∣∣∣∣d(x, y, t)∣∣∣∣≤D, (4)

where D is a known positive constant.
DEFINITION 2.2. The master system 1) and slave systems 2) are

said to be synchronized in finite time if there exists a constant
T � T(e(0))> 0 such that lim

t→T
||e(t)|| � lim

t→T

∣∣∣∣∣∣∣∣x(t) − y(t)∣∣∣∣∣∣∣∣ � 0
and ‖e(t)‖ � 0 for t ≥T . In this case, T is called the settling
time of synchronization.

LEMMA 2.3 [16]. Consider the system

_x � f (x), f (0) � 0, x ∈ Rn (5)

where f : D→Rn is continuous in an open set D ⊂ Rn. Assume
that there is a continuous differential positive-definite function
V : D→R, and real numbers Γ> 0 and 0< ς< 1, such that

_V(x) + ΓV ς(x)≤ 0,∀x ∈ D,

then the equilibrium x � 0 of (Eq. 5) is locally finite-time stable.
The settling time, depending on the initial state x(0) � x0, satisfies

T(x0)≤V
1−ς(x0)

Γ(1 − ς) .

In addition, if D � Rn and V(x) is radially unbounded, then the
equilibrium x � 0 of (Eq. 5) is globally finite-time stable.

The following lemma is required for the design of fast terminal
sliding mode control.

LEMMA 2.4 [17]. Assume that there is a continuous
differentiable positive-definite function V : D→R satisfying

_V(x) + λ1V(x) + λ2V
ϖ(x)≤ 0,

where λ1 > 0, λ2 > 0 and, 0<ϖ< 1. Then, the settling time T �
T(x0) , depending on the initial state x(0) � x0, satisfies

T(x0)≤ 1
λ1(1 − ϖ) ln

λ1V1−ϖ(x0) + λ2
λ2

.
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3 DESIGN OF FINITE-TIME SLIDING MODE
CONTROLLER

In this section, a new adaptive nonsingular fast terminal sliding
mode (ANFTSM) controller is designed to achieve the
synchronization between two different chaotic systems with
unknown parameters and disturbances. There are two steps to
design the controller. In the first step, a suitable nonsingular
terminal sliding surface for the desired sliding motion is selected.
That is the trajectory of the system along this surface approaches
zero in a finite time. In the second step, an adaptive finite-time
controller is designed to force the system motion from any initial
condition to the sliding surface in a given finite time.

To design the ANFTSM controller, the nonsingular fast
terminal sliding surface is introduced as:

s(t) � e2(t) + k1e1(t) + k2|e1|csign(e1(t)) (6)

where k1 , k2 and 0.5< c< 1 are positive constants.
For the systemmotion on the terminal sliding surface s(t) � 0,

the dynamic of the presented nonsingular fast terminal sliding
mode can be obtained as:

_e1(t) � −k1e1(t) − k2
∣∣∣∣e1(t) csign(e1(t)).

∣∣∣∣ (7)

The designed controller u(t) is as follows:
u(t) � −f (x, t) + g(y, t) − k1e2(t)

− k2c
∣∣∣∣e1(t) c−1 _e1(t) − βsign(s(t)),∣∣∣∣ (8)

where β is the control parameter satisfying the adaptive law _β �
β|s(t)| with β> 0 and there exists a positive constant β* so
that. β≤ β*.

The block diagram for synchronization between the master
system 1) and the slave system 2) using ANFTSM controller is
shown in Figure 1.

Remark 3.1: In [18], the authors have investigated a new
recurrent neural network (RNN) fractional-order sliding mode
control to compensate harmonic current of active power filter
(APF). In the proposed method, the controller gives a high
approximation accuracy and quickly tracks the detected

harmonic compensation. Moreover, the unknown function of
the system is approximated by the recurrent neural network
(RNN). In (Juntao et al., 2020a), the authors have proposed an
adaptive terminal sliding mode control by applying fuzzy double
hidden layer neural network (FDHLRNN) for single-phase active
power filter (APE). The designed controller made the tracking
error of the system converges to zero in a finite time. In [19], the
authors have designed the super-twisting sliding mode controller
based on the fractional-order nonsingular terminal sliding mode
control for a micro gyroscope with unknown uncertainty by using
a double-loop fuzzy neural network (DLFNN) to estimate the
unknown uncertainty of the micro gyroscope system. There are
several advantages by using such a designed controller, namely,
the tracking error converges to zero in a finite time, the singular
problem has been handled, and the unwanted chattering
phenomena has been alleviated. In [20], the authors have
introduced an adaptive H∞ tracking control technique for the
nonlinear z-axis micro gyroscope system. The controller gives an
accurate tracking trajectory of convergence to zero, and also a
robust performance to uncertainties and disturbances.
Furthermore, the unknown system parameters are estimated
by using an adaptive law. The difference between our studies
and [18, 19, 21], and [20] is that we apply the nonsingular fast
terminal sliding mode control with an adaptive law technique to
achieve finite-time synchronization between two different chaotic
systems with unknown parameters and disturbances.

In the following result, by using the proposed controller (8), it
is shown that the synchronization errors e1 and e2 converge to
sliding surface s(t) � 0 in finite time.

THEOREM 3.1. For the system (3) and the controller (8), the
error trajectory converges to sliding surface s(t) � 0 in finite time.

PROOF. Let us consider the Lyapunov function as

V1 � 1
2
s2 + 1

2ρ
(β − β*)2 (9)

where ρ is a constant which satisfies 0< ρ< β. and s(t) is defined
in (Eq. 6)

Taking the derivative of V1(t) in (Eq. 9) for sliding surface, we
have

FIGURE 1 | The block diagram of chaos synchronization using ANFTSM controller.
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_V1 � s _s + 1
ρ
(β − β*) _β

� s[ _e2 + k1 _e1 + k2c|e1|c−1 _e1] + β

ρ
(β − β*)|s|.

(10)

Substituting (Eq.3) and the controller (Eq. 8) in (Eq. 10),
we get

_V1 ≤ − β|s| + D|s| + β

ρ

∣∣∣∣β − β*
∣∣∣∣|s|

� (D − β*)|s| − |β − β*||s| + β

ρ
|β − β*||s|

� −(β* − D)|s| + ( − |s| + β

ρ
|s|)∣∣∣∣β − β*

∣∣∣∣
≤ − σ|s| − ξ

∣∣∣∣β − β*
∣∣∣∣

� −σ
�
2

√�
2

√ |s| − ξ

��
2ρ

√��
2ρ

√ ∣∣∣∣β − β*
∣∣∣∣

≤ −min{σ �
2

√
, ξ

��
2ρ

√ }( |s|�
2

√ +
∣∣∣∣β − β*

∣∣∣∣��
2ρ

√ )
� −ηV 1

2
1

(11)

where η � �
2

√
min{σ, �

ρ
√

ξ}, σ � (β* − D)> 0 and ξ � β
ρ |s| − |s|> 0.

Thus, it follows from (Eq. 11) that

_V1(t) + ηV1(t)12 ≤ 0.
By Lemma 2.3, the error trajectory e(t) converges to sliding

surface s(t) � 0 in finite time Tr ≤
2V

1
2
1 (t0)
η .

As is shown above that the errors trajectory converges to sliding
surface s(t) � 0 in a finite time, it is required to show that the
synchronization error e1 and e2 in (3) converge to zero in a finite time.

THEOREM 3.3. Consider the nonsingular terminal sliding mode
dynamics (7). This system is finite-time stable and it approaches
zero in a finite time Ts. Namely, the system (1) and the system (2)
are synchronized with a settling time Ts which is determined by

Ts ≤
1

k1(1 − c) ℓn⎛⎝2k1V
1−c
2

2 (t0) + ( �
2

√ )c+1k2( �
2

√ )c+1k2 ⎞⎠.

PROOF. Consider the Lyapunov function:

V2(t) � 1
2
e21(t). (12)

Substituting (Eq. 7) into the derivative of V2 in (Eq. 12), yields

_V2(t) � e1(t) _e1(t)
� e1(t)( − k1e1(t) − k2

∣∣∣∣e1(t) csign(e1(t))) � −k1e21(t) − k2|e1(t) c+1∣∣∣∣∣∣∣∣
Using (Eq. 12), we know that e21(t) � 2V2(t) and
|e1(t)| �

�
2

√
V

1
2
2(t). Then, _V2(t) becomes

_V2(t) � −2k1V2 − ( �
2

√ )c+1k2V c+1
2

2 ≤ 0.
By Lemma 2.4, the settling time Ts is determined by:

Ts ≤
1

k1(1 − c) ℓn⎛⎝2k1V
1−c
2

2 (t0) + ( �
2

√ )c+1k2( �
2

√ )c+1k2 ⎞⎠.

Therefore, the error e1(t) converges to zero in a finite time Ts.
After that, the error e2(t) also tends to zero in finite time Ts. In
other words, the synchronization between the system (1) and the
system (2) is achieved in a finite time Ts.

4 NUMERICAL EXAMPLES

In this section, the effectiveness of the designed ANFTSM
controller is presented. Moreover, the comparison between the
performances of ANFTSM and the NTSM is given. First, we
introduce some chaotic systems which will be applied to
demonstrate the synchronization problems under the designed
ANFTSM controller.

4.1 The Chaotic Systems
4.1.1 The Duffing-Holmes System
The Duffing-Holmes system [22] is a nonlinear dynamical system
exhibiting complex and chaotic behavior given by

_x1 � x2
_x2 � −p1x1 − p2x2 − x31 + h cos(ωt), (13)

where x1 and x2 are the state variables, p1 and p2 are the
coefficients exhibiting the friction, ω is the angular frequency
of the external driving force, and h is the amplitude of the
external force.

4.1.2 The Gyroscope System
The gyroscope system [23] is an important dynamical system
which has several applications such as navigation system, space
engineering, and aircraft system. The gyroscope system is
given by

_x1 � x2

_x2 � −c1x2 − c2x
3
2 − α2(1 − cos(x1))2

sin3(x1) + (β0 + β1 sin(θt))sin(x1),
(14)

where x1 and x2 are the state variables, c1 and c2 are the damping
coefficients, β0 and β1 are normalized amplitudes of the external
harmonic excitation, and θ is the frequency of the external
harmonic excitation.

4.1.3 The Power System
The power system [24] is a nonlinear dynamical system given by

_x1 � x2
_x2 � −a sin(x1) − bx2 + c + F cos(λt), (15)

where x1 and x2 are the state variables of the system, F and λ
represent amplitude and frequency of load disturbance, and
a and b are generator inertia and damping coefficient,
respectively.
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4.2 Examples of Synchronization Between
Two Different Chaotic Systems
In this subsection, two numerical examples for synchronization
between two different chaotic systems which were introduced in
Subsection 4.1 are presented to demonstrate the effectiveness of
the designed ANFTSM controller. In Example 1, synchronization
between the gyroscope system and the Duffing-Holmes system is
considered. In Example 2, synchronization between the Duffing-
Holmes system and the power system is studied.

Example 1

In this example, the effectiveness of the proposed ANFTSM
to succeed finite-time synchronization between the gyroscope
(14) system and the Duffing-Holmes (13) system is presented.
For this propose, the system(14) is taken as the master system
and the system (13) as the slave system. For simulation
purpose, the nonlinear functions f (x, t) and g(y, t) are
chosen as

g(y, t) � −c1y2 − c2y
3
2 − α2

(1 − cos(y1))2
sin3(y1) +

(β0 + β1sin(θt)) sin(y1),

f (x, t) � −p1x1 − p2x2 − x31 + hcos(ωt).
The uncertain parameters for both systems are chosen as

follows: Δg(y, t) � 0.6sin(y1), Δf (x, t) � −0.1sin(x2). The
disturbance term is chosen as v(t) � 0.4sin(t). The system
parameters are selected as p1 � 1, p2 � 0.25, h � 0.3,ω � 1, β0 �
1, β1 � 35.5, α2 � 100, c1 � 0.5, c2 � 0.05 and. θ � 2.

To achieve the finite-time synchronization, the parameters of
the nonsingular fast terminal sliding surface (6) are chosen as
k1 � 2, k2 � 6 and c � 0.8. The adaptive law β is chosen to satisfy
_β � β|s(t)| with β � 2 and the initial condition β(0) � 2; in which
the upper bound β* satisfies β* ≤ 15. The initial conditions for the
Duffing-Holmes are chosen as [x1(0), x2(0)] � [1, 3] and
[y1(0), y2(0)] � [ − 1, 1], respectively. From which, it follows
from Theorem 3.2 that yields the synchronization errors e1(t)
and e2(t) converge to zero in finite time Ts ≤ 0.8105.

For comparison purpose, we consider the NTSM controller
which was considered in ([10]) with sliding surface given by s �
e1 + κ

∣∣∣∣e2|αsign(e2) with κ � 3 and α � 1.4. The comparisons of
the performance between ANFTSM and NTSM controllers are
presented in Figures 2–6. Figure 2 and Figure 3 show that the
master and slave systems are finite-time synchronized with a
settling-time at about three and seven by using the ANFTSM
controller and the NTSM controller, respectively. Figure 4 shows

FIGURE 2 | Synchronization between the Gyros and the Duffing-Holmes systems in Example 1 by ANFTSM controller (A) the synchronization between x1 and y1
(B) the synchronization between x2 and y2.
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FIGURE 3 | Synchronization between the Gyros and the Duffing-Holmes systems in Example 1 by NTSM controller (A) the synchronization between x1 and y1 (B)
the synchronization between x2 and y2.

FIGURE 4 | The comparison of synchronization errors between ANFTSM and NTSM of Example 1 (A) the synchronization error e1 (B) the synchronization error e2.
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the synchronization errors e1(t) and e2(t) converge to zero in
finite time. It can seen from Figure 4 that the ANFTSM controller
gives a better synchronization performance and faster response in
comparison with the NTSM controller method. Figure 5
demonstrates that the sliding surface approaches zero in finite
time. The time responses of the ANFTSM and NTSM controllers
are shown in Figure 6.

Furthermore, the upper bound of the settling time of finite-
time synchronization seems to get smaller by adjusting the
parameters of the ANFTSM controller as shown in Table 1.

Note that, to get a smaller value of settling-time, the parameters
k1and k2 should be increased and γ should be sufficiently small.
Nonetheless, adjusting parameters k1, k2 and γ may cause an
undesired chattering phenomenon.

Example 2

In this example, synchronization problem between the
Duffing-Holmes system and the power system by using
ANFTSM controller are considered. For this propose, we take

FIGURE 5 | Sliding surface for Example 1.

FIGURE 6 | The time response of the design controller u(t) in Example 1 (A) the ANFTSM controller (B) the NTSM controller.
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the system (13) as the master system and the system (15) as the
slave system. For simulation purpose, the nonlinear function is
chosen as

g(y, t) � −p1y1 − p2y2 − y31 + h cos(ωt),
f (x, t) � a sin(x1) − bx2 + c.

Theuncertain function of the system is chosen asΔf � −0.1sin(x2)
and the external disturbance is chosen as v � Fcos(λt). The system
parameters are chosen as p1 � 1, p2 � 0.25, h � 0.3, q � 0.95,ω �

1,Δf (x, t) � −0.1sin(x2) and d(t) � 0.3cos(5t), a � 1, b �
0.02, c � 0.2, F � 0.2593 and. λ � 0.0174.

To achieve the finite-time synchronization, the parameters of
the nonsingular fast terminal sliding surface (6) are chosen as
k1 � 2 and k2 � 8 and c � 0.8. The adaptive law β is chosen to
satisfy _β � β|s(t)| with β � 2 and the initial condition
β(0) � 1.994. It may be shown that the upper bound β*

satisfies β* ≤ 11. From which, it follows from Theorem 3.2 that
the synchronization errors e1(t) and e2(t) in sliding mode
converge to zero in finite time Ts ≤ 0.5041.

The parameters of NTSM are selected as κ � 0.5 and α � 1.25.
The initial conditions of the Duffing-Holmes and the Power
systems are chosen as [y1(0), y2(0)] � [1, 3] and
[x1(0), x2(0)] � [0.43, 0.003], respectively.

For comparison purpose, we consider the NTSM
controller which was considered in ([10]) with sliding surface
given by s � e1 + κ

∣∣∣∣e2|αsign(e2) with κ � 3 and α � 1.4. The
comparisons of the performance between ANFTSM and
NTSM controllers are demonstrated in Figures 7–11. Figures
7, 8 show that the Duffing-Holmes system and the power system
are finite-time synchronized by using the ANFTSM and the
NTSM controllers, respectively. From Figure 9, it can be seen
that by using the ANFTSM, the synchronization errors converge

TABLE 1 | Upper bounds of settling-time for ANFTSM controller with various
parameter values for Example 1.

Parameters for ANFTSM Ts

k1 k2 γ

2 6 0.8 0.8105
2 8 0.8 0.6311
2 10 0.8 0.5170
2 18 0.8 0.3003
4 6 0.8 0.7108
5 6 0.8 0.6715
10 6 0.8 0.5348
2 6 0.9 1.5273
2 6 0.7 0.5731
2 6 0.6 0.4556

FIGURE 7 | Synchronization the Duffing-Holmes and the Power systems in Example 2 by ANFTSM controller (A) the synchronization between x1 and y1 (B) the
synchronization between x2 and y2.
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FIGURE 8 | Synchronization between the Duffing-Holmes and the Power systems in Example 2 by NTSM controller (A) the synchronization of x1 and y1 (B) the
synchronization between x2 and y2.

FIGURE 9 | The comparison of synchronization errors between the ANFTSM and NTSM in Example 2 (A) the synchronization error e1 (B) the synchronization
error e2.
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to zero faster than using the NTSM controller. Figure 10 shows
the time response for the sliding surface which can be seen that by
using the proposed ANFTSM controller, the sliding surface
converges to zero faster than using the NTSM controller. The
time responses of the ANFTSM and NTSM controllers are shown
in Figure 11. Similar to a discussion given in Example 4.1, the
settling time may be reduced by adjusting the parameters of the
ANFTSM controller as shown in the Table 2; namely k1 and k2
should be increased while γ should be sufficiently small. However,
by adjusting parameter k1, k2, and γ may cause an undesirable
chattering phenomenon.

Remark 3.2: It is worth mentioning that, by using the SMC
controller scheme, an unwanted chattering phenomena may
occur due to discontinuity of the control law, see [8] and
references cited therein. There are several studies on how to
alleviate this phenomenon of undesirable chattering, see [14]. In
this work, we have focused mainly on a design of ANFTSM to
achieve synchronization of two different chaotic systems in which
an undesirable chattering phenomenonmight still occur as can be
seen from Figure 6. It is a very interesting and challenging
problem for handling the undesirable chattering phenomenon
which is the main focus for our future investigation.

FIGURE 10 | Sliding surface for Example 2.

FIGURE 11 | The time response of the design controller u(t) in Example 2 (A) ANFTSM controller (B) NTSM controller.
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5 CONCLUSION

In this studied, an adaptive nonsingular fast terminal sliding
mode (ANFTSM) control is developed to achieve the finite-time
synchronization between two different chaotic systems with
uncertain parameters and disturbances. Numerical results are
given to demonstrate the effectiveness of the designed ANFTSM
controller. Moreover, comparison of the performances between
ANFTSM and NTSM controllers have been given which shows
that ANFTSM controller gives a better performance than NTSM
controller. Nonetheless, the proposed ANFTSM controller may
cause an unwanted chattering phenomenon which is a main focus
for our future investigation.
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